root/apps/createsamples/utility.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. icvMkDir
  2. icvWriteVecHeader
  3. icvWriteVecSample
  4. cvGetPerspectiveTransform
  5. cvWarpPerspective
  6. icvRandomQuad
  7. icvStartSampleDistortion
  8. icvPlaceDistortedSample
  9. icvEndSampleDistortion
  10. icvCreateBackgroundData
  11. icvReleaseBackgroundData
  12. icvCreateBackgroundReader
  13. icvReleaseBackgroundReader
  14. icvGetNextFromBackgroundData
  15. icvGetBackgroundImage
  16. icvInitBackgroundReaders
  17. icvDestroyBackgroundReaders
  18. cvCreateTrainingSamples
  19. cvCreateTestSamples
  20. cvCreateTrainingSamplesFromInfo
  21. icvGetTraininDataFromVec
  22. cvShowVecSamples

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include <cstring>
#include <ctime>

#include <sys/stat.h>
#include <sys/types.h>
#ifdef _WIN32
#include <direct.h>
#endif /* _WIN32 */

#include "utility.hpp"
#include "opencv2/core.hpp"
#include "opencv2/core/core_c.h"
#include "opencv2/imgcodecs/imgcodecs_c.h"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/highgui/highgui_c.h"
#include "opencv2/calib3d/calib3d_c.h"

#ifndef PATH_MAX
#define PATH_MAX 512
#endif /* PATH_MAX */

#define __BEGIN__ __CV_BEGIN__
#define __END__  __CV_END__
#define EXIT __CV_EXIT__

static int icvMkDir( const char* filename )
{
    char path[PATH_MAX];
    char* p;
    int pos;

#ifdef _WIN32
    struct _stat st;
#else /* _WIN32 */
    struct stat st;
    mode_t mode;

    mode = 0755;
#endif /* _WIN32 */

    strcpy( path, filename );

    p = path;
    for( ; ; )
    {
        pos = (int)strcspn( p, "/\\" );

        if( pos == (int) strlen( p ) ) break;
        if( pos != 0 )
        {
            p[pos] = '\0';

#ifdef _WIN32
            if( p[pos-1] != ':' )
            {
                if( _stat( path, &st ) != 0 )
                {
                    if( _mkdir( path ) != 0 ) return 0;
                }
            }
#else /* _WIN32 */
            if( stat( path, &st ) != 0 )
            {
                if( mkdir( path, mode ) != 0 ) return 0;
            }
#endif /* _WIN32 */
        }

        p[pos] = '/';

        p += pos + 1;
    }

    return 1;
}

static void icvWriteVecHeader( FILE* file, int count, int width, int height )
{
    int vecsize;
    short tmp;

    /* number of samples */
    fwrite( &count, sizeof( count ), 1, file );
    /* vector size */
    vecsize = width * height;
    fwrite( &vecsize, sizeof( vecsize ), 1, file );
    /* min/max values */
    tmp = 0;
    fwrite( &tmp, sizeof( tmp ), 1, file );
    fwrite( &tmp, sizeof( tmp ), 1, file );
}

static void icvWriteVecSample( FILE* file, CvArr* sample )
{
    CvMat* mat, stub;
    int r, c;
    short tmp;
    uchar chartmp;

    mat = cvGetMat( sample, &stub );
    chartmp = 0;
    fwrite( &chartmp, sizeof( chartmp ), 1, file );
    for( r = 0; r < mat->rows; r++ )
    {
        for( c = 0; c < mat->cols; c++ )
        {
            tmp = (short) (CV_MAT_ELEM( *mat, uchar, r, c ));
            fwrite( &tmp, sizeof( tmp ), 1, file );
        }
    }
}

/* Calculates coefficients of perspective transformation
 * which maps <quad> into rectangle ((0,0), (w,0), (w,h), (h,0)):
 *
 *      c00*xi + c01*yi + c02
 * ui = ---------------------
 *      c20*xi + c21*yi + c22
 *
 *      c10*xi + c11*yi + c12
 * vi = ---------------------
 *      c20*xi + c21*yi + c22
 *
 * Coefficients are calculated by solving linear system:
 * / x0 y0  1  0  0  0 -x0*u0 -y0*u0 \ /c00\ /u0\
 * | x1 y1  1  0  0  0 -x1*u1 -y1*u1 | |c01| |u1|
 * | x2 y2  1  0  0  0 -x2*u2 -y2*u2 | |c02| |u2|
 * | x3 y3  1  0  0  0 -x3*u3 -y3*u3 |.|c10|=|u3|,
 * |  0  0  0 x0 y0  1 -x0*v0 -y0*v0 | |c11| |v0|
 * |  0  0  0 x1 y1  1 -x1*v1 -y1*v1 | |c12| |v1|
 * |  0  0  0 x2 y2  1 -x2*v2 -y2*v2 | |c20| |v2|
 * \  0  0  0 x3 y3  1 -x3*v3 -y3*v3 / \c21/ \v3/
 *
 * where:
 *   (xi, yi) = (quad[i][0], quad[i][1])
 *        cij - coeffs[i][j], coeffs[2][2] = 1
 *   (ui, vi) - rectangle vertices
 */
static void cvGetPerspectiveTransform( CvSize src_size, double quad[4][2], double coeffs[3][3] )
{
    //CV_FUNCNAME( "cvWarpPerspective" );

    __BEGIN__;

    double a[8][8];
    double b[8];

    CvMat A = cvMat( 8, 8, CV_64FC1, a );
    CvMat B = cvMat( 8, 1, CV_64FC1, b );
    CvMat X = cvMat( 8, 1, CV_64FC1, coeffs );

    int i;
    for( i = 0; i < 4; ++i )
    {
        a[i][0] = quad[i][0]; a[i][1] = quad[i][1]; a[i][2] = 1;
        a[i][3] = a[i][4] = a[i][5] = a[i][6] = a[i][7] = 0;
        b[i] = 0;
    }
    for( i = 4; i < 8; ++i )
    {
        a[i][3] = quad[i-4][0]; a[i][4] = quad[i-4][1]; a[i][5] = 1;
        a[i][0] = a[i][1] = a[i][2] = a[i][6] = a[i][7] = 0;
        b[i] = 0;
    }

    int u = src_size.width - 1;
    int v = src_size.height - 1;

    a[1][6] = -quad[1][0] * u; a[1][7] = -quad[1][1] * u;
    a[2][6] = -quad[2][0] * u; a[2][7] = -quad[2][1] * u;
    b[1] = b[2] = u;

    a[6][6] = -quad[2][0] * v; a[6][7] = -quad[2][1] * v;
    a[7][6] = -quad[3][0] * v; a[7][7] = -quad[3][1] * v;
    b[6] = b[7] = v;

    cvSolve( &A, &B, &X );

    coeffs[2][2] = 1;

