root/ext/pcre/pcrelib/sljit/sljitNativeTILEGX_64.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sljit_get_platform_name
  2. push_inst_debug
  3. push_inst_nodebug
  4. push_inst
  5. get_any_valid_pipe
  6. insert_nop
  7. compute_format
  8. assign_pipes
  9. get_bundle_bit
  10. update_buffer
  11. flush_buffer
  12. push_4_buffer
  13. push_3_buffer
  14. push_2_buffer
  15. push_0_buffer
  16. push_jr_buffer
  17. detect_jump_type
  18. sljit_generate_code
  19. load_immediate
  20. emit_const
  21. emit_const_64
  22. sljit_emit_enter
  23. sljit_set_context
  24. sljit_emit_return
  25. getput_arg_fast
  26. can_cache
  27. getput_arg
  28. emit_op_mem
  29. emit_op_mem2
  30. sljit_emit_fast_enter
  31. sljit_emit_fast_return
  32. emit_single_op
  33. emit_op
  34. sljit_emit_op_flags
  35. sljit_emit_op0
  36. sljit_emit_op1
  37. sljit_emit_op2
  38. sljit_emit_label
  39. sljit_emit_ijump
  40. sljit_emit_jump
  41. sljit_is_fpu_available
  42. sljit_emit_fop1
  43. sljit_emit_fop2
  44. sljit_emit_const
  45. sljit_set_jump_addr
  46. sljit_set_const

/*
 *    Stack-less Just-In-Time compiler
 *
 *    Copyright 2013-2013 Tilera Corporation(jiwang@tilera.com). All rights reserved.
 *    Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *   1. Redistributions of source code must retain the above copyright notice, this list of
 *      conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
 *      of conditions and the following disclaimer in the documentation and/or other materials
 *      provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/* TileGX architecture. */
/* Contributed by Tilera Corporation. */
#include "sljitNativeTILEGX-encoder.c"

#define SIMM_8BIT_MAX (0x7f)
#define SIMM_8BIT_MIN (-0x80)
#define SIMM_16BIT_MAX (0x7fff)
#define SIMM_16BIT_MIN (-0x8000)
#define SIMM_17BIT_MAX (0xffff)
#define SIMM_17BIT_MIN (-0x10000)
#define SIMM_32BIT_MIN (-0x80000000)
#define SIMM_32BIT_MAX (0x7fffffff)
#define SIMM_48BIT_MIN (0x800000000000L)
#define SIMM_48BIT_MAX (0x7fffffff0000L)
#define IMM16(imm) ((imm) & 0xffff)

#define UIMM_16BIT_MAX (0xffff)

#define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
#define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
#define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
#define ADDR_TMP (SLJIT_NO_REGISTERS + 4)
#define PIC_ADDR_REG TMP_REG2

static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 5] = {
        63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7
};

#define SLJIT_LOCALS_REG_mapped 54
#define TMP_REG1_mapped 5
#define TMP_REG2_mapped 16
#define TMP_REG3_mapped 6
#define ADDR_TMP_mapped 7
#define SLJIT_SAVED_REG1_mapped 30
#define SLJIT_SAVED_REG2_mapped 31
#define SLJIT_SAVED_REG3_mapped 32
#define SLJIT_SAVED_EREG1_mapped 33
#define SLJIT_SAVED_EREG2_mapped 34

/* Flags are keept in volatile registers. */
#define EQUAL_FLAG 8
/* And carry flag as well. */
#define ULESS_FLAG 9
#define UGREATER_FLAG 10
#define LESS_FLAG 11
#define GREATER_FLAG 12
#define OVERFLOW_FLAG 13

#define ZERO 63
#define RA 55
#define TMP_EREG1 14
#define TMP_EREG2 15

#define LOAD_DATA 0x01
#define WORD_DATA 0x00
#define BYTE_DATA 0x02
#define HALF_DATA 0x04
#define INT_DATA 0x06
#define SIGNED_DATA 0x08
#define DOUBLE_DATA 0x10

/* Separates integer and floating point registers */
#define GPR_REG 0xf

#define MEM_MASK 0x1f

#define WRITE_BACK 0x00020
#define ARG_TEST 0x00040
#define ALT_KEEP_CACHE 0x00080
#define CUMULATIVE_OP 0x00100
#define LOGICAL_OP 0x00200
#define IMM_OP 0x00400
#define SRC2_IMM 0x00800

#define UNUSED_DEST 0x01000
#define REG_DEST 0x02000
#define REG1_SOURCE 0x04000
#define REG2_SOURCE 0x08000
#define SLOW_SRC1 0x10000
#define SLOW_SRC2 0x20000
#define SLOW_DEST 0x40000

/* Only these flags are set. UNUSED_DEST is not set when no flags should be set.
 */
#define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))

SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char *sljit_get_platform_name(void)
{
        return "TileGX" SLJIT_CPUINFO;
}

/* Length of an instruction word */
typedef sljit_uw sljit_ins;

struct jit_instr {
        const struct tilegx_opcode* opcode; 
        tilegx_pipeline pipe;
        unsigned long input_registers;
        unsigned long output_registers;
        int operand_value[4];
        int line;
};

/* Opcode Helper Macros */
#define TILEGX_X_MODE 0

#define X_MODE create_Mode(TILEGX_X_MODE)

#define FNOP_X0 \
        create_Opcode_X0(RRR_0_OPCODE_X0) | \
        create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
        create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0)

#define FNOP_X1 \
        create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
        create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1)

#define NOP \
        create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1

#define ANOP_X0 \
        create_Opcode_X0(RRR_0_OPCODE_X0) | \
        create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
        create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0)

#define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
        create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \
        create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0

#define ADD_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0

#define ADDI_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
        create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0

#define SUB_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0

#define NOR_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0

#define OR_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0

#define AND_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0

#define XOR_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0

#define CMOVNEZ_X0 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
        create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1

#define CMOVEQZ_X0 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
        create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1

#define ADDLI_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0

#define V4INT_L_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0

#define BFEXTU_X0 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
        create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1

#define BFEXTS_X0 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
        create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1

#define SHL16INSLI_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0

#define ST_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0

#define LD_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
        create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0

#define JR_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
        create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0

#define JALR_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
        create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0

#define CLZ_X0 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
        create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
        create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1

#define CMPLTUI_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
        create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0

#define CMPLTU_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0

#define CMPLTS_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0

#define XORI_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
        create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0

#define ORI_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
        create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0

#define ANDI_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
        create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0

#define SHLI_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
        create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0

#define SHL_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0

#define SHRSI_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
        create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0

#define SHRS_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0

#define SHRUI_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
        create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0

#define SHRU_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
        create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0

#define BEQZ_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
        create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0

#define BNEZ_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
        create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0

#define J_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
        create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0

#define JAL_X1 \
        create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
        create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0

#define DEST_X0(x) create_Dest_X0(x)
#define SRCA_X0(x) create_SrcA_X0(x)
#define SRCB_X0(x) create_SrcB_X0(x)
#define DEST_X1(x) create_Dest_X1(x)
#define SRCA_X1(x) create_SrcA_X1(x)
#define SRCB_X1(x) create_SrcB_X1(x)
#define IMM16_X1(x) create_Imm16_X1(x)
#define IMM8_X1(x) create_Imm8_X1(x)
#define BFSTART_X0(x) create_BFStart_X0(x)
#define BFEND_X0(x) create_BFEnd_X0(x)
#define SHIFTIMM_X1(x) create_ShAmt_X1(x)
#define JOFF_X1(x) create_JumpOff_X1(x)
#define BOFF_X1(x) create_BrOff_X1(x)

static SLJIT_CONST tilegx_mnemonic data_transfer_insts[16] = {
        /* u w s */ TILEGX_OPC_ST   /* st */,
        /* u w l */ TILEGX_OPC_LD   /* ld */,
        /* u b s */ TILEGX_OPC_ST1  /* st1 */,
        /* u b l */ TILEGX_OPC_LD1U /* ld1u */,
        /* u h s */ TILEGX_OPC_ST2  /* st2 */,
        /* u h l */ TILEGX_OPC_LD2U /* ld2u */,
        /* u i s */ TILEGX_OPC_ST4  /* st4 */,
        /* u i l */ TILEGX_OPC_LD4U /* ld4u */,
        /* s w s */ TILEGX_OPC_ST   /* st */,
        /* s w l */ TILEGX_OPC_LD   /* ld */,
        /* s b s */ TILEGX_OPC_ST1  /* st1 */,
        /* s b l */ TILEGX_OPC_LD1S /* ld1s */,
        /* s h s */ TILEGX_OPC_ST2  /* st2 */,
        /* s h l */ TILEGX_OPC_LD2S /* ld2s */,
        /* s i s */ TILEGX_OPC_ST4  /* st4 */,
        /* s i l */ TILEGX_OPC_LD4S /* ld4s */,
};

