root/src/arm/macro-assembler-arm.cc
/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- has_frame_
- Jump
- Jump
- Jump
- Jump
- CallSize
- Call
- CallSize
- Call
- CallSize
- Call
- Ret
- Drop
- Ret
- Swap
- Call
- Push
- Move
- Move
- Move
- And
- Ubfx
- Sbfx
- Bfi
- Bfc
- Usat
- LoadRoot
- StoreRoot
- LoadHeapObject
- InNewSpace
- RecordWriteField
- RecordWrite
- RememberedSetHelper
- PushSafepointRegisters
- PopSafepointRegisters
- PushSafepointRegistersAndDoubles
- PopSafepointRegistersAndDoubles
- StoreToSafepointRegistersAndDoublesSlot
- StoreToSafepointRegisterSlot
- LoadFromSafepointRegisterSlot
- SafepointRegisterStackIndex
- SafepointRegisterSlot
- SafepointRegistersAndDoublesSlot
- Ldrd
- Strd
- ClearFPSCRBits
- VFPCompareAndSetFlags
- VFPCompareAndSetFlags
- VFPCompareAndLoadFlags
- VFPCompareAndLoadFlags
- Vmov
- EnterFrame
- LeaveFrame
- EnterExitFrame
- InitializeNewString
- ActivationFrameAlignment
- LeaveExitFrame
- GetCFunctionDoubleResult
- SetCallKind
- InvokePrologue
- InvokeCode
- InvokeCode
- InvokeFunction
- InvokeFunction
- IsObjectJSObjectType
- IsInstanceJSObjectType
- IsObjectJSStringType
- DebugBreak
- PushTryHandler
- PopTryHandler
- JumpToHandlerEntry
- Throw
- ThrowUncatchable
- CheckAccessGlobalProxy
- GetNumberHash
- LoadFromNumberDictionary
- AllocateInNewSpace
- AllocateInNewSpace
- UndoAllocationInNewSpace
- AllocateTwoByteString
- AllocateAsciiString
- AllocateTwoByteConsString
- AllocateAsciiConsString
- AllocateTwoByteSlicedString
- AllocateAsciiSlicedString
- CompareObjectType
- CompareInstanceType
- CompareRoot
- CheckFastElements
- CheckFastObjectElements
- CheckFastSmiElements
- StoreNumberToDoubleElements
- CompareMap
- CompareMap
- CheckMap
- CheckMap
- DispatchMap
- TryGetFunctionPrototype
- CallStub
- TailCallStub
- AddressOffset
- CallApiFunctionAndReturn
- AllowThisStubCall
- IllegalOperation
- IndexFromHash
- IntegerToDoubleConversionWithVFP3
- ObjectToDoubleVFPRegister
- SmiToDoubleVFPRegister
- ConvertToInt32
- EmitVFPTruncate
- EmitOutOfInt32RangeTruncate
- EmitECMATruncate
- GetLeastBitsFromSmi
- GetLeastBitsFromInt32
- CallRuntime
- CallRuntime
- CallRuntimeSaveDoubles
- CallExternalReference
- TailCallExternalReference
- TailCallRuntime
- JumpToExternalReference
- InvokeBuiltin
- GetBuiltinFunction
- GetBuiltinEntry
- SetCounter
- IncrementCounter
- DecrementCounter
- Assert
- AssertRegisterIsRoot
- AssertFastElements
- Check
- Abort
- LoadContext
- LoadTransitionedArrayMapConditional
- LoadInitialArrayMap
- LoadGlobalFunction
- LoadGlobalFunctionInitialMap
- JumpIfNotPowerOfTwoOrZero
- JumpIfNotPowerOfTwoOrZeroAndNeg
- JumpIfNotBothSmi
- UntagAndJumpIfSmi
- UntagAndJumpIfNotSmi
- JumpIfEitherSmi
- AbortIfSmi
- AbortIfNotSmi
- AbortIfNotString
- AbortIfNotRootValue
- JumpIfNotHeapNumber
- JumpIfNonSmisNotBothSequentialAsciiStrings
- JumpIfNotBothSequentialAsciiStrings
- AllocateHeapNumber
- AllocateHeapNumberWithValue
- CopyFields
- CopyBytes
- InitializeFieldsWithFiller
- CountLeadingZeros
- JumpIfBothInstanceTypesAreNotSequentialAscii
- JumpIfInstanceTypeIsNotSequentialAscii
- CalculateStackPassedWords
- PrepareCallCFunction
- PrepareCallCFunction
- SetCallCDoubleArguments
- SetCallCDoubleArguments
- SetCallCDoubleArguments
- CallCFunction
- CallCFunction
- CallCFunction
- CallCFunction
- CallCFunctionHelper
- GetRelocatedValueLocation
- CheckPageFlag
- JumpIfBlack
- HasColor
- JumpIfDataObject
- GetMarkBits
- EnsureNotWhite
- ClampUint8
- ClampDoubleToUint8
- LoadInstanceDescriptors
- CheckEnumCache
- AreAliased
- masm_
- Emit
- Emit
- EmitCondition
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <limits.h> // For LONG_MIN, LONG_MAX.
#include "v8.h"
#if defined(V8_TARGET_ARCH_ARM)
#include "bootstrapper.h"
#include "codegen.h"
#include "debug.h"
#include "runtime.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
allow_stub_calls_(true),
has_frame_(false) {
if (isolate() != NULL) {
code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
isolate());
}
}
// We always generate arm code, never thumb code, even if V8 is compiled to
// thumb, so we require inter-working support
#if defined(__thumb__) && !defined(USE_THUMB_INTERWORK)
#error "flag -mthumb-interwork missing"
#endif
// We do not support thumb inter-working with an arm architecture not supporting
// the blx instruction (below v5t). If you know what CPU you are compiling for
// you can use -march=armv7 or similar.
#if defined(USE_THUMB_INTERWORK) && !defined(CAN_USE_THUMB_INSTRUCTIONS)
# error "For thumb inter-working we require an architecture which supports blx"
#endif
// Using bx does not yield better code, so use it only when required
#if defined(USE_THUMB_INTERWORK)
#define USE_BX 1
#endif
void MacroAssembler::Jump(Register target, Condition cond) {
#if USE_BX
bx(target, cond);
#else
mov(pc, Operand(target), LeaveCC, cond);
#endif
}
void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
Condition cond) {
#if USE_BX
mov(ip, Operand(target, rmode));
bx(ip, cond);
#else
mov(pc, Operand(target, rmode), LeaveCC, cond);
#endif
}
void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode,
Condition cond) {
ASSERT(!RelocInfo::IsCodeTarget(rmode));
Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
}
void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond) {
ASSERT(RelocInfo::IsCodeTarget(rmode));
// 'code' is always generated ARM code, never THUMB code
Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
}
int MacroAssembler::CallSize(Register target, Condition cond) {
#if USE_BLX
return kInstrSize;
#else
return 2 * kInstrSize;
#endif
}
void MacroAssembler::Call(Register target, Condition cond) {
// Block constant pool for the call instruction sequence.
BlockConstPoolScope block_const_pool(this);
Label start;
bind(&start);
#if USE_BLX
blx(target, cond);
#else
// set lr for return at current pc + 8
mov(lr, Operand(pc), LeaveCC, cond);
mov(pc, Operand(target), LeaveCC, cond);
#endif
ASSERT_EQ(CallSize(target, cond), SizeOfCodeGeneratedSince(&start));
}
int MacroAssembler::CallSize(
Address target, RelocInfo::Mode rmode, Condition cond) {
int size = 2 * kInstrSize;
Instr mov_instr = cond | MOV | LeaveCC;
intptr_t immediate = reinterpret_cast<intptr_t>(target);
if (!Operand(immediate, rmode).is_single_instruction(mov_instr)) {
size += kInstrSize;
}
return size;
}
void MacroAssembler::Call(Address target,
RelocInfo::Mode rmode,
Condition cond) {
// Block constant pool for the call instruction sequence.
BlockConstPoolScope block_const_pool(this);
Label start;
bind(&start);
#if USE_BLX
// On ARMv5 and after the recommended call sequence is:
// ldr ip, [pc, #...]