    __END__;
}

/* Warps source into destination by a perspective transform */
static void cvWarpPerspective( CvArr* src, CvArr* dst, double quad[4][2] )
{
    CV_FUNCNAME( "cvWarpPerspective" );

    __BEGIN__;

#ifdef __IPL_H__
    IplImage src_stub, dst_stub;
    IplImage* src_img;
    IplImage* dst_img;
    CV_CALL( src_img = cvGetImage( src, &src_stub ) );
    CV_CALL( dst_img = cvGetImage( dst, &dst_stub ) );
    iplWarpPerspectiveQ( src_img, dst_img, quad, IPL_WARP_R_TO_Q,
                         IPL_INTER_CUBIC | IPL_SMOOTH_EDGE );
#else

    int fill_value = 0;

    double c[3][3]; /* transformation coefficients */
    double q[4][2]; /* rearranged quad */

    int left = 0;
    int right = 0;
    int next_right = 0;
    int next_left = 0;
    double y_min = 0;
    double y_max = 0;
    double k_left, b_left, k_right, b_right;

    uchar* src_data;
    int src_step;
    CvSize src_size;

    uchar* dst_data;
    int dst_step;
    CvSize dst_size;

    double d = 0;
    int direction = 0;
    int i;

    if( !src || (!CV_IS_IMAGE( src ) && !CV_IS_MAT( src )) ||
        cvGetElemType( src ) != CV_8UC1 ||
        cvGetDims( src ) != 2 )
    {
        CV_ERROR( CV_StsBadArg,
            "Source must be two-dimensional array of CV_8UC1 type." );
    }
    if( !dst || (!CV_IS_IMAGE( dst ) && !CV_IS_MAT( dst )) ||
        cvGetElemType( dst ) != CV_8UC1 ||
        cvGetDims( dst ) != 2 )
    {
        CV_ERROR( CV_StsBadArg,
            "Destination must be two-dimensional array of CV_8UC1 type." );
    }

    CV_CALL( cvGetRawData( src, &src_data, &src_step, &src_size ) );
    CV_CALL( cvGetRawData( dst, &dst_data, &dst_step, &dst_size ) );

    CV_CALL( cvGetPerspectiveTransform( src_size, quad, c ) );

    /* if direction > 0 then vertices in quad follow in a CW direction,
       otherwise they follow in a CCW direction */
    direction = 0;
    for( i = 0; i < 4; ++i )
    {
        int ni = i + 1; if( ni == 4 ) ni = 0;
        int pi = i - 1; if( pi == -1 ) pi = 3;

        d = (quad[i][0] - quad[pi][0])*(quad[ni][1] - quad[i][1]) -
            (quad[i][1] - quad[pi][1])*(quad[ni][0] - quad[i][0]);
        int cur_direction = CV_SIGN(d);
        if( direction == 0 )
        {
            direction = cur_direction;
        }
        else if( direction * cur_direction < 0 )
        {
            direction = 0;
            break;
        }
    }
    if( direction == 0 )
    {
        CV_ERROR( CV_StsBadArg, "Quadrangle is nonconvex or degenerated." );
    }

    /* <left> is the index of the topmost quad vertice
       if there are two such vertices <left> is the leftmost one */
    left = 0;
    for( i = 1; i < 4; ++i )
    {
        if( (quad[i][1] < quad[left][1]) ||
            ((quad[i][1] == quad[left][1]) && (quad[i][0] < quad[left][0])) )
        {
            left = i;
        }
    }
    /* rearrange <quad> vertices in such way that they follow in a CW
       direction and the first vertice is the topmost one and put them
       into <q> */
    if( direction > 0 )
    {
        for( i = left; i < 4; ++i )
        {
            q[i-left][0] = quad[i][0];
            q[i-left][1] = quad[i][1];
        }
        for( i = 0; i < left; ++i )
        {
            q[4-left+i][0] = quad[i][0];
            q[4-left+i][1] = quad[i][1];
        }
    }
    else
    {
        for( i = left; i >= 0; --i )
        {
            q[left-i][0] = quad[i][0];
            q[left-i][1] = quad[i][1];
        }
        for( i = 3; i > left; --i )
        {
            q[4+left-i][0] = quad[i][0];
            q[4+left-i][1] = quad[i][1];
        }
    }

    left = right = 0;
    /* if there are two topmost points, <right> is the index of the rightmost one
       otherwise <right> */
    if( q[left][1] == q[left+1][1] )
    {
        right = 1;
    }

    /* <next_left> follows <left> in a CCW direction */
    next_left = 3;
    /* <next_right> follows <right> in a CW direction */
    next_right = right + 1;

    /* subtraction of 1 prevents skipping of the first row */
    y_min = q[left][1] - 1;

    /* left edge equation: y = k_left * x + b_left */
    k_left = (q[left][0] - q[next_left][0]) /
               (q[left][1] - q[next_left][1]);
    b_left = (q[left][1] * q[next_left][0] -
               q[left][0] * q[next_left][1]) /
                 (q[left][1] - q[next_left][1]);

    /* right edge equation: y = k_right * x + b_right */
    k_right = (q[right][0] - q[next_right][0]) /
               (q[right][1] - q[next_right][1]);
    b_right = (q[right][1] * q[next_right][0] -
               q[right][0] * q[next_right][1]) /
                 (q[right][1] - q[next_right][1]);

    for(;;)
    {
        int x, y;

        y_max = MIN( q[next_left][1], q[next_right][1] );

        int iy_min = MAX( cvRound(y_min), 0 ) + 1;
        int iy_max = MIN( cvRound(y_max), dst_size.height - 1 );

        double x_min = k_left * iy_min + b_left;
        double x_max = k_right * iy_min + b_right;