#ifdef TILEGX_JIT_DEBUG
static sljit_si push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line)
{
        sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
        FAIL_IF(!ptr);
        *ptr = ins;
        compiler->size++;
        printf("|%04d|S0|:\t\t", line);
        print_insn_tilegx(ptr);
        return SLJIT_SUCCESS;
}

static sljit_si push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins)
{
        sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
        FAIL_IF(!ptr);
        *ptr = ins;
        compiler->size++;
        return SLJIT_SUCCESS;
}

#define push_inst(a, b) push_inst_debug(a, b, __LINE__)
#else
static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins)
{
        sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
        FAIL_IF(!ptr);
        *ptr = ins;
        compiler->size++;
        return SLJIT_SUCCESS;
}
#endif

#define BUNDLE_FORMAT_MASK(p0, p1, p2) \
        ((p0) | ((p1) << 8) | ((p2) << 16))

#define BUNDLE_FORMAT(p0, p1, p2) \
        { \
                { \
                        (tilegx_pipeline)(p0), \
                        (tilegx_pipeline)(p1), \
                        (tilegx_pipeline)(p2) \
                }, \
                BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \
        }

#define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS

#define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1)

#define PI(encoding) \
        push_inst(compiler, encoding)

#define PB3(opcode, dst, srca, srcb) \
        push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__)

#define PB2(opcode, dst, src) \
        push_2_buffer(compiler, opcode, dst, src, __LINE__)

#define JR(reg) \
        push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__)

#define ADD(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__)

#define SUB(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__)

#define NOR(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__)

#define OR(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__)

#define XOR(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__)

#define AND(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__)

#define CLZ(dst, src) \
        push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__)

#define SHLI(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__)

#define SHRUI(dst, srca, imm) \
        push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__)

#define XORI(dst, srca, imm) \
        push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__)

#define ORI(dst, srca, imm) \
        push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__)

#define CMPLTU(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__)

#define CMPLTS(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__)

#define CMPLTUI(dst, srca, imm) \
        push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__)

#define CMOVNEZ(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__)

#define CMOVEQZ(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__)

#define ADDLI(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__)

#define SHL16INSLI(dst, srca, srcb) \
        push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__)

#define LD_ADD(dst, addr, adjust) \
        push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__)

#define ST_ADD(src, addr, adjust) \
        push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__)

#define LD(dst, addr) \
        push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__)

#define BFEXTU(dst, src, start, end) \
        push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__)

#define BFEXTS(dst, src, start, end) \
        push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__)

#define ADD_SOLO(dest, srca, srcb) \
        push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb))

#define ADDI_SOLO(dest, srca, imm) \
        push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm))

#define ADDLI_SOLO(dest, srca, imm) \
        push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))

#define SHL16INSLI_SOLO(dest, srca, imm) \
        push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))

#define JALR_SOLO(reg) \
        push_inst(compiler, JALR_X1 | SRCA_X1(reg))

#define JR_SOLO(reg) \
        push_inst(compiler, JR_X1 | SRCA_X1(reg))

struct Format {
        /* Mapping of bundle issue slot to assigned pipe. */
        tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];

        /* Mask of pipes used by this bundle. */
        unsigned int pipe_mask;
};

const struct Format formats[] =
{
        /* In Y format we must always have something in Y2, since it has
        * no fnop, so this conveys that Y2 must always be used. */
        BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE),
        BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE),
        BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE),
        BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE),

        /* Y format has three instructions. */
        BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2),
        BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1),
        BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2),
        BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0),
        BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1),
        BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0),

        /* X format has only two instructions. */
        BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE),
        BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE)
};


struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
unsigned long inst_buf_index;

tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode)
{
        /* FIXME: tile: we could pregenerate this. */
        int pipe;
        for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++)
                ;
        return (tilegx_pipeline)(pipe);
}

void insert_nop(tilegx_mnemonic opc, int line)
{
        const struct tilegx_opcode* opcode = NULL;

        memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]);

        opcode = &tilegx_opcodes[opc];
        inst_buf[0].opcode = opcode;
        inst_buf[0].pipe = get_any_valid_pipe(opcode);
        inst_buf[0].input_registers = 0;
        inst_buf[0].output_registers = 0;
        inst_buf[0].line = line;
        ++inst_buf_index;
}

const struct Format* compute_format()
{
        unsigned int compatible_pipes = BUNDLE_FORMAT_MASK(
                inst_buf[0].opcode->pipes,
                inst_buf[1].opcode->pipes,
                (inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE)));

        const struct Format* match = NULL;
        const struct Format *b = NULL;
        unsigned int i = 0;
        for (i; i < sizeof formats / sizeof formats[0]; i++) {
                b = &formats[i];
                if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) {
                        match = b;
                        break;
                }
        }

        return match;
}

sljit_si assign_pipes()
{
        unsigned long output_registers = 0;
        unsigned int i = 0;

        if (inst_buf_index == 1) {
                tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle
                                        ? TILEGX_OPC_FNOP : TILEGX_OPC_NOP;
                insert_nop(opc, __LINE__);
        }

        const struct Format* match = compute_format();

        if (match == NULL)
                return -1;

        for (i = 0; i < inst_buf_index; i++) {

                if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0))
                        return -1;

                if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0))
                        return -1;

                /* Don't include Rzero in the match set, to avoid triggering
                   needlessly on 'prefetch' instrs. */

                output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL;

                inst_buf[i].pipe = match->pipe[i];
        }

        /* If only 2 instrs, and in Y-mode, insert a nop. */
        if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) {
                insert_nop(TILEGX_OPC_FNOP, __LINE__);

                /* Select the yet unassigned pipe. */
                tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0
                                        + TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2)
                                        - (inst_buf[1].pipe + inst_buf[2].pipe)));

                inst_buf[0].pipe = pipe;
        }

        return 0;
}

tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst)
{
        int i, val;
        const struct tilegx_opcode* opcode = inst->opcode;
        tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe];

        const struct tilegx_operand* operand = NULL;
        for (i = 0; i < opcode->num_operands; i++) {
                operand = &tilegx_operands[opcode->operands[inst->pipe][i]];
                val = inst->operand_value[i];

                bits |= operand->insert(val);
        }

        return bits;
}

static sljit_si update_buffer(struct sljit_compiler *compiler)
{
        int count;
        int i;
        int orig_index = inst_buf_index;
        struct jit_instr inst0 = inst_buf[0];
        struct jit_instr inst1 = inst_buf[1];
        struct jit_instr inst2 = inst_buf[2];
        tilegx_bundle_bits bits = 0;

        /* If the bundle is valid as is, perform the encoding and return 1. */
        if (assign_pipes() == 0) {
                for (i = 0; i < inst_buf_index; i++) {
                        bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
                        printf("|%04d", inst_buf[i].line);
#endif
                }
#ifdef TILEGX_JIT_DEBUG
                if (inst_buf_index == 3)
                        printf("|M0|:\t");
                else
                        printf("|M0|:\t\t");
                print_insn_tilegx(&bits);
#endif

                inst_buf_index = 0;

#ifdef TILEGX_JIT_DEBUG
                return push_inst_nodebug(compiler, bits);
#else
                return push_inst(compiler, bits);
#endif
        }