// blx ip
// Statement positions are expected to be recorded when the target
// address is loaded. The mov method will automatically record
// positions when pc is the target, since this is not the case here
// we have to do it explicitly.
positions_recorder()->WriteRecordedPositions();
mov(ip, Operand(reinterpret_cast<int32_t>(target), rmode));
blx(ip, cond);
ASSERT(kCallTargetAddressOffset == 2 * kInstrSize);
#else
// Set lr for return at current pc + 8.
mov(lr, Operand(pc), LeaveCC, cond);
// Emit a ldr<cond> pc, [pc + offset of target in constant pool].
mov(pc, Operand(reinterpret_cast<int32_t>(target), rmode), LeaveCC, cond);
ASSERT(kCallTargetAddressOffset == kInstrSize);
#endif
ASSERT_EQ(CallSize(target, rmode, cond), SizeOfCodeGeneratedSince(&start));
}
int MacroAssembler::CallSize(Handle<Code> code,
RelocInfo::Mode rmode,
unsigned ast_id,
Condition cond) {
return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond);
}
void MacroAssembler::Call(Handle<Code> code,
RelocInfo::Mode rmode,
unsigned ast_id,
Condition cond) {
Label start;
bind(&start);
ASSERT(RelocInfo::IsCodeTarget(rmode));
if (rmode == RelocInfo::CODE_TARGET && ast_id != kNoASTId) {
SetRecordedAstId(ast_id);
rmode = RelocInfo::CODE_TARGET_WITH_ID;
}
// 'code' is always generated ARM code, never THUMB code
Call(reinterpret_cast<Address>(code.location()), rmode, cond);
ASSERT_EQ(CallSize(code, rmode, ast_id, cond),
SizeOfCodeGeneratedSince(&start));
}
void MacroAssembler::Ret(Condition cond) {
#if USE_BX
bx(lr, cond);
#else
mov(pc, Operand(lr), LeaveCC, cond);
#endif
}
void MacroAssembler::Drop(int count, Condition cond) {
if (count > 0) {
add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
}
}
void MacroAssembler::Ret(int drop, Condition cond) {
Drop(drop, cond);
Ret(cond);
}
void MacroAssembler::Swap(Register reg1,
Register reg2,
Register scratch,
Condition cond) {
if (scratch.is(no_reg)) {
eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
eor(reg2, reg2, Operand(reg1), LeaveCC, cond);
eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
} else {
mov(scratch, reg1, LeaveCC, cond);
mov(reg1, reg2, LeaveCC, cond);
mov(reg2, scratch, LeaveCC, cond);
}
}
void MacroAssembler::Call(Label* target) {
bl(target);
}
void MacroAssembler::Push(Handle<Object> handle) {
mov(ip, Operand(handle));
push(ip);
}
void MacroAssembler::Move(Register dst, Handle<Object> value) {
mov(dst, Operand(value));
}
void MacroAssembler::Move(Register dst, Register src, Condition cond) {
if (!dst.is(src)) {
mov(dst, src, LeaveCC, cond);
}
}
void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) {
ASSERT(CpuFeatures::IsSupported(VFP3));
CpuFeatures::Scope scope(VFP3);
if (!dst.is(src)) {
vmov(dst, src);
}
}
void MacroAssembler::And(Register dst, Register src1, const Operand& src2,
Condition cond) {
if (!src2.is_reg() &&
!src2.must_use_constant_pool() &&
src2.immediate() == 0) {
mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, cond);
} else if (!src2.is_single_instruction() &&
!src2.must_use_constant_pool() &&
CpuFeatures::IsSupported(ARMv7) &&
IsPowerOf2(src2.immediate() + 1)) {
ubfx(dst, src1, 0,
WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond);
} else {
and_(dst, src1, src2, LeaveCC, cond);
}
}
void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width,
Condition cond) {
ASSERT(lsb < 32);
if (!CpuFeatures::IsSupported(ARMv7)) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
and_(dst, src1, Operand(mask), LeaveCC, cond);
if (lsb != 0) {
mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond);
}
} else {
ubfx(dst, src1, lsb, width, cond);
}
}
void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width,
Condition cond) {
ASSERT(lsb < 32);
if (!CpuFeatures::IsSupported(ARMv7)) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
and_(dst, src1, Operand(mask), LeaveCC, cond);
int shift_up = 32 - lsb - width;
int shift_down = lsb + shift_up;
if (shift_up != 0) {
mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond);
}
if (shift_down != 0) {
mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond);
}
} else {
sbfx(dst, src1, lsb, width, cond);
}
}
void MacroAssembler::Bfi(Register dst,
Register src,
Register scratch,
int lsb,
int width,
Condition cond) {
ASSERT(0 <= lsb && lsb < 32);
ASSERT(0 <= width && width < 32);
ASSERT(lsb + width < 32);
ASSERT(!scratch.is(dst));
if (width == 0) return;
if (!CpuFeatures::IsSupported(ARMv7)) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
bic(dst, dst, Operand(mask));
and_(scratch, src, Operand((1 << width) - 1));
mov(scratch, Operand(scratch, LSL, lsb));
orr(dst, dst, scratch);
} else {
bfi(dst, src, lsb, width, cond);
}
}
void MacroAssembler::Bfc(Register dst, int lsb, int width, Condition cond) {
ASSERT(lsb < 32);
if (!CpuFeatures::IsSupported(ARMv7)) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
bic(dst, dst, Operand(mask));
} else {
bfc(dst, lsb, width, cond);
}
}
void MacroAssembler::Usat(Register dst, int satpos, const Operand& src,
Condition cond) {
if (!CpuFeatures::IsSupported(ARMv7)) {
ASSERT(!dst.is(pc) && !src.rm().is(pc));
ASSERT((satpos >= 0) && (satpos <= 31));
// These asserts are required to ensure compatibility with the ARMv7
// implementation.
ASSERT((src.shift_op() == ASR) || (src.shift_op() == LSL));
ASSERT(src.rs().is(no_reg));
Label done;
int satval = (1 << satpos) - 1;
if (cond != al) {
b(NegateCondition(cond), &done); // Skip saturate if !condition.
}
if (!(src.is_reg() && dst.is(src.rm()))) {
mov(dst, src);
}
tst(dst, Operand(~satval));
b(eq, &done);
mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, mi); // 0 if negative.
mov(dst, Operand(satval), LeaveCC, pl); // satval if positive.
bind(&done);
} else {
usat(dst, satpos, src, cond);
}
}
void MacroAssembler::LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond) {
ldr(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), cond);
}
void MacroAssembler::StoreRoot(Register source,
Heap::RootListIndex index,
Condition cond) {
str(source, MemOperand(kRootRegister, index << kPointerSizeLog2), cond);
}
void MacroAssembler::LoadHeapObject(Register result,
Handle<HeapObject> object) {
if (isolate()->heap()->InNewSpace(*object)) {
Handle<JSGlobalPropertyCell> cell =
isolate()->factory()->NewJSGlobalPropertyCell(object);
mov(result, Operand(cell));
ldr(result, FieldMemOperand(result, JSGlobalPropertyCell::kValueOffset));
} else {
mov(result, Operand(object));
}
}
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cond,
Label* branch) {
ASSERT(cond == eq || cond == ne);
and_(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
cmp(scratch, Operand(ExternalReference::new_space_start(isolate())));
b(cond, branch);
}
void MacroAssembler::RecordWriteField(
Register object,
int offset,
Register value,
Register dst,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
ASSERT(IsAligned(offset, kPointerSize));
add(dst, object, Operand(offset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
tst(dst, Operand((1 << kPointerSizeLog2) - 1));
b(eq, &ok);
stop("Unaligned cell in write barrier");
bind(&ok);
}
RecordWrite(object,
dst,
value,
lr_status,
save_fp,
remembered_set_action,
OMIT_SMI_CHECK);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(value, Operand(BitCast<int32_t>(kZapValue + 4)));
mov(dst, Operand(BitCast<int32_t>(kZapValue + 8)));
}
}
// Will clobber 4 registers: object, address, scratch, ip. The
// register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(Register object,
Register address,
Register value,
LinkRegisterStatus lr_status,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check) {
// The compiled code assumes that record write doesn't change the
// context register, so we check that none of the clobbered
// registers are cp.