        /* walk through the destination quadrangle row by row */
        for( y = iy_min; y <= iy_max; ++y )
        {
            int ix_min = MAX( cvRound( x_min ), 0 );
            int ix_max = MIN( cvRound( x_max ), dst_size.width - 1 );

            for( x = ix_min; x <= ix_max; ++x )
            {
                /* calculate coordinates of the corresponding source array point */
                double div = (c[2][0] * x + c[2][1] * y + c[2][2]);
                double src_x = (c[0][0] * x + c[0][1] * y + c[0][2]) / div;
                double src_y = (c[1][0] * x + c[1][1] * y + c[1][2]) / div;

                int isrc_x = cvFloor( src_x );
                int isrc_y = cvFloor( src_y );
                double delta_x = src_x - isrc_x;
                double delta_y = src_y - isrc_y;

                uchar* s = src_data + isrc_y * src_step + isrc_x;

                int i00, i10, i01, i11;
                i00 = i10 = i01 = i11 = (int) fill_value;

                /* linear interpolation using 2x2 neighborhood */
                if( isrc_x >= 0 && isrc_x <= src_size.width &&
                    isrc_y >= 0 && isrc_y <= src_size.height )
                {
                    i00 = s[0];
                }
                if( isrc_x >= -1 && isrc_x < src_size.width &&
                    isrc_y >= 0 && isrc_y <= src_size.height )
                {
                    i10 = s[1];
                }
                if( isrc_x >= 0 && isrc_x <= src_size.width &&
                    isrc_y >= -1 && isrc_y < src_size.height )
                {
                    i01 = s[src_step];
                }
                if( isrc_x >= -1 && isrc_x < src_size.width &&
                    isrc_y >= -1 && isrc_y < src_size.height )
                {
                    i11 = s[src_step+1];
                }

                double i0 = i00 + (i10 - i00)*delta_x;
                double i1 = i01 + (i11 - i01)*delta_x;

                ((uchar*)(dst_data + y * dst_step))[x] = (uchar) (i0 + (i1 - i0)*delta_y);
            }
            x_min += k_left;
            x_max += k_right;
        }

        if( (next_left == next_right) ||
            (next_left+1 == next_right && q[next_left][1] == q[next_right][1]) )
        {
            break;
        }

        if( y_max == q[next_left][1] )
        {
            left = next_left;
            next_left = left - 1;

            k_left = (q[left][0] - q[next_left][0]) /
                       (q[left][1] - q[next_left][1]);
            b_left = (q[left][1] * q[next_left][0] -
                       q[left][0] * q[next_left][1]) /
                         (q[left][1] - q[next_left][1]);
        }
        if( y_max == q[next_right][1] )
        {
            right = next_right;
            next_right = right + 1;

            k_right = (q[right][0] - q[next_right][0]) /
                       (q[right][1] - q[next_right][1]);
            b_right = (q[right][1] * q[next_right][0] -
                       q[right][0] * q[next_right][1]) /
                         (q[right][1] - q[next_right][1]);
        }
        y_min = y_max;
    }
#endif /* #ifndef __IPL_H__ */

    __END__;
}

static
void icvRandomQuad( int width, int height, double quad[4][2],
                    double maxxangle,
                    double maxyangle,
                    double maxzangle )
{
    double distfactor = 3.0;
    double distfactor2 = 1.0;

    double halfw, halfh;
    int i;

    double rotVectData[3];
    double vectData[3];
    double rotMatData[9];

    CvMat rotVect;
    CvMat rotMat;
    CvMat vect;

    double d;

    rotVect = cvMat( 3, 1, CV_64FC1, &rotVectData[0] );
    rotMat = cvMat( 3, 3, CV_64FC1, &rotMatData[0] );
    vect = cvMat( 3, 1, CV_64FC1, &vectData[0] );

    rotVectData[0] = maxxangle * (2.0 * rand() / RAND_MAX - 1.0);
    rotVectData[1] = ( maxyangle - fabs( rotVectData[0] ) )
        * (2.0 * rand() / RAND_MAX - 1.0);
    rotVectData[2] = maxzangle * (2.0 * rand() / RAND_MAX - 1.0);
    d = (distfactor + distfactor2 * (2.0 * rand() / RAND_MAX - 1.0)) * width;

/*
    rotVectData[0] = maxxangle;
    rotVectData[1] = maxyangle;
    rotVectData[2] = maxzangle;

    d = distfactor * width;
*/

    cvRodrigues2( &rotVect, &rotMat );

    halfw = 0.5 * width;
    halfh = 0.5 * height;

    quad[0][0] = -halfw;
    quad[0][1] = -halfh;
    quad[1][0] =  halfw;
    quad[1][1] = -halfh;
    quad[2][0] =  halfw;
    quad[2][1] =  halfh;
    quad[3][0] = -halfw;
    quad[3][1] =  halfh;

    for( i = 0; i < 4; i++ )
    {
        rotVectData[0] = quad[i][0];
        rotVectData[1] = quad[i][1];
        rotVectData[2] = 0.0;
        cvMatMulAdd( &rotMat, &rotVect, 0, &vect );
        quad[i][0] = vectData[0] * d / (d + vectData[2]) + halfw;
        quad[i][1] = vectData[1] * d / (d + vectData[2]) + halfh;

        /*
        quad[i][0] += halfw;
        quad[i][1] += halfh;
        */
    }
}


typedef struct CvSampleDistortionData
{
    IplImage* src;
    IplImage* erode;
    IplImage* dilate;
    IplImage* mask;
    IplImage* img;
    IplImage* maskimg;
    int dx;
    int dy;
    int bgcolor;
} CvSampleDistortionData;

#if defined CV_OPENMP && (defined _MSC_VER || defined CV_ICC)
#define CV_OPENMP 1
#else
#undef CV_OPENMP
#endif

typedef struct CvBackgroundData
{
    int    count;
    char** filename;
    int    last;
    int    round;
    CvSize winsize;
} CvBackgroundData;

typedef struct CvBackgroundReader
{
    CvMat   src;
    CvMat   img;
    CvPoint offset;
    float   scale;
    float   scalefactor;
    float   stepfactor;
    CvPoint point;
} CvBackgroundReader;

/*
 * Background reader
 * Created in each thread
 */
CvBackgroundReader* cvbgreader = NULL;