        /* If the bundle is invalid, split it in two. First encode the first two
           (or possibly 1) instructions, and then the last, separately. Note that
           assign_pipes may have re-ordered the instrs (by inserting no-ops in
           lower slots) so we need to reset them. */

        inst_buf_index = orig_index - 1;
        inst_buf[0] = inst0;
        inst_buf[1] = inst1;
        inst_buf[2] = inst2;
        if (assign_pipes() == 0) {
                for (i = 0; i < inst_buf_index; i++) {
                        bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
                        printf("|%04d", inst_buf[i].line);
#endif
                }

#ifdef TILEGX_JIT_DEBUG
                if (inst_buf_index == 3)
                        printf("|M1|:\t");
                else
                        printf("|M1|:\t\t");
                print_insn_tilegx(&bits);
#endif

                if ((orig_index - 1) == 2) {
                        inst_buf[0] = inst2;
                        inst_buf_index = 1;
                } else if ((orig_index - 1) == 1) {
                        inst_buf[0] = inst1;
                        inst_buf_index = 1;
                } else
                        SLJIT_ASSERT_STOP();

#ifdef TILEGX_JIT_DEBUG
                return push_inst_nodebug(compiler, bits);
#else
                return push_inst(compiler, bits);
#endif
        } else {
                /* We had 3 instrs of which the first 2 can't live in the same bundle.
                   Split those two. Note that we don't try to then combine the second
                   and third instr into a single bundle.  First instruction: */
                inst_buf_index = 1;
                inst_buf[0] = inst0;
                inst_buf[1] = inst1;
                inst_buf[2] = inst2;
                if (assign_pipes() == 0) {
                        for (i = 0; i < inst_buf_index; i++) {
                                bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
                                printf("|%04d", inst_buf[i].line);
#endif
                        }

#ifdef TILEGX_JIT_DEBUG
                        if (inst_buf_index == 3)
                                printf("|M2|:\t");
                        else
                                printf("|M2|:\t\t");
                        print_insn_tilegx(&bits);
#endif

                        inst_buf[0] = inst1;
                        inst_buf[1] = inst2;
                        inst_buf_index = orig_index - 1;
#ifdef TILEGX_JIT_DEBUG
                        return push_inst_nodebug(compiler, bits);
#else
                        return push_inst(compiler, bits);
#endif
                } else
                        SLJIT_ASSERT_STOP();
        }

        SLJIT_ASSERT_STOP();
}

static sljit_si flush_buffer(struct sljit_compiler *compiler)
{
        while (inst_buf_index != 0)
                update_buffer(compiler);
}

static sljit_si push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line)
{
        if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
                FAIL_IF(update_buffer(compiler));

        const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
        inst_buf[inst_buf_index].opcode = opcode;
        inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
        inst_buf[inst_buf_index].operand_value[0] = op0;
        inst_buf[inst_buf_index].operand_value[1] = op1;
        inst_buf[inst_buf_index].operand_value[2] = op2;
        inst_buf[inst_buf_index].operand_value[3] = op3;
        inst_buf[inst_buf_index].input_registers = 1L << op1;
        inst_buf[inst_buf_index].output_registers = 1L << op0;
        inst_buf[inst_buf_index].line = line;
        inst_buf_index++;

        return SLJIT_SUCCESS;
}

static sljit_si push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line)
{
        if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
                FAIL_IF(update_buffer(compiler));

        const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
        inst_buf[inst_buf_index].opcode = opcode;
        inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
        inst_buf[inst_buf_index].operand_value[0] = op0;
        inst_buf[inst_buf_index].operand_value[1] = op1;
        inst_buf[inst_buf_index].operand_value[2] = op2;
        inst_buf[inst_buf_index].line = line;

        switch (opc) {
        case TILEGX_OPC_ST_ADD:
                inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
                inst_buf[inst_buf_index].output_registers = 1L << op0;
                break;
        case TILEGX_OPC_LD_ADD:
                inst_buf[inst_buf_index].input_registers = 1L << op1;
                inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1);
                break;
        case TILEGX_OPC_ADD:
        case TILEGX_OPC_AND:
        case TILEGX_OPC_SUB:
        case TILEGX_OPC_OR:
        case TILEGX_OPC_XOR:
        case TILEGX_OPC_NOR:
        case TILEGX_OPC_SHL:
        case TILEGX_OPC_SHRU:
        case TILEGX_OPC_SHRS:
        case TILEGX_OPC_CMPLTU:
        case TILEGX_OPC_CMPLTS:
        case TILEGX_OPC_CMOVEQZ:
        case TILEGX_OPC_CMOVNEZ:
                inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2);
                inst_buf[inst_buf_index].output_registers = 1L << op0;
                break;
        case TILEGX_OPC_ADDLI:
        case TILEGX_OPC_XORI:
        case TILEGX_OPC_ORI:
        case TILEGX_OPC_SHLI:
        case TILEGX_OPC_SHRUI:
        case TILEGX_OPC_SHRSI:
        case TILEGX_OPC_SHL16INSLI:
        case TILEGX_OPC_CMPLTUI:
        case TILEGX_OPC_CMPLTSI:
                inst_buf[inst_buf_index].input_registers = 1L << op1;
                inst_buf[inst_buf_index].output_registers = 1L << op0;
                break;
        default:
                printf("unrecoginzed opc: %s\n", opcode->name);
                SLJIT_ASSERT_STOP();
        }

        inst_buf_index++;

        return SLJIT_SUCCESS;
}

static sljit_si push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line)
{
        if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
                FAIL_IF(update_buffer(compiler));

        const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
        inst_buf[inst_buf_index].opcode = opcode;
        inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
        inst_buf[inst_buf_index].operand_value[0] = op0;
        inst_buf[inst_buf_index].operand_value[1] = op1;
        inst_buf[inst_buf_index].line = line;

        switch (opc) {
        case TILEGX_OPC_BEQZ:
        case TILEGX_OPC_BNEZ:
                inst_buf[inst_buf_index].input_registers = 1L << op0;
                break;
        case TILEGX_OPC_ST:
        case TILEGX_OPC_ST1:
        case TILEGX_OPC_ST2:
        case TILEGX_OPC_ST4:
                inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
                inst_buf[inst_buf_index].output_registers = 0;
                break;
        case TILEGX_OPC_CLZ:
        case TILEGX_OPC_LD:
        case TILEGX_OPC_LD1U:
        case TILEGX_OPC_LD1S:
        case TILEGX_OPC_LD2U:
        case TILEGX_OPC_LD2S:
        case TILEGX_OPC_LD4U:
        case TILEGX_OPC_LD4S:
                inst_buf[inst_buf_index].input_registers = 1L << op1;
                inst_buf[inst_buf_index].output_registers = 1L << op0;
                break;
        default:
                printf("unrecoginzed opc: %s\n", opcode->name);
                SLJIT_ASSERT_STOP();
        }

        inst_buf_index++;

        return SLJIT_SUCCESS;
}

static sljit_si push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line)
{
        if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
                FAIL_IF(update_buffer(compiler));

        const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
        inst_buf[inst_buf_index].opcode = opcode;
        inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
        inst_buf[inst_buf_index].input_registers = 0;
        inst_buf[inst_buf_index].output_registers = 0;
        inst_buf[inst_buf_index].line = line;
        inst_buf_index++;

        return SLJIT_SUCCESS;
}

static sljit_si push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line)
{
        if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
                FAIL_IF(update_buffer(compiler));

        const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
        inst_buf[inst_buf_index].opcode = opcode;
        inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
        inst_buf[inst_buf_index].operand_value[0] = op0;
        inst_buf[inst_buf_index].input_registers = 1L << op0;
        inst_buf[inst_buf_index].output_registers = 0;
        inst_buf[inst_buf_index].line = line;
        inst_buf_index++;
 
        return flush_buffer(compiler);
}

static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
        sljit_sw diff;
        sljit_uw target_addr;
        sljit_ins *inst;
        sljit_ins saved_inst;

        if (jump->flags & SLJIT_REWRITABLE_JUMP)
                return code_ptr;

        if (jump->flags & JUMP_ADDR)
                target_addr = jump->u.target;
        else {
                SLJIT_ASSERT(jump->flags & JUMP_LABEL);
                target_addr = (sljit_uw)(code + jump->u.label->size);
        }

        inst = (sljit_ins *)jump->addr;
        if (jump->flags & IS_COND)
                inst--;

        diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3;
        if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) {
                jump->flags |= PATCH_B;

                if (!(jump->flags & IS_COND)) {
                        if (jump->flags & IS_JAL) {
                                jump->flags &= ~(PATCH_B);
                                jump->flags |= PATCH_J;
                                inst[0] = JAL_X1;