ASSERT(!address.is(cp) && !value.is(cp));
if (emit_debug_code()) {
ldr(ip, MemOperand(address));
cmp(ip, value);
Check(eq, "Wrong address or value passed to RecordWrite");
}
Label done;
if (smi_check == INLINE_SMI_CHECK) {
ASSERT_EQ(0, kSmiTag);
tst(value, Operand(kSmiTagMask));
b(eq, &done);
}
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
eq,
&done);
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask,
eq,
&done);
// Record the actual write.
if (lr_status == kLRHasNotBeenSaved) {
push(lr);
}
RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
CallStub(&stub);
if (lr_status == kLRHasNotBeenSaved) {
pop(lr);
}
bind(&done);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(address, Operand(BitCast<int32_t>(kZapValue + 12)));
mov(value, Operand(BitCast<int32_t>(kZapValue + 16)));
}
}
void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
Register address,
Register scratch,
SaveFPRegsMode fp_mode,
RememberedSetFinalAction and_then) {
Label done;
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok);
stop("Remembered set pointer is in new space");
bind(&ok);
}
// Load store buffer top.
ExternalReference store_buffer =
ExternalReference::store_buffer_top(isolate());
mov(ip, Operand(store_buffer));
ldr(scratch, MemOperand(ip));
// Store pointer to buffer and increment buffer top.
str(address, MemOperand(scratch, kPointerSize, PostIndex));
// Write back new top of buffer.
str(scratch, MemOperand(ip));
// Call stub on end of buffer.
// Check for end of buffer.
tst(scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
if (and_then == kFallThroughAtEnd) {
b(eq, &done);
} else {
ASSERT(and_then == kReturnAtEnd);
Ret(eq);
}
push(lr);
StoreBufferOverflowStub store_buffer_overflow =
StoreBufferOverflowStub(fp_mode);
CallStub(&store_buffer_overflow);
pop(lr);
bind(&done);
if (and_then == kReturnAtEnd) {
Ret();
}
}
// Push and pop all registers that can hold pointers.
void MacroAssembler::PushSafepointRegisters() {
// Safepoints expect a block of contiguous register values starting with r0:
ASSERT(((1 << kNumSafepointSavedRegisters) - 1) == kSafepointSavedRegisters);
// Safepoints expect a block of kNumSafepointRegisters values on the
// stack, so adjust the stack for unsaved registers.
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
ASSERT(num_unsaved >= 0);
sub(sp, sp, Operand(num_unsaved * kPointerSize));
stm(db_w, sp, kSafepointSavedRegisters);
}
void MacroAssembler::PopSafepointRegisters() {
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
ldm(ia_w, sp, kSafepointSavedRegisters);
add(sp, sp, Operand(num_unsaved * kPointerSize));
}
void MacroAssembler::PushSafepointRegistersAndDoubles() {
PushSafepointRegisters();
sub(sp, sp, Operand(DwVfpRegister::kNumAllocatableRegisters *
kDoubleSize));
for (int i = 0; i < DwVfpRegister::kNumAllocatableRegisters; i++) {
vstr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize);
}
}
void MacroAssembler::PopSafepointRegistersAndDoubles() {
for (int i = 0; i < DwVfpRegister::kNumAllocatableRegisters; i++) {
vldr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize);
}
add(sp, sp, Operand(DwVfpRegister::kNumAllocatableRegisters *
kDoubleSize));
PopSafepointRegisters();
}
void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src,
Register dst) {
str(src, SafepointRegistersAndDoublesSlot(dst));
}
void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
str(src, SafepointRegisterSlot(dst));
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
ldr(dst, SafepointRegisterSlot(src));
}
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
// The registers are pushed starting with the highest encoding,
// which means that lowest encodings are closest to the stack pointer.
ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
return reg_code;
}
MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
// General purpose registers are pushed last on the stack.
int doubles_size = DwVfpRegister::kNumAllocatableRegisters * kDoubleSize;
int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
return MemOperand(sp, doubles_size + register_offset);
}
void MacroAssembler::Ldrd(Register dst1, Register dst2,
const MemOperand& src, Condition cond) {
ASSERT(src.rm().is(no_reg));
ASSERT(!dst1.is(lr)); // r14.
ASSERT_EQ(0, dst1.code() % 2);
ASSERT_EQ(dst1.code() + 1, dst2.code());
// V8 does not use this addressing mode, so the fallback code
// below doesn't support it yet.
ASSERT((src.am() != PreIndex) && (src.am() != NegPreIndex));
// Generate two ldr instructions if ldrd is not available.
if (CpuFeatures::IsSupported(ARMv7)) {
CpuFeatures::Scope scope(ARMv7);
ldrd(dst1, dst2, src, cond);
} else {
if ((src.am() == Offset) || (src.am() == NegOffset)) {
MemOperand src2(src);
src2.set_offset(src2.offset() + 4);
if (dst1.is(src.rn())) {
ldr(dst2, src2, cond);
ldr(dst1, src, cond);
} else {
ldr(dst1, src, cond);
ldr(dst2, src2, cond);
}
} else { // PostIndex or NegPostIndex.
ASSERT((src.am() == PostIndex) || (src.am() == NegPostIndex));
if (dst1.is(src.rn())) {
ldr(dst2, MemOperand(src.rn(), 4, Offset), cond);
ldr(dst1, src, cond);
} else {
MemOperand src2(src);
src2.set_offset(src2.offset() - 4);
ldr(dst1, MemOperand(src.rn(), 4, PostIndex), cond);
ldr(dst2, src2, cond);
}
}
}
}
void MacroAssembler::Strd(Register src1, Register src2,
const MemOperand& dst, Condition cond) {
ASSERT(dst.rm().is(no_reg));
ASSERT(!src1.is(lr)); // r14.
ASSERT_EQ(0, src1.code() % 2);
ASSERT_EQ(src1.code() + 1, src2.code());
// V8 does not use this addressing mode, so the fallback code
// below doesn't support it yet.
ASSERT((dst.am() != PreIndex) && (dst.am() != NegPreIndex));
// Generate two str instructions if strd is not available.
if (CpuFeatures::IsSupported(ARMv7)) {
CpuFeatures::Scope scope(ARMv7);
strd(src1, src2, dst, cond);
} else {
MemOperand dst2(dst);
if ((dst.am() == Offset) || (dst.am() == NegOffset)) {
dst2.set_offset(dst2.offset() + 4);
str(src1, dst, cond);
str(src2, dst2, cond);
} else { // PostIndex or NegPostIndex.
ASSERT((dst.am() == PostIndex) || (dst.am() == NegPostIndex));
dst2.set_offset(dst2.offset() - 4);
str(src1, MemOperand(dst.rn(), 4, PostIndex), cond);
str(src2, dst2, cond);
}
}
}
void MacroAssembler::ClearFPSCRBits(const uint32_t bits_to_clear,
const Register scratch,
const Condition cond) {
vmrs(scratch, cond);
bic(scratch, scratch, Operand(bits_to_clear), LeaveCC, cond);
vmsr(scratch, cond);
}
void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond) {
// Compare and move FPSCR flags to the normal condition flags.
VFPCompareAndLoadFlags(src1, src2, pc, cond);
}
void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
const double src2,
const Condition cond) {
// Compare and move FPSCR flags to the normal condition flags.
VFPCompareAndLoadFlags(src1, src2, pc, cond);
}
void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
const DwVfpRegister src2,
const Register fpscr_flags,
const Condition cond) {
// Compare and load FPSCR.
vcmp(src1, src2, cond);
vmrs(fpscr_flags, cond);
}
void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
const double src2,
const Register fpscr_flags,
const Condition cond) {
// Compare and load FPSCR.
vcmp(src1, src2, cond);
vmrs(fpscr_flags, cond);
}
void MacroAssembler::Vmov(const DwVfpRegister dst,
const double imm,
const Condition cond) {
ASSERT(CpuFeatures::IsEnabled(VFP3));
static const DoubleRepresentation minus_zero(-0.0);
static const DoubleRepresentation zero(0.0);
DoubleRepresentation value(imm);
// Handle special values first.
if (value.bits == zero.bits) {
vmov(dst, kDoubleRegZero, cond);
} else if (value.bits == minus_zero.bits) {
vneg(dst, kDoubleRegZero, cond);
} else {
vmov(dst, imm, cond);
}
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
// r0-r3: preserved
stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
mov(ip, Operand(Smi::FromInt(type)));
push(ip);
mov(ip, Operand(CodeObject()));
push(ip);
add(fp, sp, Operand(3 * kPointerSize)); // Adjust FP to point to saved FP.