#if defined CV_OPENMP
#pragma omp threadprivate(cvbgreader)
#endif

CvBackgroundData* cvbgdata = NULL;

static int icvStartSampleDistortion( const char* imgfilename, int bgcolor, int bgthreshold,
                              CvSampleDistortionData* data )
{
    memset( data, 0, sizeof( *data ) );
    data->src = cvLoadImage( imgfilename, 0 );
    if( data->src != NULL && data->src->nChannels == 1
        && data->src->depth == IPL_DEPTH_8U )
    {
        int r, c;
        uchar* pmask;
        uchar* psrc;
        uchar* perode;
        uchar* pdilate;
        uchar dd, de;

        data->dx = data->src->width / 2;
        data->dy = data->src->height / 2;
        data->bgcolor = bgcolor;

        data->mask = cvCloneImage( data->src );
        data->erode = cvCloneImage( data->src );
        data->dilate = cvCloneImage( data->src );

        /* make mask image */
        for( r = 0; r < data->mask->height; r++ )
        {
            for( c = 0; c < data->mask->width; c++ )
            {
                pmask = ( (uchar*) (data->mask->imageData + r * data->mask->widthStep)
                        + c );
                if( bgcolor - bgthreshold <= (int) (*pmask) &&
                    (int) (*pmask) <= bgcolor + bgthreshold )
                {
                    *pmask = (uchar) 0;
                }
                else
                {
                    *pmask = (uchar) 255;
                }
            }
        }

        /* extend borders of source image */
        cvErode( data->src, data->erode, 0, 1 );
        cvDilate( data->src, data->dilate, 0, 1 );
        for( r = 0; r < data->mask->height; r++ )
        {
            for( c = 0; c < data->mask->width; c++ )
            {
                pmask = ( (uchar*) (data->mask->imageData + r * data->mask->widthStep)
                        + c );
                if( (*pmask) == 0 )
                {
                    psrc = ( (uchar*) (data->src->imageData + r * data->src->widthStep)
                           + c );
                    perode =
                        ( (uchar*) (data->erode->imageData + r * data->erode->widthStep)
                                + c );
                    pdilate =
                        ( (uchar*)(data->dilate->imageData + r * data->dilate->widthStep)
                                + c );
                    de = (uchar)(bgcolor - (*perode));
                    dd = (uchar)((*pdilate) - bgcolor);
                    if( de >= dd && de > bgthreshold )
                    {
                        (*psrc) = (*perode);
                    }
                    if( dd > de && dd > bgthreshold )
                    {
                        (*psrc) = (*pdilate);
                    }
                }
            }
        }

        data->img = cvCreateImage( cvSize( data->src->width + 2 * data->dx,
                                           data->src->height + 2 * data->dy ),
                                   IPL_DEPTH_8U, 1 );
        data->maskimg = cvCloneImage( data->img );

        return 1;
    }

    return 0;
}

static
void icvPlaceDistortedSample( CvArr* background,
                              int inverse, int maxintensitydev,
                              double maxxangle, double maxyangle, double maxzangle,
                              int inscribe, double maxshiftf, double maxscalef,
                              CvSampleDistortionData* data )
{
    double quad[4][2];
    int r, c;
    uchar* pimg;
    uchar* pbg;
    uchar* palpha;
    uchar chartmp;
    int forecolordev;
    float scale;
    IplImage* img;
    IplImage* maskimg;
    CvMat  stub;
    CvMat* bgimg;

    CvRect cr;
    CvRect roi;

    double xshift, yshift, randscale;

    icvRandomQuad( data->src->width, data->src->height, quad,
                   maxxangle, maxyangle, maxzangle );
    quad[0][0] += (double) data->dx;
    quad[0][1] += (double) data->dy;
    quad[1][0] += (double) data->dx;
    quad[1][1] += (double) data->dy;
    quad[2][0] += (double) data->dx;
    quad[2][1] += (double) data->dy;
    quad[3][0] += (double) data->dx;
    quad[3][1] += (double) data->dy;

    cvSet( data->img, cvScalar( data->bgcolor ) );
    cvSet( data->maskimg, cvScalar( 0.0 ) );

    cvWarpPerspective( data->src, data->img, quad );
    cvWarpPerspective( data->mask, data->maskimg, quad );

    cvSmooth( data->maskimg, data->maskimg, CV_GAUSSIAN, 3, 3 );

    bgimg = cvGetMat( background, &stub );

    cr.x = data->dx;
    cr.y = data->dy;
    cr.width = data->src->width;
    cr.height = data->src->height;

    if( inscribe )
    {
        /* quad's circumscribing rectangle */
        cr.x = (int) MIN( quad[0][0], quad[3][0] );
        cr.y = (int) MIN( quad[0][1], quad[1][1] );
        cr.width  = (int) (MAX( quad[1][0], quad[2][0] ) + 0.5F ) - cr.x;
        cr.height = (int) (MAX( quad[2][1], quad[3][1] ) + 0.5F ) - cr.y;
    }

    xshift = maxshiftf * rand() / RAND_MAX;
    yshift = maxshiftf * rand() / RAND_MAX;

    cr.x -= (int) ( xshift * cr.width  );
    cr.y -= (int) ( yshift * cr.height );
    cr.width  = (int) ((1.0 + maxshiftf) * cr.width );
    cr.height = (int) ((1.0 + maxshiftf) * cr.height);

    randscale = maxscalef * rand() / RAND_MAX;
    cr.x -= (int) ( 0.5 * randscale * cr.width  );
    cr.y -= (int) ( 0.5 * randscale * cr.height );
    cr.width  = (int) ((1.0 + randscale) * cr.width );
    cr.height = (int) ((1.0 + randscale) * cr.height);

    scale = MAX( ((float) cr.width) / bgimg->cols, ((float) cr.height) / bgimg->rows );

    roi.x = (int) (-0.5F * (scale * bgimg->cols - cr.width) + cr.x);
    roi.y = (int) (-0.5F * (scale * bgimg->rows - cr.height) + cr.y);
    roi.width  = (int) (scale * bgimg->cols);
    roi.height = (int) (scale * bgimg->rows);

    img = cvCreateImage( cvSize( bgimg->cols, bgimg->rows ), IPL_DEPTH_8U, 1 );
    maskimg = cvCreateImage( cvSize( bgimg->cols, bgimg->rows ), IPL_DEPTH_8U, 1 );

    cvSetImageROI( data->img, roi );
    cvResize( data->img, img );
    cvResetImageROI( data->img );
    cvSetImageROI( data->maskimg, roi );
    cvResize( data->maskimg, maskimg );
    cvResetImageROI( data->maskimg );