#ifdef TILEGX_JIT_DEBUG
                                printf("[runtime relocate]%04d:\t", __LINE__);
                                print_insn_tilegx(inst);
#endif
                        } else {
                                inst[0] = BEQZ_X1 | SRCA_X1(ZERO);

#ifdef TILEGX_JIT_DEBUG
                                printf("[runtime relocate]%04d:\t", __LINE__);
                                print_insn_tilegx(inst);
#endif
                        }

                        return inst;
                }

                inst[0] = inst[0] ^ (0x7L << 55);

#ifdef TILEGX_JIT_DEBUG
                printf("[runtime relocate]%04d:\t", __LINE__);
                print_insn_tilegx(inst);
#endif
                jump->addr -= sizeof(sljit_ins);
                return inst;
        }

        if (jump->flags & IS_COND) {
                if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
                        jump->flags |= PATCH_J;
                        inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2);
                        inst[1] = J_X1;
                        return inst + 1;
                }

                return code_ptr;
        }

        if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
                jump->flags |= PATCH_J;

                if (jump->flags & IS_JAL) {
                        inst[0] = JAL_X1;

#ifdef TILEGX_JIT_DEBUG
                        printf("[runtime relocate]%04d:\t", __LINE__);
                        print_insn_tilegx(inst);
#endif

                } else {
                        inst[0] = J_X1;

#ifdef TILEGX_JIT_DEBUG
                        printf("[runtime relocate]%04d:\t", __LINE__);
                        print_insn_tilegx(inst);
#endif
                }

                return inst;
        }

        return code_ptr;
}

SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler)
{
        struct sljit_memory_fragment *buf;
        sljit_ins *code;
        sljit_ins *code_ptr;
        sljit_ins *buf_ptr;
        sljit_ins *buf_end;
        sljit_uw word_count;
        sljit_uw addr;

        struct sljit_label *label;
        struct sljit_jump *jump;
        struct sljit_const *const_;

        CHECK_ERROR_PTR();
        check_sljit_generate_code(compiler);
        reverse_buf(compiler);

        code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
        PTR_FAIL_WITH_EXEC_IF(code);
        buf = compiler->buf;

        code_ptr = code;
        word_count = 0;
        label = compiler->labels;
        jump = compiler->jumps;
        const_ = compiler->consts;
        do {
                buf_ptr = (sljit_ins *)buf->memory;
                buf_end = buf_ptr + (buf->used_size >> 3);
                do {
                        *code_ptr = *buf_ptr++;
                        SLJIT_ASSERT(!label || label->size >= word_count);
                        SLJIT_ASSERT(!jump || jump->addr >= word_count);
                        SLJIT_ASSERT(!const_ || const_->addr >= word_count);
                        /* These structures are ordered by their address. */
                        if (label && label->size == word_count) {
                                /* Just recording the address. */
                                label->addr = (sljit_uw) code_ptr;
                                label->size = code_ptr - code;
                                label = label->next;
                        }

                        if (jump && jump->addr == word_count) {
                                if (jump->flags & IS_JAL)
                                        jump->addr = (sljit_uw)(code_ptr - 4);
                                else
                                        jump->addr = (sljit_uw)(code_ptr - 3);

                                code_ptr = detect_jump_type(jump, code_ptr, code);
                                jump = jump->next;
                        }

                        if (const_ && const_->addr == word_count) {
                                /* Just recording the address. */
                                const_->addr = (sljit_uw) code_ptr;
                                const_ = const_->next;
                        }

                        code_ptr++;
                        word_count++;
                } while (buf_ptr < buf_end);

                buf = buf->next;
        } while (buf);

        if (label && label->size == word_count) {
                label->addr = (sljit_uw) code_ptr;
                label->size = code_ptr - code;
                label = label->next;
        }

        SLJIT_ASSERT(!label);
        SLJIT_ASSERT(!jump);
        SLJIT_ASSERT(!const_);
        SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);

        jump = compiler->jumps;
        while (jump) {
                do {
                        addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
                        buf_ptr = (sljit_ins *)jump->addr;

                        if (jump->flags & PATCH_B) {
                                addr = (sljit_sw)(addr - (jump->addr)) >> 3;
                                SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN);
                                buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr);

#ifdef TILEGX_JIT_DEBUG
                                printf("[runtime relocate]%04d:\t", __LINE__);
                                print_insn_tilegx(buf_ptr);
#endif
                                break;
                        }

                        if (jump->flags & PATCH_J) {
                                SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL));
                                addr = (sljit_sw)(addr - (jump->addr)) >> 3;
                                buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr);

#ifdef TILEGX_JIT_DEBUG
                                printf("[runtime relocate]%04d:\t", __LINE__);
                                print_insn_tilegx(buf_ptr);
#endif
                                break;
                        }

                        SLJIT_ASSERT(!(jump->flags & IS_JAL));

                        /* Set the fields of immediate loads. */
                        buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43);
                        buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43);
                        buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43);
                } while (0);

                jump = jump->next;
        }

        compiler->error = SLJIT_ERR_COMPILED;
        compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
        SLJIT_CACHE_FLUSH(code, code_ptr);
        return code;
}

static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm)
{

        if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN)
                return ADDLI(dst_ar, ZERO, imm);

        if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) {
                FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16));
                return SHL16INSLI(dst_ar, dst_ar, imm);
        }

        if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) {
                FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
                FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
                return SHL16INSLI(dst_ar, dst_ar, imm);
        }

        FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48));
        FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32));
        FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
        return SHL16INSLI(dst_ar, dst_ar, imm);
}

static sljit_si emit_const(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
{
        /* Should *not* be optimized as load_immediate, as pcre relocation
           mechanism will match this fixed 4-instruction pattern. */
        if (flush) {
                FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32));
                FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16));
                return SHL16INSLI_SOLO(dst_ar, dst_ar, imm);
        }

        FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
        FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
        return SHL16INSLI(dst_ar, dst_ar, imm);
}

static sljit_si emit_const_64(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
{
        /* Should *not* be optimized as load_immediate, as pcre relocation
           mechanism will match this fixed 4-instruction pattern. */
        if (flush) {
                FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48));
                FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
                FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
                return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm);
        }

        FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48));
        FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
        FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
        return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
        sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
        sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
        sljit_ins base;
        sljit_ins bundle = 0;

        CHECK_ERROR();
        check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
        set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

        local_size += (saveds + 1) * sizeof(sljit_sw);
        local_size = (local_size + 7) & ~7;
        compiler->local_size = local_size;

        if (local_size <= SIMM_16BIT_MAX) {
                /* Frequent case. */
                FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size));
                base = SLJIT_LOCALS_REG_mapped;
        } else {
                FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
                FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO));
                FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
                base = TMP_REG2_mapped;
                local_size = 0;
        }

        FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
        FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8));

        if (saveds >= 1)
                FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG1_mapped, -8));

        if (saveds >= 2)
                FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG2_mapped, -8));

        if (saveds >= 3)
                FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG3_mapped, -8));

        if (saveds >= 4)
                FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_EREG1_mapped, -8));

        if (saveds >= 5)
                FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_EREG2_mapped, -8));

        if (args >= 1)
                FAIL_IF(ADD(SLJIT_SAVED_REG1_mapped, 0, ZERO));

        if (args >= 2)
                FAIL_IF(ADD(SLJIT_SAVED_REG2_mapped, 1, ZERO));

        if (args >= 3)
                FAIL_IF(ADD(SLJIT_SAVED_REG3_mapped, 2, ZERO));