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
// r0: preserved
// r1: preserved
// r2: preserved
// Drop the execution stack down to the frame pointer and restore
// the caller frame pointer and return address.
mov(sp, fp);
ldm(ia_w, sp, fp.bit() | lr.bit());
}
void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) {
// Set up the frame structure on the stack.
ASSERT_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
ASSERT_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
ASSERT_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
Push(lr, fp);
mov(fp, Operand(sp)); // Set up new frame pointer.
// Reserve room for saved entry sp and code object.
sub(sp, sp, Operand(2 * kPointerSize));
if (emit_debug_code()) {
mov(ip, Operand(0));
str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
mov(ip, Operand(CodeObject()));
str(ip, MemOperand(fp, ExitFrameConstants::kCodeOffset));
// Save the frame pointer and the context in top.
mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
str(fp, MemOperand(ip));
mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
str(cp, MemOperand(ip));
// Optionally save all double registers.
if (save_doubles) {
DwVfpRegister first = d0;
DwVfpRegister last =
DwVfpRegister::from_code(DwVfpRegister::kNumRegisters - 1);
vstm(db_w, sp, first, last);
// Note that d0 will be accessible at
// fp - 2 * kPointerSize - DwVfpRegister::kNumRegisters * kDoubleSize,
// since the sp slot and code slot were pushed after the fp.
}
// Reserve place for the return address and stack space and align the frame
// preparing for calling the runtime function.
const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
sub(sp, sp, Operand((stack_space + 1) * kPointerSize));
if (frame_alignment > 0) {
ASSERT(IsPowerOf2(frame_alignment));
and_(sp, sp, Operand(-frame_alignment));
}
// Set the exit frame sp value to point just before the return address
// location.
add(ip, sp, Operand(kPointerSize));
str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
void MacroAssembler::InitializeNewString(Register string,
Register length,
Heap::RootListIndex map_index,
Register scratch1,
Register scratch2) {
mov(scratch1, Operand(length, LSL, kSmiTagSize));
LoadRoot(scratch2, map_index);
str(scratch1, FieldMemOperand(string, String::kLengthOffset));
mov(scratch1, Operand(String::kEmptyHashField));
str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
str(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
}
int MacroAssembler::ActivationFrameAlignment() {
#if defined(V8_HOST_ARCH_ARM)
// Running on the real platform. Use the alignment as mandated by the local
// environment.
// Note: This will break if we ever start generating snapshots on one ARM
// platform for another ARM platform with a different alignment.
return OS::ActivationFrameAlignment();
#else // defined(V8_HOST_ARCH_ARM)
// If we are using the simulator then we should always align to the expected
// alignment. As the simulator is used to generate snapshots we do not know
// if the target platform will need alignment, so this is controlled from a
// flag.
return FLAG_sim_stack_alignment;
#endif // defined(V8_HOST_ARCH_ARM)
}
void MacroAssembler::LeaveExitFrame(bool save_doubles,
Register argument_count) {
// Optionally restore all double registers.
if (save_doubles) {
// Calculate the stack location of the saved doubles and restore them.
const int offset = 2 * kPointerSize;
sub(r3, fp, Operand(offset + DwVfpRegister::kNumRegisters * kDoubleSize));
DwVfpRegister first = d0;
DwVfpRegister last =
DwVfpRegister::from_code(DwVfpRegister::kNumRegisters - 1);
vldm(ia, r3, first, last);
}
// Clear top frame.
mov(r3, Operand(0, RelocInfo::NONE));
mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
str(r3, MemOperand(ip));
// Restore current context from top and clear it in debug mode.
mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
ldr(cp, MemOperand(ip));
#ifdef DEBUG
str(r3, MemOperand(ip));
#endif
// Tear down the exit frame, pop the arguments, and return.
mov(sp, Operand(fp));
ldm(ia_w, sp, fp.bit() | lr.bit());
if (argument_count.is_valid()) {
add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2));
}
}
void MacroAssembler::GetCFunctionDoubleResult(const DoubleRegister dst) {
if (use_eabi_hardfloat()) {
Move(dst, d0);
} else {
vmov(dst, r0, r1);
}
}
void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
// This macro takes the dst register to make the code more readable
// at the call sites. However, the dst register has to be r5 to
// follow the calling convention which requires the call type to be
// in r5.
ASSERT(dst.is(r5));
if (call_kind == CALL_AS_FUNCTION) {
mov(dst, Operand(Smi::FromInt(1)));
} else {
mov(dst, Operand(Smi::FromInt(0)));
}
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
bool definitely_matches = false;
*definitely_mismatches = false;
Label regular_invoke;
// Check whether the expected and actual arguments count match. If not,
// setup registers according to contract with ArgumentsAdaptorTrampoline:
// r0: actual arguments count
// r1: function (passed through to callee)
// r2: expected arguments count
// r3: callee code entry
// The code below is made a lot easier because the calling code already sets
// up actual and expected registers according to the contract if values are
// passed in registers.
ASSERT(actual.is_immediate() || actual.reg().is(r0));
ASSERT(expected.is_immediate() || expected.reg().is(r2));
ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));
if (expected.is_immediate()) {
ASSERT(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
mov(r0, Operand(actual.immediate()));
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
*definitely_mismatches = true;
mov(r2, Operand(expected.immediate()));
}
}
} else {
if (actual.is_immediate()) {
cmp(expected.reg(), Operand(actual.immediate()));
b(eq, ®ular_invoke);
mov(r0, Operand(actual.immediate()));
} else {
cmp(expected.reg(), Operand(actual.reg()));
b(eq, ®ular_invoke);
}
}
if (!definitely_matches) {
if (!code_constant.is_null()) {
mov(r3, Operand(code_constant));
add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
}
Handle<Code> adaptor =
isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(adaptor));
SetCallKind(r5, call_kind);
Call(adaptor);
call_wrapper.AfterCall();
if (!*definitely_mismatches) {
b(done);
}
} else {
SetCallKind(r5, call_kind);
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(®ular_invoke);
}
}
void MacroAssembler::InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
// You can't call a function without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected, actual, Handle<Code>::null(), code,
&done, &definitely_mismatches, flag,
call_wrapper, call_kind);
if (!definitely_mismatches) {
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
SetCallKind(r5, call_kind);
Call(code);
call_wrapper.AfterCall();
} else {
ASSERT(flag == JUMP_FUNCTION);
SetCallKind(r5, call_kind);
Jump(code);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
}
void MacroAssembler::InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag,
CallKind call_kind) {
// You can't call a function without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected, actual, code, no_reg,
&done, &definitely_mismatches, flag,
NullCallWrapper(), call_kind);
if (!definitely_mismatches) {
if (flag == CALL_FUNCTION) {
SetCallKind(r5, call_kind);
Call(code, rmode);
} else {
SetCallKind(r5, call_kind);
Jump(code, rmode);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
}
void MacroAssembler::InvokeFunction(Register fun,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
// You can't call a function without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
// Contract with called JS functions requires that function is passed in r1.
ASSERT(fun.is(r1));
Register expected_reg = r2;
Register code_reg = r3;
ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
ldr(expected_reg,
FieldMemOperand(code_reg,
SharedFunctionInfo::kFormalParameterCountOffset));
mov(expected_reg, Operand(expected_reg, ASR, kSmiTagSize));
ldr(code_reg,
FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
ParameterCount expected(expected_reg);
InvokeCode(code_reg, expected, actual, flag, call_wrapper, call_kind);
}
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
// You can't call a function without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
// Get the function and setup the context.