    forecolordev = (int) (maxintensitydev * (2.0 * rand() / RAND_MAX - 1.0));

    for( r = 0; r < img->height; r++ )
    {
        for( c = 0; c < img->width; c++ )
        {
            pimg = (uchar*) img->imageData + r * img->widthStep + c;
            pbg = (uchar*) bgimg->data.ptr + r * bgimg->step + c;
            palpha = (uchar*) maskimg->imageData + r * maskimg->widthStep + c;
            chartmp = (uchar) MAX( 0, MIN( 255, forecolordev + (*pimg) ) );
            if( inverse )
            {
                chartmp ^= 0xFF;
            }
            *pbg = (uchar) (( chartmp*(*palpha )+(255 - (*palpha) )*(*pbg) ) / 255);
        }
    }

    cvReleaseImage( &img );
    cvReleaseImage( &maskimg );
}

static
void icvEndSampleDistortion( CvSampleDistortionData* data )
{
    if( data->src )
    {
        cvReleaseImage( &data->src );
    }
    if( data->mask )
    {
        cvReleaseImage( &data->mask );
    }
    if( data->erode )
    {
        cvReleaseImage( &data->erode );
    }
    if( data->dilate )
    {
        cvReleaseImage( &data->dilate );
    }
    if( data->img )
    {
        cvReleaseImage( &data->img );
    }
    if( data->maskimg )
    {
        cvReleaseImage( &data->maskimg );
    }
}

static
CvBackgroundData* icvCreateBackgroundData( const char* filename, CvSize winsize )
{
    CvBackgroundData* data = NULL;

    const char* dir = NULL;
    char full[PATH_MAX];
    char* imgfilename = NULL;
    size_t datasize = 0;
    int    count = 0;
    FILE*  input = NULL;
    char*  tmp   = NULL;
    int    len   = 0;

    assert( filename != NULL );

    dir = strrchr( filename, '\\' );
    if( dir == NULL )
    {
        dir = strrchr( filename, '/' );
    }
    if( dir == NULL )
    {
        imgfilename = &(full[0]);
    }
    else
    {
        strncpy( &(full[0]), filename, (dir - filename + 1) );
        imgfilename = &(full[(dir - filename + 1)]);
    }

    input = fopen( filename, "r" );
    if( input != NULL )
    {
        count = 0;
        datasize = 0;

        /* count */
        while( !feof( input ) )
        {
            *imgfilename = '\0';
            if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input ))
                break;
            len = (int)strlen( imgfilename );
            for( ; len > 0 && isspace(imgfilename[len-1]); len-- )
                imgfilename[len-1] = '\0';
            if( len > 0 )
            {
                if( (*imgfilename) == '#' ) continue; /* comment */
                count++;
                datasize += sizeof( char ) * (strlen( &(full[0]) ) + 1);
            }
        }
        if( count > 0 )
        {
            //rewind( input );
            fseek( input, 0, SEEK_SET );
            datasize += sizeof( *data ) + sizeof( char* ) * count;
            data = (CvBackgroundData*) cvAlloc( datasize );
            memset( (void*) data, 0, datasize );
            data->count = count;
            data->filename = (char**) (data + 1);
            data->last = 0;
            data->round = 0;
            data->winsize = winsize;
            tmp = (char*) (data->filename + data->count);
            count = 0;
            while( !feof( input ) )
            {
                *imgfilename = '\0';
                if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input ))
                    break;
                len = (int)strlen( imgfilename );
                if( len > 0 && imgfilename[len-1] == '\n' )
                    imgfilename[len-1] = 0, len--;
                if( len > 0 )
                {
                    if( (*imgfilename) == '#' ) continue; /* comment */
                    data->filename[count++] = tmp;
                    strcpy( tmp, &(full[0]) );
                    tmp += strlen( &(full[0]) ) + 1;
                }
            }
        }
        fclose( input );
    }

    return data;
}

static
void icvReleaseBackgroundData( CvBackgroundData** data )
{
    assert( data != NULL && (*data) != NULL );

    cvFree( data );
}

static
CvBackgroundReader* icvCreateBackgroundReader()
{
    CvBackgroundReader* reader = NULL;

    reader = (CvBackgroundReader*) cvAlloc( sizeof( *reader ) );
    memset( (void*) reader, 0, sizeof( *reader ) );
    reader->src = cvMat( 0, 0, CV_8UC1, NULL );
    reader->img = cvMat( 0, 0, CV_8UC1, NULL );
    reader->offset = cvPoint( 0, 0 );
    reader->scale       = 1.0F;
    reader->scalefactor = 1.4142135623730950488016887242097F;
    reader->stepfactor  = 0.5F;
    reader->point = reader->offset;

    return reader;
}

static
void icvReleaseBackgroundReader( CvBackgroundReader** reader )
{
    assert( reader != NULL && (*reader) != NULL );

    if( (*reader)->src.data.ptr != NULL )
    {
        cvFree( &((*reader)->src.data.ptr) );
    }
    if( (*reader)->img.data.ptr != NULL )
    {
        cvFree( &((*reader)->img.data.ptr) );
    }

    cvFree( reader );
}

static
void icvGetNextFromBackgroundData( CvBackgroundData* data,
                                   CvBackgroundReader* reader )
{
    IplImage* img = NULL;
    size_t datasize = 0;
    int round = 0;
    int i = 0;
    CvPoint offset = cvPoint(0,0);

    assert( data != NULL && reader != NULL );

    if( reader->src.data.ptr != NULL )
    {
        cvFree( &(reader->src.data.ptr) );
        reader->src.data.ptr = NULL;
    }
    if( reader->img.data.ptr != NULL )
    {
        cvFree( &(reader->img.data.ptr) );
        reader->img.data.ptr = NULL;
    }

    #ifdef CV_OPENMP
    #pragma omp critical(c_background_data)
    #endif /* CV_OPENMP */
    {
        for( i = 0; i < data->count; i++ )
        {
            round = data->round;