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler,
        sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
        sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
        CHECK_ERROR_VOID();
        check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
        set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

        local_size += (saveds + 1) * sizeof(sljit_sw);
        compiler->local_size = (local_size + 7) & ~7;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
        sljit_si local_size;
        sljit_ins base;
        int addr_initialized = 0;

        CHECK_ERROR();
        check_sljit_emit_return(compiler, op, src, srcw);

        FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));

        local_size = compiler->local_size;
        if (local_size <= SIMM_16BIT_MAX)
                base = SLJIT_LOCALS_REG_mapped;
        else {
                FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
                FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
                base = TMP_REG1_mapped;
                local_size = 0;
        }

        FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
        FAIL_IF(LD(RA, ADDR_TMP_mapped));

        if (compiler->saveds >= 5) {
                FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 48));
                addr_initialized = 1;

                FAIL_IF(LD_ADD(SLJIT_SAVED_EREG2_mapped, ADDR_TMP_mapped, 8));
        }

        if (compiler->saveds >= 4) {
                if (addr_initialized == 0) {
                        FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 40));
                        addr_initialized = 1;
                }

                FAIL_IF(LD_ADD(SLJIT_SAVED_EREG1_mapped, ADDR_TMP_mapped, 8));
        }

        if (compiler->saveds >= 3) {
                if (addr_initialized == 0) {
                        FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 32));
                        addr_initialized = 1;
                }

                FAIL_IF(LD_ADD(SLJIT_SAVED_REG3_mapped, ADDR_TMP_mapped, 8));
        }

        if (compiler->saveds >= 2) {
                if (addr_initialized == 0) {
                        FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 24));
                        addr_initialized = 1;
                }

                FAIL_IF(LD_ADD(SLJIT_SAVED_REG2_mapped, ADDR_TMP_mapped, 8));
        }

        if (compiler->saveds >= 1) {
                if (addr_initialized == 0) {
                        FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 16));
                        /* addr_initialized = 1; no need to initialize as it's the last one. */
                }

                FAIL_IF(LD_ADD(SLJIT_SAVED_REG1_mapped, ADDR_TMP_mapped, 8));
        }

        if (compiler->local_size <= SIMM_16BIT_MAX)
                FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size));
        else
                FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO));

        return JR(RA);
}

/* reg_ar is an absoulute register! */

/* Can perform an operation using at most 1 instruction. */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
{
        SLJIT_ASSERT(arg & SLJIT_MEM);

        if ((!(flags & WRITE_BACK) || !(arg & REG_MASK))
                        && !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
                /* Works for both absoulte and relative addresses. */
                if (SLJIT_UNLIKELY(flags & ARG_TEST))
                        return 1;

                FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw));

                if (flags & LOAD_DATA)
                        FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
                else
                        FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));

                return -1;
        }

        return 0;
}

/* See getput_arg below.
   Note: can_cache is called only for binary operators. Those
   operators always uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
        SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));

        /* Simple operation except for updates. */
        if (arg & OFFS_REG_MASK) {
                argw &= 0x3;
                next_argw &= 0x3;
                if (argw && argw == next_argw
                                && (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
                        return 1;
                return 0;
        }

        if (arg == next_arg) {
                if (((next_argw - argw) <= SIMM_16BIT_MAX
                                && (next_argw - argw) >= SIMM_16BIT_MIN))
                        return 1;

                return 0;
        }

        return 0;
}

/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
        sljit_si tmp_ar, base;

        SLJIT_ASSERT(arg & SLJIT_MEM);
        if (!(next_arg & SLJIT_MEM)) {
                next_arg = 0;
                next_argw = 0;
        }

        if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
                tmp_ar = reg_ar;
        else
                tmp_ar = TMP_REG1_mapped;

        base = arg & REG_MASK;

        if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
                argw &= 0x3;

                if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) {
                        SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar);
                        FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
                        reg_ar = TMP_REG1_mapped;
                }

                /* Using the cache. */
                if (argw == compiler->cache_argw) {
                        if (!(flags & WRITE_BACK)) {
                                if (arg == compiler->cache_arg) {
                                        if (flags & LOAD_DATA)
                                                return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
                                        else
                                                return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
                                }

                                if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
                                        if (arg == next_arg && argw == (next_argw & 0x3)) {
                                                compiler->cache_arg = arg;
                                                compiler->cache_argw = argw;
                                                FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped));
                                                if (flags & LOAD_DATA)
                                                        return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
                                                else
                                                        return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
                                        }

                                        FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped));
                                        if (flags & LOAD_DATA)
                                                return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
                                        else
                                                return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
                                }
                        } else {
                                if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
                                        FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
                                        if (flags & LOAD_DATA)
                                                return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
                                        else
                                                return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
                                }
                        }
                }

                if (SLJIT_UNLIKELY(argw)) {
                        compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
                        compiler->cache_argw = argw;
                        FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw));
                }

                if (!(flags & WRITE_BACK)) {
                        if (arg == next_arg && argw == (next_argw & 0x3)) {
                                compiler->cache_arg = arg;
                                compiler->cache_argw = argw;
                                FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
                                tmp_ar = TMP_REG3_mapped;
                        } else
                                FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));

                        if (flags & LOAD_DATA)
                                return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
                        else
                                return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
                }

                FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));

                if (flags & LOAD_DATA)
                        return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
                else
                        return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
        }

        if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
                /* Update only applies if a base register exists. */
                if (reg_ar == reg_map[base]) {
                        SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar);
                        if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
                                FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw));
                                if (flags & LOAD_DATA)
                                        FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
                                else
                                        FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));

                                if (argw)
                                        return ADDLI(reg_map[base], reg_map[base], argw);

                                return SLJIT_SUCCESS;
                        }

                        FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
                        reg_ar = TMP_REG1_mapped;
                }

                if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
                        if (argw)
                                FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw));
                } else {
                        if (compiler->cache_arg == SLJIT_MEM
                                        && argw - compiler->cache_argw <= SIMM_16BIT_MAX
                                        && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
                                if (argw != compiler->cache_argw) {
                                        FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
                                        compiler->cache_argw = argw;
                                }

                                FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
                        } else {
                                compiler->cache_arg = SLJIT_MEM;
                                compiler->cache_argw = argw;
                                FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
                                FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
                        }
                }

                if (flags & LOAD_DATA)
                        return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
                else
                        return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
        }

        if (compiler->cache_arg == arg
                        && argw - compiler->cache_argw <= SIMM_16BIT_MAX
                        && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
                if (argw != compiler->cache_argw) {
                        FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
                        compiler->cache_argw = argw;
                }

                if (flags & LOAD_DATA)
                        return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
                else
                        return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
        }

        if (compiler->cache_arg == SLJIT_MEM
                        && argw - compiler->cache_argw <= SIMM_16BIT_MAX
                        && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
                if (argw != compiler->cache_argw)
                        FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
        } else {
                compiler->cache_arg = SLJIT_MEM;
                FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
        }

        compiler->cache_argw = argw;

        if (!base) {
                if (flags & LOAD_DATA)
                        return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
                else
                        return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
        }

        if (arg == next_arg
                        && next_argw - argw <= SIMM_16BIT_MAX
                        && next_argw - argw >= SIMM_16BIT_MIN) {
                compiler->cache_arg = arg;
                FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base]));
                if (flags & LOAD_DATA)
                        return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
                else
                        return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
        }

        FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base]));

        if (flags & LOAD_DATA)
                return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
        else
                return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
}

static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
{
        if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
                return compiler->error;

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;
        return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
}

static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
        if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
                return compiler->error;
        return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
        CHECK_ERROR();
        check_sljit_emit_fast_enter(compiler, dst, dstw);
        ADJUST_LOCAL_OFFSET(dst, dstw);

        /* For UNUSED dst. Uncommon, but possible. */
        if (dst == SLJIT_UNUSED)
                return SLJIT_SUCCESS;

        if (FAST_IS_REG(dst))
                return ADD(reg_map[dst], RA, ZERO);