LoadHeapObject(r1, function);
ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
ParameterCount expected(function->shared()->formal_parameter_count());
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
InvokeCode(r3, expected, actual, flag, call_wrapper, call_kind);
}
void MacroAssembler::IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail) {
ldr(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
IsInstanceJSObjectType(map, scratch, fail);
}
void MacroAssembler::IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail) {
ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
cmp(scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
b(lt, fail);
cmp(scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
b(gt, fail);
}
void MacroAssembler::IsObjectJSStringType(Register object,
Register scratch,
Label* fail) {
ASSERT(kNotStringTag != 0);
ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
tst(scratch, Operand(kIsNotStringMask));
b(ne, fail);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
void MacroAssembler::DebugBreak() {
mov(r0, Operand(0, RelocInfo::NONE));
mov(r1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
CEntryStub ces(1);
ASSERT(AllowThisStubCall(&ces));
Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
}
#endif
void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
int handler_index) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// For the JSEntry handler, we must preserve r0-r4, r5-r7 are available.
// We will build up the handler from the bottom by pushing on the stack.
// Set up the code object (r5) and the state (r6) for pushing.
unsigned state =
StackHandler::IndexField::encode(handler_index) |
StackHandler::KindField::encode(kind);
mov(r5, Operand(CodeObject()));
mov(r6, Operand(state));
// Push the frame pointer, context, state, and code object.
if (kind == StackHandler::JS_ENTRY) {
mov(r7, Operand(Smi::FromInt(0))); // Indicates no context.
mov(ip, Operand(0, RelocInfo::NONE)); // NULL frame pointer.
stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | ip.bit());
} else {
stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | fp.bit());
}
// Link the current handler as the next handler.
mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
ldr(r5, MemOperand(r6));
push(r5);
// Set this new handler as the current one.
str(sp, MemOperand(r6));
}
void MacroAssembler::PopTryHandler() {
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
pop(r1);
mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
str(r1, MemOperand(ip));
}
void MacroAssembler::JumpToHandlerEntry() {
// Compute the handler entry address and jump to it. The handler table is
// a fixed array of (smi-tagged) code offsets.
// r0 = exception, r1 = code object, r2 = state.
ldr(r3, FieldMemOperand(r1, Code::kHandlerTableOffset)); // Handler table.
add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
mov(r2, Operand(r2, LSR, StackHandler::kKindWidth)); // Handler index.
ldr(r2, MemOperand(r3, r2, LSL, kPointerSizeLog2)); // Smi-tagged offset.
add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start.
add(pc, r1, Operand(r2, ASR, kSmiTagSize)); // Jump.
}
void MacroAssembler::Throw(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in r0.
if (!value.is(r0)) {
mov(r0, value);
}
// Drop the stack pointer to the top of the top handler.
mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
ldr(sp, MemOperand(r3));
// Restore the next handler.
pop(r2);
str(r2, MemOperand(r3));
// Get the code object (r1) and state (r2). Restore the context and frame
// pointer.
ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit());
// If the handler is a JS frame, restore the context to the frame.
// (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
// or cp.
tst(cp, cp);
str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
JumpToHandlerEntry();
}
void MacroAssembler::ThrowUncatchable(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in r0.
if (!value.is(r0)) {
mov(r0, value);
}
// Drop the stack pointer to the top of the top stack handler.
mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
ldr(sp, MemOperand(r3));
// Unwind the handlers until the ENTRY handler is found.
Label fetch_next, check_kind;
jmp(&check_kind);
bind(&fetch_next);
ldr(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
bind(&check_kind);
STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
ldr(r2, MemOperand(sp, StackHandlerConstants::kStateOffset));
tst(r2, Operand(StackHandler::KindField::kMask));
b(ne, &fetch_next);
// Set the top handler address to next handler past the top ENTRY handler.
pop(r2);
str(r2, MemOperand(r3));
// Get the code object (r1) and state (r2). Clear the context and frame
// pointer (0 was saved in the handler).
ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit());
JumpToHandlerEntry();
}
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss) {
Label same_contexts;
ASSERT(!holder_reg.is(scratch));
ASSERT(!holder_reg.is(ip));
ASSERT(!scratch.is(ip));
// Load current lexical context from the stack frame.
ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
// In debug mode, make sure the lexical context is set.
#ifdef DEBUG
cmp(scratch, Operand(0, RelocInfo::NONE));
Check(ne, "we should not have an empty lexical context");
#endif
// Load the global context of the current context.
int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
ldr(scratch, FieldMemOperand(scratch, offset));
ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
// Check the context is a global context.
if (emit_debug_code()) {
// TODO(119): avoid push(holder_reg)/pop(holder_reg)
// Cannot use ip as a temporary in this verification code. Due to the fact
// that ip is clobbered as part of cmp with an object Operand.
push(holder_reg); // Temporarily save holder on the stack.
// Read the first word and compare to the global_context_map.
ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
cmp(holder_reg, ip);
Check(eq, "JSGlobalObject::global_context should be a global context.");
pop(holder_reg); // Restore holder.
}
// Check if both contexts are the same.
ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
cmp(scratch, Operand(ip));
b(eq, &same_contexts);
// Check the context is a global context.
if (emit_debug_code()) {
// TODO(119): avoid push(holder_reg)/pop(holder_reg)
// Cannot use ip as a temporary in this verification code. Due to the fact
// that ip is clobbered as part of cmp with an object Operand.
push(holder_reg); // Temporarily save holder on the stack.
mov(holder_reg, ip); // Move ip to its holding place.
LoadRoot(ip, Heap::kNullValueRootIndex);
cmp(holder_reg, ip);
Check(ne, "JSGlobalProxy::context() should not be null.");
ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
cmp(holder_reg, ip);
Check(eq, "JSGlobalObject::global_context should be a global context.");
// Restore ip is not needed. ip is reloaded below.
pop(holder_reg); // Restore holder.
// Restore ip to holder's context.
ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
}
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
int token_offset = Context::kHeaderSize +
Context::SECURITY_TOKEN_INDEX * kPointerSize;
ldr(scratch, FieldMemOperand(scratch, token_offset));
ldr(ip, FieldMemOperand(ip, token_offset));
cmp(scratch, Operand(ip));
b(ne, miss);
bind(&same_contexts);
}
void MacroAssembler::GetNumberHash(Register t0, Register scratch) {
// First of all we assign the hash seed to scratch.
LoadRoot(scratch, Heap::kHashSeedRootIndex);
SmiUntag(scratch);
// Xor original key with a seed.
eor(t0, t0, Operand(scratch));
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
mvn(scratch, Operand(t0));
add(t0, scratch, Operand(t0, LSL, 15));
// hash = hash ^ (hash >> 12);
eor(t0, t0, Operand(t0, LSR, 12));
// hash = hash + (hash << 2);
add(t0, t0, Operand(t0, LSL, 2));
// hash = hash ^ (hash >> 4);
eor(t0, t0, Operand(t0, LSR, 4));
// hash = hash * 2057;
mov(scratch, Operand(t0, LSL, 11));
add(t0, t0, Operand(t0, LSL, 3));
add(t0, t0, scratch);
// hash = hash ^ (hash >> 16);
eor(t0, t0, Operand(t0, LSR, 16));
}
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register result,
Register t0,
Register t1,
Register t2) {
// Register use:
//
// elements - holds the slow-case elements of the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the same as 'key' or 'result'.
// Unchanged on bailout so 'key' or 'result' can be used
// in further computation.
//
// Scratch registers:
//
// t0 - holds the untagged key on entry and holds the hash once computed.
//
// t1 - used to hold the capacity mask of the dictionary
//
// t2 - used for the index into the dictionary.
Label done;
GetNumberHash(t0, t1);
// Compute the capacity mask.
ldr(t1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
mov(t1, Operand(t1, ASR, kSmiTagSize)); // convert smi to int
sub(t1, t1, Operand(1));
// Generate an unrolled loop that performs a few probes before giving up.
static const int kProbes = 4;
for (int i = 0; i < kProbes; i++) {
// Use t2 for index calculations and keep the hash intact in t0.
mov(t2, t0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
add(t2, t2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
}
and_(t2, t2, Operand(t1));
// Scale the index by multiplying by the element size.
ASSERT(SeededNumberDictionary::kEntrySize == 3);
add(t2, t2, Operand(t2, LSL, 1)); // t2 = t2 * 3
// Check if the key is identical to the name.
add(t2, elements, Operand(t2, LSL, kPointerSizeLog2));
ldr(ip, FieldMemOperand(t2, SeededNumberDictionary::kElementsStartOffset));
cmp(key, Operand(ip));
if (i != kProbes - 1) {
b(eq, &done);
} else {
b(ne, miss);
}
}
bind(&done);
// Check that the value is a normal property.