#ifdef CV_VERBOSE
            printf( "Open background image: %s\n", data->filename[data->last] );
#endif /* CV_VERBOSE */

            data->last = rand() % data->count;
            data->last %= data->count;
            img = cvLoadImage( data->filename[data->last], 0 );
            if( !img )
                continue;
            data->round += data->last / data->count;
            data->round = data->round % (data->winsize.width * data->winsize.height);

            offset.x = round % data->winsize.width;
            offset.y = round / data->winsize.width;

            offset.x = MIN( offset.x, img->width - data->winsize.width );
            offset.y = MIN( offset.y, img->height - data->winsize.height );

            if( img != NULL && img->depth == IPL_DEPTH_8U && img->nChannels == 1 &&
                offset.x >= 0 && offset.y >= 0 )
            {
                break;
            }
            if( img != NULL )
                cvReleaseImage( &img );
            img = NULL;
        }
    }
    if( img == NULL )
    {
        /* no appropriate image */

#ifdef CV_VERBOSE
        printf( "Invalid background description file.\n" );
#endif /* CV_VERBOSE */

        assert( 0 );
        exit( 1 );
    }
    datasize = sizeof( uchar ) * img->width * img->height;
    reader->src = cvMat( img->height, img->width, CV_8UC1, (void*) cvAlloc( datasize ) );
    cvCopy( img, &reader->src, NULL );
    cvReleaseImage( &img );
    img = NULL;

    //reader->offset.x = round % data->winsize.width;
    //reader->offset.y = round / data->winsize.width;
    reader->offset = offset;
    reader->point = reader->offset;
    reader->scale = MAX(
        ((float) data->winsize.width + reader->point.x) / ((float) reader->src.cols),
        ((float) data->winsize.height + reader->point.y) / ((float) reader->src.rows) );

    reader->img = cvMat( (int) (reader->scale * reader->src.rows + 0.5F),
                         (int) (reader->scale * reader->src.cols + 0.5F),
                          CV_8UC1, (void*) cvAlloc( datasize ) );
    cvResize( &(reader->src), &(reader->img) );
}

/*
 * icvGetBackgroundImage
 *
 * Get an image from background
 * <img> must be allocated and have size, previously passed to icvInitBackgroundReaders
 *
 * Usage example:
 * icvInitBackgroundReaders( "bg.txt", cvSize( 24, 24 ) );
 * ...
 * #pragma omp parallel
 * {
 *     ...
 *     icvGetBackgourndImage( cvbgdata, cvbgreader, img );
 *     ...
 * }
 * ...
 * icvDestroyBackgroundReaders();
 */
static
void icvGetBackgroundImage( CvBackgroundData* data,
                            CvBackgroundReader* reader,
                            CvMat* img )
{
    CvMat mat;

    assert( data != NULL && reader != NULL && img != NULL );
    assert( CV_MAT_TYPE( img->type ) == CV_8UC1 );
    assert( img->cols == data->winsize.width );
    assert( img->rows == data->winsize.height );

    if( reader->img.data.ptr == NULL )
    {
        icvGetNextFromBackgroundData( data, reader );
    }

    mat = cvMat( data->winsize.height, data->winsize.width, CV_8UC1 );
    cvSetData( &mat, (void*) (reader->img.data.ptr + reader->point.y * reader->img.step
                              + reader->point.x * sizeof( uchar )), reader->img.step );

    cvCopy( &mat, img, 0 );
    if( (int) ( reader->point.x + (1.0F + reader->stepfactor ) * data->winsize.width )
            < reader->img.cols )
    {
        reader->point.x += (int) (reader->stepfactor * data->winsize.width);
    }
    else
    {
        reader->point.x = reader->offset.x;
        if( (int) ( reader->point.y + (1.0F + reader->stepfactor ) * data->winsize.height )
                < reader->img.rows )
        {
            reader->point.y += (int) (reader->stepfactor * data->winsize.height);
        }
        else
        {
            reader->point.y = reader->offset.y;
            reader->scale *= reader->scalefactor;
            if( reader->scale <= 1.0F )
            {
                reader->img = cvMat( (int) (reader->scale * reader->src.rows),
                                     (int) (reader->scale * reader->src.cols),
                                      CV_8UC1, (void*) (reader->img.data.ptr) );
                cvResize( &(reader->src), &(reader->img) );
            }
            else
            {
                icvGetNextFromBackgroundData( data, reader );
            }
        }
    }
}

/*
 * icvInitBackgroundReaders
 *
 * Initialize background reading process.
 * <cvbgreader> and <cvbgdata> are initialized.
 * Must be called before any usage of background
 *
 * filename - name of background description file
 * winsize  - size of images will be obtained from background
 *
 * return 1 on success, 0 otherwise.
 */
static int icvInitBackgroundReaders( const char* filename, CvSize winsize )
{
    if( cvbgdata == NULL && filename != NULL )
    {
        cvbgdata = icvCreateBackgroundData( filename, winsize );
    }

    if( cvbgdata )
    {

        #ifdef CV_OPENMP
        #pragma omp parallel
        #endif /* CV_OPENMP */
        {
            #ifdef CV_OPENMP
            #pragma omp critical(c_create_bg_data)
            #endif /* CV_OPENMP */
            {
                if( cvbgreader == NULL )
                {
                    cvbgreader = icvCreateBackgroundReader();
                }
            }
        }

    }

    return (cvbgdata != NULL);
}

/*
 * icvDestroyBackgroundReaders
 *
 * Finish backgournd reading process
 */
static
void icvDestroyBackgroundReaders()
{
    /* release background reader in each thread */
    #ifdef CV_OPENMP
    #pragma omp parallel
    #endif /* CV_OPENMP */
    {
        #ifdef CV_OPENMP
        #pragma omp critical(c_release_bg_data)
        #endif /* CV_OPENMP */
        {
            if( cvbgreader != NULL )
            {
                icvReleaseBackgroundReader( &cvbgreader );
                cvbgreader = NULL;
            }
        }
    }

    if( cvbgdata != NULL )
    {
        icvReleaseBackgroundData( &cvbgdata );
        cvbgdata = NULL;
    }
}

void cvCreateTrainingSamples( const char* filename,
                              const char* imgfilename, int bgcolor, int bgthreshold,
                              const char* bgfilename, int count,
                              int invert, int maxintensitydev,
                              double maxxangle, double maxyangle, double maxzangle,
                              int showsamples,
                              int winwidth, int winheight )
{
    CvSampleDistortionData data;

    assert( filename != NULL );
    assert( imgfilename != NULL );

    if( !icvMkDir( filename ) )
    {
        fprintf( stderr, "Unable to create output file: %s\n", filename );
        return;
    }
    if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) )
    {
        FILE* output = NULL;