        /* Memory. */
        return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
        CHECK_ERROR();
        check_sljit_emit_fast_return(compiler, src, srcw);
        ADJUST_LOCAL_OFFSET(src, srcw);

        if (FAST_IS_REG(src))
                FAIL_IF(ADD(RA, reg_map[src], ZERO));

        else if (src & SLJIT_MEM)
                FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw));

        else if (src & SLJIT_IMM)
                FAIL_IF(load_immediate(compiler, RA, srcw));

        return JR(RA);
}

static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_si src1, sljit_sw src2)
{
        sljit_si overflow_ra = 0;

        switch (GET_OPCODE(op)) {
        case SLJIT_MOV:
        case SLJIT_MOV_P:
                SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
                if (dst != src2)
                        return ADD(reg_map[dst], reg_map[src2], ZERO);
                return SLJIT_SUCCESS;

        case SLJIT_MOV_UI:
        case SLJIT_MOV_SI:
                SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
                if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
                        if (op == SLJIT_MOV_SI)
                                return BFEXTS(reg_map[dst], reg_map[src2], 0, 31);

                return BFEXTU(reg_map[dst], reg_map[src2], 0, 31);
                } else if (dst != src2)
                        SLJIT_ASSERT_STOP();

                return SLJIT_SUCCESS;

        case SLJIT_MOV_UB:
        case SLJIT_MOV_SB:
                SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
                if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
                        if (op == SLJIT_MOV_SB)
                                return BFEXTS(reg_map[dst], reg_map[src2], 0, 7);

                        return BFEXTU(reg_map[dst], reg_map[src2], 0, 7);
                } else if (dst != src2)
                        SLJIT_ASSERT_STOP();

                return SLJIT_SUCCESS;

        case SLJIT_MOV_UH:
        case SLJIT_MOV_SH:
                SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
                if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
                        if (op == SLJIT_MOV_SH)
                                return BFEXTS(reg_map[dst], reg_map[src2], 0, 15);

                        return BFEXTU(reg_map[dst], reg_map[src2], 0, 15);
                } else if (dst != src2)
                        SLJIT_ASSERT_STOP();

                return SLJIT_SUCCESS;

        case SLJIT_NOT:
                SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
                if (op & SLJIT_SET_E)
                        FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2]));
                if (CHECK_FLAGS(SLJIT_SET_E))
                        FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2]));

                return SLJIT_SUCCESS;

        case SLJIT_CLZ:
                SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
                if (op & SLJIT_SET_E)
                        FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2]));
                if (CHECK_FLAGS(SLJIT_SET_E))
                        FAIL_IF(CLZ(reg_map[dst], reg_map[src2]));

                return SLJIT_SUCCESS;

        case SLJIT_ADD:
                if (flags & SRC2_IMM) {
                        if (op & SLJIT_SET_O) {
                                FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63));
                                if (src2 < 0)
                                        FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
                        }

                        if (op & SLJIT_SET_E)
                                FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2));

                        if (op & SLJIT_SET_C) {
                                if (src2 >= 0)
                                        FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2));
                                else {
                                        FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2));
                                        FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG));
                                }
                        }

                        /* dst may be the same as src1 or src2. */
                        if (CHECK_FLAGS(SLJIT_SET_E))
                                FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));

                        if (op & SLJIT_SET_O) {
                                FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63));

                                if (src2 < 0)
                                        FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1));
                        }
                } else {
                        if (op & SLJIT_SET_O) {
                                FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
                                FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));

                                if (src1 != dst)
                                        overflow_ra = reg_map[src1];
                                else if (src2 != dst)
                                        overflow_ra = reg_map[src2];
                                else {
                                        /* Rare ocasion. */
                                        FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
                                        overflow_ra = TMP_EREG2;
                                }
                        }

                        if (op & SLJIT_SET_E)
                                FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2]));

                        if (op & SLJIT_SET_C)
                                FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2]));

                        /* dst may be the same as src1 or src2. */
                        if (CHECK_FLAGS(SLJIT_SET_E))
                                FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2]));

                        if (op & SLJIT_SET_O) {
                                FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra));
                                FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
                        }
                }

                /* a + b >= a | b (otherwise, the carry should be set to 1). */
                if (op & SLJIT_SET_C)
                        FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG));

                if (op & SLJIT_SET_O)
                        return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);

                return SLJIT_SUCCESS;

        case SLJIT_ADDC:
                if (flags & SRC2_IMM) {
                        if (op & SLJIT_SET_C) {
                                if (src2 >= 0)
                                        FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2));
                                else {
                                        FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2));
                                        FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1));
                                }
                        }

                        FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));

                } else {
                        if (op & SLJIT_SET_C)
                                FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2]));

                        /* dst may be the same as src1 or src2. */
                        FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2]));
                }

                if (op & SLJIT_SET_C)
                        FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1));

                FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG));

                if (!(op & SLJIT_SET_C))
                        return SLJIT_SUCCESS;

                /* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
                FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1));
                FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG));
                /* Set carry flag. */
                return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1);

        case SLJIT_SUB:
                if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) {
                        FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
                        src2 = TMP_REG2;
                        flags &= ~SRC2_IMM;
                }

                if (flags & SRC2_IMM) {
                        if (op & SLJIT_SET_O) {
                                FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63));

                                if (src2 < 0)
                                        FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));

                                if (src1 != dst)
                                        overflow_ra = reg_map[src1];
                                else {
                                        /* Rare ocasion. */
                                        FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
        
                                        overflow_ra = TMP_EREG2;
                                }
                        }

                        if (op & SLJIT_SET_E)
                                FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2));

                        if (op & SLJIT_SET_C) {
                                FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2));
                                FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped));
                        }

                        /* dst may be the same as src1 or src2. */
                        if (CHECK_FLAGS(SLJIT_SET_E))
                                FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));

                } else {

                        if (op & SLJIT_SET_O) {
                                FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
                                FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));

                                if (src1 != dst)
                                        overflow_ra = reg_map[src1];
                                else {
                                        /* Rare ocasion. */
                                        FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
                                        overflow_ra = TMP_EREG2;
                                }
                        }

                        if (op & SLJIT_SET_E)
                                FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2]));

                        if (op & (SLJIT_SET_U | SLJIT_SET_C))
                                FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2]));

                        if (op & SLJIT_SET_U)
                                FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1]));

                        if (op & SLJIT_SET_S) {
                                FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2]));
                                FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1]));
                        }

                        /* dst may be the same as src1 or src2. */
                        if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
                                FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
                }

                if (op & SLJIT_SET_O) {
                        FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra));
                        FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
                        return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
                }

                return SLJIT_SUCCESS;

        case SLJIT_SUBC:
                if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) {
                        FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
                        src2 = TMP_REG2;
                        flags &= ~SRC2_IMM;
                }

                if (flags & SRC2_IMM) {
                        if (op & SLJIT_SET_C) {
                                FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2));
                                FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped));
                        }

                        /* dst may be the same as src1 or src2. */
                        FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));

                } else {
                        if (op & SLJIT_SET_C)
                                FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2]));
                                /* dst may be the same as src1 or src2. */
                        FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
                }

                if (op & SLJIT_SET_C)
                        FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG));

                FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG));

                if (op & SLJIT_SET_C)
                        FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO));

                return SLJIT_SUCCESS;

#define EMIT_LOGICAL(op_imm, op_norm) \
        if (flags & SRC2_IMM) { \
                FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \
                if (op & SLJIT_SET_E) \
                        FAIL_IF(push_3_buffer( \
                                compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
                                ADDR_TMP_mapped, __LINE__)); \
                if (CHECK_FLAGS(SLJIT_SET_E)) \
                        FAIL_IF(push_3_buffer( \
                                compiler, op_norm, reg_map[dst], reg_map[src1], \
                                ADDR_TMP_mapped, __LINE__)); \
        } else { \
                if (op & SLJIT_SET_E) \
                        FAIL_IF(push_3_buffer( \
                                compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
                                reg_map[src2], __LINE__)); \
                if (CHECK_FLAGS(SLJIT_SET_E)) \
                        FAIL_IF(push_3_buffer( \
                                compiler, op_norm, reg_map[dst], reg_map[src1], \
                                reg_map[src2], __LINE__)); \
        }

        case SLJIT_AND:
                EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND);
                return SLJIT_SUCCESS;

        case SLJIT_OR:
                EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR);
                return SLJIT_SUCCESS;

        case SLJIT_XOR:
                EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR);
                return SLJIT_SUCCESS;