// t2: elements + (index * kPointerSize)
const int kDetailsOffset =
SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
ldr(t1, FieldMemOperand(t2, kDetailsOffset));
tst(t1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
b(ne, miss);
// Get the value at the masked, scaled index and return.
const int kValueOffset =
SeededNumberDictionary::kElementsStartOffset + kPointerSize;
ldr(result, FieldMemOperand(t2, kValueOffset));
}
void MacroAssembler::AllocateInNewSpace(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags) {
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Operand(0x7091));
mov(scratch1, Operand(0x7191));
mov(scratch2, Operand(0x7291));
}
jmp(gc_required);
return;
}
ASSERT(!result.is(scratch1));
ASSERT(!result.is(scratch2));
ASSERT(!scratch1.is(scratch2));
ASSERT(!scratch1.is(ip));
ASSERT(!scratch2.is(ip));
// Make object size into bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
object_size *= kPointerSize;
}
ASSERT_EQ(0, object_size & kObjectAlignmentMask);
// Check relative positions of allocation top and limit addresses.
// The values must be adjacent in memory to allow the use of LDM.
// Also, assert that the registers are numbered such that the values
// are loaded in the correct order.
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
intptr_t top =
reinterpret_cast<intptr_t>(new_space_allocation_top.address());
intptr_t limit =
reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
ASSERT((limit - top) == kPointerSize);
ASSERT(result.code() < ip.code());
// Set up allocation top address and object size registers.
Register topaddr = scratch1;
Register obj_size_reg = scratch2;
mov(topaddr, Operand(new_space_allocation_top));
mov(obj_size_reg, Operand(object_size));
// This code stores a temporary value in ip. This is OK, as the code below
// does not need ip for implicit literal generation.
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into ip.
ldm(ia, topaddr, result.bit() | ip.bit());
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry. ip is used
// immediately below so this use of ip does not cause difference with
// respect to register content between debug and release mode.
ldr(ip, MemOperand(topaddr));
cmp(result, ip);
Check(eq, "Unexpected allocation top");
}
// Load allocation limit into ip. Result already contains allocation top.
ldr(ip, MemOperand(topaddr, limit - top));
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top.
add(scratch2, result, Operand(obj_size_reg), SetCC);
b(cs, gc_required);
cmp(scratch2, Operand(ip));
b(hi, gc_required);
str(scratch2, MemOperand(topaddr));
// Tag object if requested.
if ((flags & TAG_OBJECT) != 0) {
add(result, result, Operand(kHeapObjectTag));
}
}
void MacroAssembler::AllocateInNewSpace(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags) {
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Operand(0x7091));
mov(scratch1, Operand(0x7191));
mov(scratch2, Operand(0x7291));
}
jmp(gc_required);
return;
}
// Assert that the register arguments are different and that none of
// them are ip. ip is used explicitly in the code generated below.
ASSERT(!result.is(scratch1));
ASSERT(!result.is(scratch2));
ASSERT(!scratch1.is(scratch2));
ASSERT(!object_size.is(ip));
ASSERT(!result.is(ip));
ASSERT(!scratch1.is(ip));
ASSERT(!scratch2.is(ip));
// Check relative positions of allocation top and limit addresses.
// The values must be adjacent in memory to allow the use of LDM.
// Also, assert that the registers are numbered such that the values
// are loaded in the correct order.
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
intptr_t top =
reinterpret_cast<intptr_t>(new_space_allocation_top.address());
intptr_t limit =
reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
ASSERT((limit - top) == kPointerSize);
ASSERT(result.code() < ip.code());
// Set up allocation top address.
Register topaddr = scratch1;
mov(topaddr, Operand(new_space_allocation_top));
// This code stores a temporary value in ip. This is OK, as the code below
// does not need ip for implicit literal generation.
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into ip.
ldm(ia, topaddr, result.bit() | ip.bit());
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry. ip is used
// immediately below so this use of ip does not cause difference with
// respect to register content between debug and release mode.
ldr(ip, MemOperand(topaddr));
cmp(result, ip);
Check(eq, "Unexpected allocation top");
}
// Load allocation limit into ip. Result already contains allocation top.
ldr(ip, MemOperand(topaddr, limit - top));
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top. Object size may be in words so a shift is
// required to get the number of bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
add(scratch2, result, Operand(object_size, LSL, kPointerSizeLog2), SetCC);
} else {
add(scratch2, result, Operand(object_size), SetCC);
}
b(cs, gc_required);
cmp(scratch2, Operand(ip));
b(hi, gc_required);
// Update allocation top. result temporarily holds the new top.
if (emit_debug_code()) {
tst(scratch2, Operand(kObjectAlignmentMask));
Check(eq, "Unaligned allocation in new space");
}
str(scratch2, MemOperand(topaddr));
// Tag object if requested.
if ((flags & TAG_OBJECT) != 0) {
add(result, result, Operand(kHeapObjectTag));
}
}
void MacroAssembler::UndoAllocationInNewSpace(Register object,
Register scratch) {
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
// Make sure the object has no tag before resetting top.
and_(object, object, Operand(~kHeapObjectTagMask));
#ifdef DEBUG
// Check that the object un-allocated is below the current top.
mov(scratch, Operand(new_space_allocation_top));
ldr(scratch, MemOperand(scratch));
cmp(object, scratch);
Check(lt, "Undo allocation of non allocated memory");
#endif
// Write the address of the object to un-allocate as the current top.
mov(scratch, Operand(new_space_allocation_top));
str(object, MemOperand(scratch));
}
void MacroAssembler::AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
mov(scratch1, Operand(length, LSL, 1)); // Length in bytes, not chars.
add(scratch1, scratch1,
Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
// Allocate two-byte string in new space.
AllocateInNewSpace(scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
InitializeNewString(result,
length,
Heap::kStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
ASSERT(kCharSize == 1);
add(scratch1, length,
Operand(kObjectAlignmentMask + SeqAsciiString::kHeaderSize));
and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
// Allocate ASCII string in new space.
AllocateInNewSpace(scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
InitializeNewString(result,
length,
Heap::kAsciiStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
AllocateInNewSpace(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kConsStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateAsciiConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
AllocateInNewSpace(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kConsAsciiStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
AllocateInNewSpace(SlicedString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kSlicedStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateAsciiSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
AllocateInNewSpace(SlicedString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kSlicedAsciiStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::CompareObjectType(Register object,
Register map,
Register type_reg,
InstanceType type) {
ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
CompareInstanceType(map, type_reg, type);
}
void MacroAssembler::CompareInstanceType(Register map,
Register type_reg,
InstanceType type) {
ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
cmp(type_reg, Operand(type));
}
void MacroAssembler::CompareRoot(Register obj,
Heap::RootListIndex index) {
ASSERT(!obj.is(ip));
LoadRoot(ip, index);
cmp(obj, ip);
}
void MacroAssembler::CheckFastElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
b(hi, fail);
}
void MacroAssembler::CheckFastObjectElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
b(ls, fail);
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
b(hi, fail);
}
void MacroAssembler::CheckFastSmiElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
b(hi, fail);
}
void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
Register key_reg,
Register receiver_reg,
Register elements_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* fail) {
Label smi_value, maybe_nan, have_double_value, is_nan, done;
Register mantissa_reg = scratch2;
Register exponent_reg = scratch3;
// Handle smi values specially.