        output = fopen( filename, "wb" );
        if( output != NULL )
        {
            int hasbg;
            int i;
            CvMat sample;
            int inverse;

            hasbg = 0;
            hasbg = (bgfilename != NULL && icvInitBackgroundReaders( bgfilename,
                     cvSize( winwidth,winheight ) ) );

            sample = cvMat( winheight, winwidth, CV_8UC1, cvAlloc( sizeof( uchar ) *
                            winheight * winwidth ) );

            icvWriteVecHeader( output, count, sample.cols, sample.rows );

            if( showsamples )
            {
                cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE );
            }

            inverse = invert;
            for( i = 0; i < count; i++ )
            {
                if( hasbg )
                {
                    icvGetBackgroundImage( cvbgdata, cvbgreader, &sample );
                }
                else
                {
                    cvSet( &sample, cvScalar( bgcolor ) );
                }

                if( invert == CV_RANDOM_INVERT )
                {
                    inverse = (rand() > (RAND_MAX/2));
                }
                icvPlaceDistortedSample( &sample, inverse, maxintensitydev,
                    maxxangle, maxyangle, maxzangle,
                    0   /* nonzero means placing image without cut offs */,
                    0.0 /* nozero adds random shifting                  */,
                    0.0 /* nozero adds random scaling                   */,
                    &data );

                if( showsamples )
                {
                    cvShowImage( "Sample", &sample );
                    if( cvWaitKey( 0 ) == 27 )
                    {
                        showsamples = 0;
                    }
                }

                icvWriteVecSample( output, &sample );

#ifdef CV_VERBOSE
                if( i % 500 == 0 )
                {
                    printf( "\r%3d%%", 100 * i / count );
                }
#endif /* CV_VERBOSE */
            }
            icvDestroyBackgroundReaders();
            cvFree( &(sample.data.ptr) );
            fclose( output );
        } /* if( output != NULL ) */

        icvEndSampleDistortion( &data );
    }

#ifdef CV_VERBOSE
    printf( "\r      \r" );
#endif /* CV_VERBOSE */

}

#define CV_INFO_FILENAME "info.dat"

void cvCreateTestSamples( const char* infoname,
                          const char* imgfilename, int bgcolor, int bgthreshold,
                          const char* bgfilename, int count,
                          int invert, int maxintensitydev,
                          double maxxangle, double maxyangle, double maxzangle,
                          int showsamples,
                          int winwidth, int winheight )
{
    CvSampleDistortionData data;

    assert( infoname != NULL );
    assert( imgfilename != NULL );
    assert( bgfilename != NULL );

    if( !icvMkDir( infoname ) )
    {

#if CV_VERBOSE
        fprintf( stderr, "Unable to create directory hierarchy: %s\n", infoname );
#endif /* CV_VERBOSE */

        return;
    }
    if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) )
    {
        char fullname[PATH_MAX];
        char* filename;
        CvMat win;
        FILE* info;

        if( icvInitBackgroundReaders( bgfilename, cvSize( 10, 10 ) ) )
        {
            int i;
            int x, y, width, height;
            float scale;
            float maxscale;
            int inverse;

            if( showsamples )
            {
                cvNamedWindow( "Image", CV_WINDOW_AUTOSIZE );
            }

            info = fopen( infoname, "w" );
            strcpy( fullname, infoname );
            filename = strrchr( fullname, '\\' );
            if( filename == NULL )
            {
                filename = strrchr( fullname, '/' );
            }
            if( filename == NULL )
            {
                filename = fullname;
            }
            else
            {
                filename++;
            }

            count = MIN( count, cvbgdata->count );
            inverse = invert;
            for( i = 0; i < count; i++ )
            {
                icvGetNextFromBackgroundData( cvbgdata, cvbgreader );

                maxscale = MIN( 0.7F * cvbgreader->src.cols / winwidth,
                                   0.7F * cvbgreader->src.rows / winheight );
                if( maxscale < 1.0F ) continue;

                scale = (maxscale - 1.0F) * rand() / RAND_MAX + 1.0F;
                width = (int) (scale * winwidth);
                height = (int) (scale * winheight);
                x = (int) ((0.1+0.8 * rand()/RAND_MAX) * (cvbgreader->src.cols - width));
                y = (int) ((0.1+0.8 * rand()/RAND_MAX) * (cvbgreader->src.rows - height));

                cvGetSubArr( &cvbgreader->src, &win, cvRect( x, y ,width, height ) );
                if( invert == CV_RANDOM_INVERT )
                {
                    inverse = (rand() > (RAND_MAX/2));
                }
                icvPlaceDistortedSample( &win, inverse, maxintensitydev,
                                         maxxangle, maxyangle, maxzangle,
                                         1, 0.0, 0.0, &data );


                sprintf( filename, "%04d_%04d_%04d_%04d_%04d.jpg",
                         (i + 1), x, y, width, height );

                if( info )
                {
                    fprintf( info, "%s %d %d %d %d %d\n",
                        filename, 1, x, y, width, height );
                }

                cvSaveImage( fullname, &cvbgreader->src );
                if( showsamples )
                {
                    cvShowImage( "Image", &cvbgreader->src );
                    if( cvWaitKey( 0 ) == 27 )
                    {
                        showsamples = 0;
                    }
                }
            }
            if( info ) fclose( info );
            icvDestroyBackgroundReaders();
        }
        icvEndSampleDistortion( &data );
    }
}


int cvCreateTrainingSamplesFromInfo( const char* infoname, const char* vecfilename,
                                     int num,
                                     int showsamples,
                                     int winwidth, int winheight )
{
    char fullname[PATH_MAX];
    char* filename;