#define EMIT_SHIFT(op_imm, op_norm) \
        if (flags & SRC2_IMM) { \
                if (op & SLJIT_SET_E) \
                        FAIL_IF(push_3_buffer( \
                                compiler, op_imm, EQUAL_FLAG, reg_map[src1], \
                                src2 & 0x3F, __LINE__)); \
                if (CHECK_FLAGS(SLJIT_SET_E)) \
                        FAIL_IF(push_3_buffer( \
                                compiler, op_imm, reg_map[dst], reg_map[src1], \
                                src2 & 0x3F, __LINE__)); \
        } else { \
                if (op & SLJIT_SET_E) \
                        FAIL_IF(push_3_buffer( \
                                compiler, op_imm, reg_map[dst], reg_map[src1], \
                                src2 & 0x3F, __LINE__)); \
                if (CHECK_FLAGS(SLJIT_SET_E)) \
                        FAIL_IF(push_3_buffer( \
                                compiler, op_norm, reg_map[dst], reg_map[src1], \
                                reg_map[src2], __LINE__)); \
        }

        case SLJIT_SHL:
                EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL);
                return SLJIT_SUCCESS;

        case SLJIT_LSHR:
                EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU);
                return SLJIT_SUCCESS;

        case SLJIT_ASHR:
                EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS);
                return SLJIT_SUCCESS;
        }

        SLJIT_ASSERT_STOP();
        return SLJIT_SUCCESS;
}

static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
{
        /* arg1 goes to TMP_REG1 or src reg.
           arg2 goes to TMP_REG2, imm or src reg.
           TMP_REG3 can be used for caching.
           result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
        sljit_si dst_r = TMP_REG2;
        sljit_si src1_r;
        sljit_sw src2_r = 0;
        sljit_si sugg_src2_r = TMP_REG2;

        if (!(flags & ALT_KEEP_CACHE)) {
                compiler->cache_arg = 0;
                compiler->cache_argw = 0;
        }

        if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
                if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
                        return SLJIT_SUCCESS;
                if (GET_FLAGS(op))
                        flags |= UNUSED_DEST;
        } else if (FAST_IS_REG(dst)) {
                dst_r = dst;
                flags |= REG_DEST;
                if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
                        sugg_src2_r = dst_r;
        } else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw))
                flags |= SLOW_DEST;

        if (flags & IMM_OP) {
                if ((src2 & SLJIT_IMM) && src2w) {
                        if ((!(flags & LOGICAL_OP)
                                        && (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN))
                                        || ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) {
                                flags |= SRC2_IMM;
                                src2_r = src2w;
                        }
                }

                if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
                        if ((!(flags & LOGICAL_OP)
                                        && (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN))
                                        || ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) {
                                flags |= SRC2_IMM;
                                src2_r = src1w;

                                /* And swap arguments. */
                                src1 = src2;
                                src1w = src2w;
                                src2 = SLJIT_IMM;
                                /* src2w = src2_r unneeded. */
                        }
                }
        }

        /* Source 1. */
        if (FAST_IS_REG(src1)) {
                src1_r = src1;
                flags |= REG1_SOURCE;
        } else if (src1 & SLJIT_IMM) {
                if (src1w) {
                        FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w));
                        src1_r = TMP_REG1;
                } else
                        src1_r = 0;
        } else {
                if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w))
                        FAIL_IF(compiler->error);
                else
                        flags |= SLOW_SRC1;
                src1_r = TMP_REG1;
        }

        /* Source 2. */
        if (FAST_IS_REG(src2)) {
                src2_r = src2;
                flags |= REG2_SOURCE;
                if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
                        dst_r = src2_r;
        } else if (src2 & SLJIT_IMM) {
                if (!(flags & SRC2_IMM)) {
                        if (src2w) {
                                FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w));
                                src2_r = sugg_src2_r;
                        } else {
                                src2_r = 0;
                                if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) && (dst & SLJIT_MEM))
                                        dst_r = 0;
                        }
                }
        } else {
                if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w))
                        FAIL_IF(compiler->error);
                else
                        flags |= SLOW_SRC2;
                src2_r = sugg_src2_r;
        }

        if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
                SLJIT_ASSERT(src2_r == TMP_REG2);
                if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
                        FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w));
                        FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
                } else {
                        FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w));
                        FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw));
                }
        } else if (flags & SLOW_SRC1)
                FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
        else if (flags & SLOW_SRC2)
                FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw));

        FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));

        if (dst & SLJIT_MEM) {
                if (!(flags & SLOW_DEST)) {
                        getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw);
                        return compiler->error;
                }

                return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0);
        }

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw, sljit_si type)
{
        sljit_si sugg_dst_ar, dst_ar;
        sljit_si flags = GET_ALL_FLAGS(op);

        CHECK_ERROR();
        check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type);
        ADJUST_LOCAL_OFFSET(dst, dstw);

        if (dst == SLJIT_UNUSED)
                return SLJIT_SUCCESS;

        op = GET_OPCODE(op);
        sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2];

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;
        if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
                ADJUST_LOCAL_OFFSET(src, srcw);
                FAIL_IF(emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw));
                src = TMP_REG1;
                srcw = 0;
        }

        switch (type) {
        case SLJIT_C_EQUAL:
        case SLJIT_C_NOT_EQUAL:
                FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1));
                dst_ar = sugg_dst_ar;
                break;
        case SLJIT_C_LESS:
        case SLJIT_C_GREATER_EQUAL:
        case SLJIT_C_FLOAT_LESS:
        case SLJIT_C_FLOAT_GREATER_EQUAL:
                dst_ar = ULESS_FLAG;
                break;
        case SLJIT_C_GREATER:
        case SLJIT_C_LESS_EQUAL:
        case SLJIT_C_FLOAT_GREATER:
        case SLJIT_C_FLOAT_LESS_EQUAL:
                dst_ar = UGREATER_FLAG;
                break;
        case SLJIT_C_SIG_LESS:
        case SLJIT_C_SIG_GREATER_EQUAL:
                dst_ar = LESS_FLAG;
                break;
        case SLJIT_C_SIG_GREATER:
        case SLJIT_C_SIG_LESS_EQUAL:
                dst_ar = GREATER_FLAG;
                break;
        case SLJIT_C_OVERFLOW:
        case SLJIT_C_NOT_OVERFLOW:
                dst_ar = OVERFLOW_FLAG;
                break;
        case SLJIT_C_MUL_OVERFLOW:
        case SLJIT_C_MUL_NOT_OVERFLOW:
                FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1));
                dst_ar = sugg_dst_ar;
                type ^= 0x1; /* Flip type bit for the XORI below. */
                break;
        case SLJIT_C_FLOAT_EQUAL:
        case SLJIT_C_FLOAT_NOT_EQUAL:
                dst_ar = EQUAL_FLAG;
                break;

        default:
                SLJIT_ASSERT_STOP();
                dst_ar = sugg_dst_ar;
                break;
        }

        if (type & 0x1) {
                FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1));
                dst_ar = sugg_dst_ar;
        }

        if (op >= SLJIT_ADD) {
                if (TMP_REG2_mapped != dst_ar)
                        FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO));
                return emit_op(compiler, op | flags, CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
        }

        if (dst & SLJIT_MEM)
                return emit_op_mem(compiler, WORD_DATA, dst_ar, dst, dstw);

        if (sugg_dst_ar != dst_ar)
                return ADD(sugg_dst_ar, dst_ar, ZERO);

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op) {
        CHECK_ERROR();
        check_sljit_emit_op0(compiler, op);

        op = GET_OPCODE(op);
        switch (op) {
        case SLJIT_NOP:
                return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__);

        case SLJIT_BREAKPOINT:
                return PI(BPT);

        case SLJIT_UMUL:
        case SLJIT_SMUL:
        case SLJIT_UDIV:
        case SLJIT_SDIV:
                SLJIT_ASSERT_STOP();
        }

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
{
        CHECK_ERROR();
        check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src, srcw);

        switch (GET_OPCODE(op)) {
        case SLJIT_MOV:
        case SLJIT_MOV_P:
                return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOV_UI:
                return emit_op(compiler, SLJIT_MOV_UI, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOV_SI:
                return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOV_UB:
                return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);

        case SLJIT_MOV_SB:
                return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);

        case SLJIT_MOV_UH:
                return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);

        case SLJIT_MOV_SH:
                return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);

        case SLJIT_MOVU:
        case SLJIT_MOVU_P:
                return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOVU_UI:
                return emit_op(compiler, SLJIT_MOV_UI, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOVU_SI:
                return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOVU_UB:
                return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);

        case SLJIT_MOVU_SB:
                return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);

        case SLJIT_MOVU_UH:
                return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);

        case SLJIT_MOVU_SH:
                return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);

        case SLJIT_NOT:
                return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_NEG:
                return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);

        case SLJIT_CLZ:
                return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
        }

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
{
        CHECK_ERROR();
        check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src1, src1w);
        ADJUST_LOCAL_OFFSET(src2, src2w);

        switch (GET_OPCODE(op)) {
        case SLJIT_ADD:
        case SLJIT_ADDC:
                return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);

        case SLJIT_SUB:
        case SLJIT_SUBC:
                return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);

        case SLJIT_MUL:
                return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);

        case SLJIT_AND:
        case SLJIT_OR:
        case SLJIT_XOR:
                return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);

        case SLJIT_SHL:
        case SLJIT_LSHR:
        case SLJIT_ASHR:
                if (src2 & SLJIT_IMM)
                        src2w &= 0x3f;
                if (op & SLJIT_INT_OP)
                        src2w &= 0x1f;

                return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
        }

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler)
{
        struct sljit_label *label;

        flush_buffer(compiler);

        CHECK_ERROR_PTR();
        check_sljit_emit_label(compiler);

        if (compiler->last_label && compiler->last_label->size == compiler->size)
                return compiler->last_label;

        label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label));
        PTR_FAIL_IF(!label);
        set_label(label, compiler);
        return label;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
        sljit_si src_r = TMP_REG2;
        struct sljit_jump *jump = NULL;

        flush_buffer(compiler);

        CHECK_ERROR();
        check_sljit_emit_ijump(compiler, type, src, srcw);
        ADJUST_LOCAL_OFFSET(src, srcw);

        if (FAST_IS_REG(src)) {
                if (reg_map[src] != 0)
                        src_r = src;
                else
                        FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO));
        }

        if (type >= SLJIT_CALL0) {
                SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
                if (src & (SLJIT_IMM | SLJIT_MEM)) {
                        if (src & SLJIT_IMM)
                                FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1));
                        else {
                                SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
                                FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
                        }

                        FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));

                        FAIL_IF(ADDI_SOLO(54, 54, -16));

                        FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG]));

                        return ADDI_SOLO(54, 54, 16);
                }

                /* Register input. */
                if (type >= SLJIT_CALL1)
                        FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));

                FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO));

                FAIL_IF(ADDI_SOLO(54, 54, -16));

                FAIL_IF(JALR_SOLO(reg_map[src_r]));

                return ADDI_SOLO(54, 54, 16);
        }

        if (src & SLJIT_IMM) {
                jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
                FAIL_IF(!jump);
                set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
                jump->u.target = srcw;
                FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));

                if (type >= SLJIT_FAST_CALL) {
                        FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO));
                        jump->addr = compiler->size;
                        FAIL_IF(JR_SOLO(reg_map[src_r]));
                } else {
                        jump->addr = compiler->size;
                        FAIL_IF(JR_SOLO(reg_map[src_r]));
                }

                return SLJIT_SUCCESS;

        } else if (src & SLJIT_MEM)
                FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));

        FAIL_IF(JR_SOLO(reg_map[src_r]));

        if (jump)
                jump->addr = compiler->size;

        return SLJIT_SUCCESS;
}

#define BR_Z(src) \
        inst = BEQZ_X1 | SRCA_X1(src); \
        flags = IS_COND;

#define BR_NZ(src) \
        inst = BNEZ_X1 | SRCA_X1(src); \
        flags = IS_COND;

SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
        struct sljit_jump *jump;
        sljit_ins inst;
        sljit_si flags = 0;

        flush_buffer(compiler);

        CHECK_ERROR_PTR();
        check_sljit_emit_jump(compiler, type);

        jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
        PTR_FAIL_IF(!jump);
        set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
        type &= 0xff;

        switch (type) {
        case SLJIT_C_EQUAL:
        case SLJIT_C_FLOAT_NOT_EQUAL:
                BR_NZ(EQUAL_FLAG);
                break;
        case SLJIT_C_NOT_EQUAL:
        case SLJIT_C_FLOAT_EQUAL:
                BR_Z(EQUAL_FLAG);
                break;
        case SLJIT_C_LESS:
        case SLJIT_C_FLOAT_LESS:
                BR_Z(ULESS_FLAG);
                break;
        case SLJIT_C_GREATER_EQUAL:
        case SLJIT_C_FLOAT_GREATER_EQUAL:
                BR_NZ(ULESS_FLAG);
                break;
        case SLJIT_C_GREATER:
        case SLJIT_C_FLOAT_GREATER:
                BR_Z(UGREATER_FLAG);
                break;
        case SLJIT_C_LESS_EQUAL:
        case SLJIT_C_FLOAT_LESS_EQUAL:
                BR_NZ(UGREATER_FLAG);
                break;
        case SLJIT_C_SIG_LESS:
                BR_Z(LESS_FLAG);
                break;
        case SLJIT_C_SIG_GREATER_EQUAL:
                BR_NZ(LESS_FLAG);
                break;
        case SLJIT_C_SIG_GREATER:
                BR_Z(GREATER_FLAG);
                break;
        case SLJIT_C_SIG_LESS_EQUAL:
                BR_NZ(GREATER_FLAG);
                break;
        case SLJIT_C_OVERFLOW:
        case SLJIT_C_MUL_OVERFLOW:
                BR_Z(OVERFLOW_FLAG);
                break;
        case SLJIT_C_NOT_OVERFLOW:
        case SLJIT_C_MUL_NOT_OVERFLOW:
                BR_NZ(OVERFLOW_FLAG);
                break;
        default:
                /* Not conditional branch. */
                inst = 0;
                break;
        }

        jump->flags |= flags;

        if (inst) {
                inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6));
                PTR_FAIL_IF(PI(inst));
        }

        PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
        if (type <= SLJIT_JUMP) {
                jump->addr = compiler->size;
                PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped));
        } else {
                SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
                /* Cannot be optimized out if type is >= CALL0. */
                jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0);
                PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
                jump->addr = compiler->size;
                PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped));
        }

        return jump;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
        return 0;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
{
        SLJIT_ASSERT_STOP();
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
{
        SLJIT_ASSERT_STOP();
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
        struct sljit_const *const_;
        sljit_si reg;

        flush_buffer(compiler);

        CHECK_ERROR_PTR();
        check_sljit_emit_const(compiler, dst, dstw, init_value);
        ADJUST_LOCAL_OFFSET(dst, dstw);

        const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const));
        PTR_FAIL_IF(!const_);
        set_const(const_, compiler);

        reg = FAST_IS_REG(dst) ? dst : TMP_REG2;

        PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1));

        if (dst & SLJIT_MEM)
                PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
        return const_;
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
{
        sljit_ins *inst = (sljit_ins *)addr;

        inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_addr >> 32) & 0xffff) << 43);
        inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_addr >> 16) & 0xffff) << 43);
        inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_addr & 0xffff) << 43);
        SLJIT_CACHE_FLUSH(inst, inst + 3);
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
{
        sljit_ins *inst = (sljit_ins *)addr;

        inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43);
        inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43);
        inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43);
        inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43);
        SLJIT_CACHE_FLUSH(inst, inst + 4);
}

/* [<][>][^][v][top][bottom][index][help] */