    FILE* info;
    FILE* vec;
    IplImage* src=0;
    IplImage* sample;
    int line;
    int error;
    int i;
    int x, y, width, height;
    int total;

    assert( infoname != NULL );
    assert( vecfilename != NULL );

    total = 0;
    if( !icvMkDir( vecfilename ) )
    {

#if CV_VERBOSE
        fprintf( stderr, "Unable to create directory hierarchy: %s\n", vecfilename );
#endif /* CV_VERBOSE */

        return total;
    }

    info = fopen( infoname, "r" );
    if( info == NULL )
    {

#if CV_VERBOSE
        fprintf( stderr, "Unable to open file: %s\n", infoname );
#endif /* CV_VERBOSE */

        return total;
    }

    vec = fopen( vecfilename, "wb" );
    if( vec == NULL )
    {

#if CV_VERBOSE
        fprintf( stderr, "Unable to open file: %s\n", vecfilename );
#endif /* CV_VERBOSE */

        fclose( info );

        return total;
    }

    sample = cvCreateImage( cvSize( winwidth, winheight ), IPL_DEPTH_8U, 1 );

    icvWriteVecHeader( vec, num, sample->width, sample->height );

    if( showsamples )
    {
        cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE );
    }

    strcpy( fullname, infoname );
    filename = strrchr( fullname, '\\' );
    if( filename == NULL )
    {
        filename = strrchr( fullname, '/' );
    }
    if( filename == NULL )
    {
        filename = fullname;
    }
    else
    {
        filename++;
    }

    for( line = 1, error = 0, total = 0; total < num ;line++ )
    {
        int count;

        error = ( fscanf( info, "%s %d", filename, &count ) != 2 );
        if( !error )
        {
            src = cvLoadImage( fullname, 0 );
            error = ( src == NULL );
            if( error )
            {

#if CV_VERBOSE
                fprintf( stderr, "Unable to open image: %s\n", fullname );
#endif /* CV_VERBOSE */

            }
        }
        for( i = 0; (i < count) && (total < num); i++, total++ )
        {
            error = ( fscanf( info, "%d %d %d %d", &x, &y, &width, &height ) != 4 );
            if( error ) break;
            cvSetImageROI( src, cvRect( x, y, width, height ) );
            cvResize( src, sample, width >= sample->width &&
                      height >= sample->height ? CV_INTER_AREA : CV_INTER_LINEAR );

            if( showsamples )
            {
                cvShowImage( "Sample", sample );
                if( cvWaitKey( 0 ) == 27 )
                {
                    showsamples = 0;
                }
            }
            icvWriteVecSample( vec, sample );
        }

        if( src )
        {
            cvReleaseImage( &src );
        }

        if( error )
        {

#if CV_VERBOSE
            fprintf( stderr, "%s(%d) : parse error", infoname, line );
#endif /* CV_VERBOSE */

            break;
        }
    }

    if( sample )
    {
        cvReleaseImage( &sample );
    }

    fclose( vec );
    fclose( info );

    return total;
}

typedef struct CvVecFile
{
    FILE*  input;
    int    count;
    int    vecsize;
    int    last;
    short* vector;
} CvVecFile;

static
int icvGetTraininDataFromVec( CvMat* img, void* userdata )
{
    uchar tmp = 0;
    int r = 0;
    int c = 0;

    assert( img->rows * img->cols == ((CvVecFile*) userdata)->vecsize );

    size_t elements_read = fread( &tmp, sizeof( tmp ), 1, ((CvVecFile*) userdata)->input );
    CV_Assert(elements_read == 1);
    elements_read = fread( ((CvVecFile*) userdata)->vector, sizeof( short ),
           ((CvVecFile*) userdata)->vecsize, ((CvVecFile*) userdata)->input );
    CV_Assert(elements_read == (size_t)((CvVecFile*) userdata)->vecsize);

    if( feof( ((CvVecFile*) userdata)->input ) ||
        (((CvVecFile*) userdata)->last)++ >= ((CvVecFile*) userdata)->count )
    {
        return 0;
    }

    for( r = 0; r < img->rows; r++ )
    {
        for( c = 0; c < img->cols; c++ )
        {
            CV_MAT_ELEM( *img, uchar, r, c ) =
                (uchar) ( ((CvVecFile*) userdata)->vector[r * img->cols + c] );
        }
    }

    return 1;
}
void cvShowVecSamples( const char* filename, int winwidth, int winheight,
                       double scale )
{
    CvVecFile file;
    short tmp;
    int i;
    CvMat* sample;

    tmp = 0;
    file.input = fopen( filename, "rb" );

    if( file.input != NULL )
    {
        size_t elements_read1 = fread( &file.count, sizeof( file.count ), 1, file.input );
        size_t elements_read2 = fread( &file.vecsize, sizeof( file.vecsize ), 1, file.input );
        size_t elements_read3 = fread( &tmp, sizeof( tmp ), 1, file.input );
        size_t elements_read4 = fread( &tmp, sizeof( tmp ), 1, file.input );
        CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);

        if( file.vecsize != winwidth * winheight )
        {
            int guessed_w = 0;
            int guessed_h = 0;

            fprintf( stderr, "Warning: specified sample width=%d and height=%d "
                "does not correspond to .vec file vector size=%d.\n",
                winwidth, winheight, file.vecsize );
            if( file.vecsize > 0 )
            {
                guessed_w = cvFloor( sqrt( (float) file.vecsize ) );
                if( guessed_w > 0 )
                {
                    guessed_h = file.vecsize / guessed_w;
                }
            }

            if( guessed_w <= 0 || guessed_h <= 0 || guessed_w * guessed_h != file.vecsize)
            {
                fprintf( stderr, "Error: failed to guess sample width and height\n" );
                fclose( file.input );

                return;
            }
            else
            {
                winwidth = guessed_w;
                winheight = guessed_h;
                fprintf( stderr, "Guessed width=%d, guessed height=%d\n",
                    winwidth, winheight );
            }
        }

        if( !feof( file.input ) && scale > 0 )
        {
            CvMat* scaled_sample = 0;

            file.last = 0;
            file.vector = (short*) cvAlloc( sizeof( *file.vector ) * file.vecsize );
            sample = scaled_sample = cvCreateMat( winheight, winwidth, CV_8UC1 );
            if( scale != 1.0 )
            {
                scaled_sample = cvCreateMat( MAX( 1, cvCeil( scale * winheight ) ),
                                             MAX( 1, cvCeil( scale * winwidth ) ),
                                             CV_8UC1 );
            }
            cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE );
            for( i = 0; i < file.count; i++ )
            {
                icvGetTraininDataFromVec( sample, &file );
                if( scale != 1.0 ) cvResize( sample, scaled_sample, CV_INTER_LINEAR);
                cvShowImage( "Sample", scaled_sample );
                if( cvWaitKey( 0 ) == 27 ) break;
            }
            if( scaled_sample && scaled_sample != sample ) cvReleaseMat( &scaled_sample );
            cvReleaseMat( &sample );
            cvFree( &file.vector );
        }
        fclose( file.input );
    }

/* [<][>][^][v][top][bottom][index][help] */