JumpIfSmi(value_reg, &smi_value);
// Ensure that the object is a heap number
CheckMap(value_reg,
scratch1,
isolate()->factory()->heap_number_map(),
fail,
DONT_DO_SMI_CHECK);
// Check for nan: all NaN values have a value greater (signed) than 0x7ff00000
// in the exponent.
mov(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32));
ldr(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset));
cmp(exponent_reg, scratch1);
b(ge, &maybe_nan);
ldr(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
bind(&have_double_value);
add(scratch1, elements_reg,
Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize));
str(mantissa_reg, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize));
uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
str(exponent_reg, FieldMemOperand(scratch1, offset));
jmp(&done);
bind(&maybe_nan);
// Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
// it's an Infinity, and the non-NaN code path applies.
b(gt, &is_nan);
ldr(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
cmp(mantissa_reg, Operand(0));
b(eq, &have_double_value);
bind(&is_nan);
// Load canonical NaN for storing into the double array.
uint64_t nan_int64 = BitCast<uint64_t>(
FixedDoubleArray::canonical_not_the_hole_nan_as_double());
mov(mantissa_reg, Operand(static_cast<uint32_t>(nan_int64)));
mov(exponent_reg, Operand(static_cast<uint32_t>(nan_int64 >> 32)));
jmp(&have_double_value);
bind(&smi_value);
add(scratch1, elements_reg,
Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
add(scratch1, scratch1,
Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize));
// scratch1 is now effective address of the double element
FloatingPointHelper::Destination destination;
if (CpuFeatures::IsSupported(VFP3)) {
destination = FloatingPointHelper::kVFPRegisters;
} else {
destination = FloatingPointHelper::kCoreRegisters;
}
Register untagged_value = receiver_reg;
SmiUntag(untagged_value, value_reg);
FloatingPointHelper::ConvertIntToDouble(this,
untagged_value,
destination,
d0,
mantissa_reg,
exponent_reg,
scratch4,
s2);
if (destination == FloatingPointHelper::kVFPRegisters) {
CpuFeatures::Scope scope(VFP3);
vstr(d0, scratch1, 0);
} else {
str(mantissa_reg, MemOperand(scratch1, 0));
str(exponent_reg, MemOperand(scratch1, Register::kSizeInBytes));
}
bind(&done);
}
void MacroAssembler::CompareMap(Register obj,
Register scratch,
Handle<Map> map,
Label* early_success,
CompareMapMode mode) {
ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
CompareMap(scratch, map, early_success, mode);
}
void MacroAssembler::CompareMap(Register obj_map,
Handle<Map> map,
Label* early_success,
CompareMapMode mode) {
cmp(obj_map, Operand(map));
if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) {
ElementsKind kind = map->elements_kind();
if (IsFastElementsKind(kind)) {
bool packed = IsFastPackedElementsKind(kind);
Map* current_map = *map;
while (CanTransitionToMoreGeneralFastElementsKind(kind, packed)) {
kind = GetNextMoreGeneralFastElementsKind(kind, packed);
current_map = current_map->LookupElementsTransitionMap(kind);
if (!current_map) break;
b(eq, early_success);
cmp(obj_map, Operand(Handle<Map>(current_map)));
}
}
}
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type,
CompareMapMode mode) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
Label success;
CompareMap(obj, scratch, map, &success, mode);
b(ne, fail);
bind(&success);
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
LoadRoot(ip, index);
cmp(scratch, ip);
b(ne, fail);
}
void MacroAssembler::DispatchMap(Register obj,
Register scratch,
Handle<Map> map,
Handle<Code> success,
SmiCheckType smi_check_type) {
Label fail;
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, &fail);
}
ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
mov(ip, Operand(map));
cmp(scratch, ip);
Jump(success, RelocInfo::CODE_TARGET, eq);
bind(&fail);
}
void MacroAssembler::TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss,
bool miss_on_bound_function) {
// Check that the receiver isn't a smi.
JumpIfSmi(function, miss);
// Check that the function really is a function. Load map into result reg.
CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
b(ne, miss);
if (miss_on_bound_function) {
ldr(scratch,
FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
ldr(scratch,
FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
tst(scratch,
Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction)));
b(ne, miss);
}
// Make sure that the function has an instance prototype.
Label non_instance;
ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
b(ne, &non_instance);
// Get the prototype or initial map from the function.
ldr(result,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
LoadRoot(ip, Heap::kTheHoleValueRootIndex);
cmp(result, ip);
b(eq, miss);
// If the function does not have an initial map, we're done.
Label done;
CompareObjectType(result, scratch, scratch, MAP_TYPE);
b(ne, &done);
// Get the prototype from the initial map.
ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
jmp(&done);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
bind(&non_instance);
ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
// All done.
bind(&done);
}
void MacroAssembler::CallStub(CodeStub* stub, Condition cond) {
ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
Call(stub->GetCode(), RelocInfo::CODE_TARGET, kNoASTId, cond);
}
void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe());
Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
}
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
return ref0.address() - ref1.address();
}
void MacroAssembler::CallApiFunctionAndReturn(ExternalReference function,
int stack_space) {
ExternalReference next_address =
ExternalReference::handle_scope_next_address();
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(),
next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(),
next_address);
// Allocate HandleScope in callee-save registers.
mov(r7, Operand(next_address));
ldr(r4, MemOperand(r7, kNextOffset));
ldr(r5, MemOperand(r7, kLimitOffset));
ldr(r6, MemOperand(r7, kLevelOffset));
add(r6, r6, Operand(1));
str(r6, MemOperand(r7, kLevelOffset));
// Native call returns to the DirectCEntry stub which redirects to the
// return address pushed on stack (could have moved after GC).
// DirectCEntry stub itself is generated early and never moves.
DirectCEntryStub stub;
stub.GenerateCall(this, function);
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
// If result is non-zero, dereference to get the result value
// otherwise set it to undefined.
cmp(r0, Operand(0));
LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
ldr(r0, MemOperand(r0), ne);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
str(r4, MemOperand(r7, kNextOffset));
if (emit_debug_code()) {
ldr(r1, MemOperand(r7, kLevelOffset));
cmp(r1, r6);
Check(eq, "Unexpected level after return from api call");
}
sub(r6, r6, Operand(1));
str(r6, MemOperand(r7, kLevelOffset));
ldr(ip, MemOperand(r7, kLimitOffset));
cmp(r5, ip);
b(ne, &delete_allocated_handles);
// Check if the function scheduled an exception.
bind(&leave_exit_frame);
LoadRoot(r4, Heap::kTheHoleValueRootIndex);
mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate())));
ldr(r5, MemOperand(ip));
cmp(r4, r5);
b(ne, &promote_scheduled_exception);
// LeaveExitFrame expects unwind space to be in a register.
mov(r4, Operand(stack_space));
LeaveExitFrame(false, r4);
mov(pc, lr);
bind(&promote_scheduled_exception);
TailCallExternalReference(
ExternalReference(Runtime::kPromoteScheduledException, isolate()),
0,
1);
// HandleScope limit has changed. Delete allocated extensions.
bind(&delete_allocated_handles);
str(r5, MemOperand(r7, kLimitOffset));
mov(r4, r0);
PrepareCallCFunction(1, r5);
mov(r0, Operand(ExternalReference::isolate_address()));
CallCFunction(
ExternalReference::delete_handle_scope_extensions(isolate()), 1);
mov(r0, r4);
jmp(&leave_exit_frame);
}
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false;
return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe();
}
void MacroAssembler::IllegalOperation(int num_arguments) {
if (num_arguments > 0) {
add(sp, sp, Operand(num_arguments * kPointerSize));
}
LoadRoot(r0, Heap::kUndefinedValueRootIndex);
}
void MacroAssembler::IndexFromHash(Register hash, Register index) {
// If the hash field contains an array index pick it out. The assert checks
// that the constants for the maximum number of digits for an array index
// cached in the hash field and the number of bits reserved for it does not
// conflict.
ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
// We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
// the low kHashShift bits.
STATIC_ASSERT(kSmiTag == 0);
Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
mov(index, Operand(hash, LSL, kSmiTagSize));
}
void MacroAssembler::IntegerToDoubleConversionWithVFP3(Register inReg,
Register outHighReg,
Register outLowReg) {
// ARMv7 VFP3 instructions to implement integer to double conversion.
mov(r7, Operand(inReg, ASR, kSmiTagSize));
vmov(s15, r7);
vcvt_f64_s32(d7, s15);
vmov(outLowReg, outHighReg, d7);
}
void MacroAssembler::ObjectToDoubleVFPRegister(Register object,
DwVfpRegister result,
Register scratch1,
Register scratch2,
Register heap_number_map,
SwVfpRegister scratch3,
Label* not_number,
ObjectToDoubleFlags flags) {
Label done;
if ((flags & OBJECT_NOT_SMI) == 0) {
Label not_smi;
JumpIfNotSmi(object, ¬_smi);
// Remove smi tag and convert to double.
mov(scratch1, Operand(object, ASR, kSmiTagSize));
vmov(scratch3, scratch1);
vcvt_f64_s32(result, scratch3);
b(&done);
bind(¬_smi);
}
// Check for heap number and load double value from it.
ldr(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
sub(scratch2, object, Operand(kHeapObjectTag));
cmp(scratch1, heap_number_map);
b(ne, not_number);
if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
// If exponent is all ones the number is either a NaN or +/-Infinity.
ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
Sbfx(scratch1,
scratch1,
HeapNumber::kExponentShift,
HeapNumber::kExponentBits);
// All-one value sign extend to -1.
cmp(scratch1, Operand(-1));
b(eq, not_number);
}
vldr(result, scratch2, HeapNumber::kValueOffset);
bind(&done);
}
void MacroAssembler::SmiToDoubleVFPRegister(Register smi,
DwVfpRegister value,
Register scratch1,
SwVfpRegister scratch2) {
mov(scratch1, Operand(smi, ASR, kSmiTagSize));
vmov(scratch2, scratch1);
vcvt_f64_s32(value, scratch2);
}
// Tries to get a signed int32 out of a double precision floating point heap
// number. Rounds towards 0. Branch to 'not_int32' if the double is out of the
// 32bits signed integer range.
void MacroAssembler::ConvertToInt32(Register source,
Register dest,
Register scratch,
Register scratch2,
DwVfpRegister double_scratch,
Label *not_int32) {
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
sub(scratch, source, Operand(kHeapObjectTag));
vldr(double_scratch, scratch, HeapNumber::kValueOffset);
vcvt_s32_f64(double_scratch.low(), double_scratch);
vmov(dest, double_scratch.low());
// Signed vcvt instruction will saturate to the minimum (0x80000000) or
// maximun (0x7fffffff) signed 32bits integer when the double is out of
// range. When substracting one, the minimum signed integer becomes the
// maximun signed integer.
sub(scratch, dest, Operand(1));
cmp(scratch, Operand(LONG_MAX - 1));
// If equal then dest was LONG_MAX, if greater dest was LONG_MIN.
b(ge, not_int32);
} else {
// This code is faster for doubles that are in the ranges -0x7fffffff to
// -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds almost to
// the range of signed int32 values that are not Smis. Jumps to the label
// 'not_int32' if the double isn't in the range -0x80000000.0 to
// 0x80000000.0 (excluding the endpoints).
Label right_exponent, done;
// Get exponent word.
ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
// Get exponent alone in scratch2.
Ubfx(scratch2,
scratch,
HeapNumber::kExponentShift,
HeapNumber::kExponentBits);
// Load dest with zero. We use this either for the final shift or
// for the answer.
mov(dest, Operand(0, RelocInfo::NONE));
// Check whether the exponent matches a 32 bit signed int that is not a Smi.
// A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
// the exponent that we are fastest at and also the highest exponent we can
// handle here.
const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30;
// The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we
// split it up to avoid a constant pool entry. You can't do that in general
// for cmp because of the overflow flag, but we know the exponent is in the
// range 0-2047 so there is no overflow.
int fudge_factor = 0x400;
sub(scratch2, scratch2, Operand(fudge_factor));
cmp(scratch2, Operand(non_smi_exponent - fudge_factor));
// If we have a match of the int32-but-not-Smi exponent then skip some
// logic.
b(eq, &right_exponent);
// If the exponent is higher than that then go to slow case. This catches
// numbers that don't fit in a signed int32, infinities and NaNs.
b(gt, not_int32);
// We know the exponent is smaller than 30 (biased). If it is less than
// 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, i.e.
// it rounds to zero.
const uint32_t zero_exponent = HeapNumber::kExponentBias + 0;
sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC);
// Dest already has a Smi zero.
b(lt, &done);
// We have an exponent between 0 and 30 in scratch2. Subtract from 30 to
// get how much to shift down.
rsb(dest, scratch2, Operand(30));
bind(&right_exponent);
// Get the top bits of the mantissa.
and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask));
// Put back the implicit 1.
orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift));
// Shift up the mantissa bits to take up the space the exponent used to
// take. We just orred in the implicit bit so that took care of one and
// we want to leave the sign bit 0 so we subtract 2 bits from the shift
// distance.
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
mov(scratch2, Operand(scratch2, LSL, shift_distance));
// Put sign in zero flag.
tst(scratch, Operand(HeapNumber::kSignMask));
// Get the second half of the double. For some exponents we don't
// actually need this because the bits get shifted out again, but
// it's probably slower to test than just to do it.
ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
// Shift down 22 bits to get the last 10 bits.
orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance));
// Move down according to the exponent.
mov(dest, Operand(scratch, LSR, dest));
// Fix sign if sign bit was set.
rsb(dest, dest, Operand(0, RelocInfo::NONE), LeaveCC, ne);
bind(&done);
}
}
void MacroAssembler::EmitVFPTruncate(VFPRoundingMode rounding_mode,
SwVfpRegister result,
DwVfpRegister double_input,
Register scratch1,
Register scratch2,
CheckForInexactConversion check_inexact) {
ASSERT(CpuFeatures::IsSupported(VFP3));
CpuFeatures::Scope scope(VFP3);
Register prev_fpscr = scratch1;
Register scratch = scratch2;
int32_t check_inexact_conversion =
(check_inexact == kCheckForInexactConversion) ? kVFPInexactExceptionBit : 0;
// Set custom FPCSR:
// - Set rounding mode.
// - Clear vfp cumulative exception flags.
// - Make sure Flush-to-zero mode control bit is unset.
vmrs(prev_fpscr);
bic(scratch,
prev_fpscr,
Operand(kVFPExceptionMask |
check_inexact_conversion |
kVFPRoundingModeMask |
kVFPFlushToZeroMask));
// 'Round To Nearest' is encoded by 0b00 so no bits need to be set.
if (rounding_mode != kRoundToNearest) {
orr(scratch, scratch, Operand(rounding_mode));
}
vmsr(scratch);
// Convert the argument to an integer.
vcvt_s32_f64(result,
double_input,
(rounding_mode == kRoundToZero) ? kDefaultRoundToZero
: kFPSCRRounding);
// Retrieve FPSCR.
vmrs(scratch);
// Restore FPSCR.
vmsr(prev_fpscr);
// Check for vfp exceptions.
tst(scratch, Operand(kVFPExceptionMask | check_inexact_conversion));
}
void MacroAssembler::EmitOutOfInt32RangeTruncate(Register result,
Register input_high,
Register input_low,
Register scratch) {
Label done, normal_exponent, restore_sign;
// Extract the biased exponent in result.
Ubfx(result,
input_high,
HeapNumber::kExponentShift,
HeapNumber::kExponentBits);
// Check for Infinity and NaNs, which should return 0.
cmp(result, Operand(HeapNumber::kExponentMask));
mov(result, Operand(0), LeaveCC, eq);
b(eq, &done);
// Express exponent as delta to (number of mantissa bits + 31).
sub(result,
result,
Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31),
SetCC);
// If the delta is strictly positive, all bits would be shifted away,
// which means that we can return 0.
b(le, &normal_exponent);
mov(result, Operand(0));
b(&done);
bind(&normal_exponent);
const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
// Calculate shift.
add(scratch, result, Operand(kShiftBase + HeapNumber::kMantissaBits), SetCC);
// Save the sign.
Register sign = result;
result = no_reg;
and_(sign, input_high, Operand(HeapNumber::kSignMask));
// Set the implicit 1 before the mantissa part in input_high.
orr(input_high,
input_high,
Operand(1 << HeapNumber::kMantissaBitsInTopWord));
// Shift the mantissa bits to the correct position.
// We don't need to clear non-mantissa bits as they will be shifted away.
// If they weren't, it would mean that the answer is in the 32bit range.
mov(input_high, Operand(input_high, LSL, scratch));
// Replace the shifted bits with bits from the lower mantissa word.
Label pos_shift, shift_done;
rsb(scratch, scratch, Operand(32), SetCC);
b(&pos_shift, ge);
// Negate scratch.
rsb(scratch, scratch, Operand(0));
mov(input_low, Operand(input_low, LSL, scratch));
b(&shift_done);
bind(&pos_shift);
mov(input_low, Operand(input_low, LSR, scratch));
bind(&shift_done);
orr(input_high, input_high, Operand(input_low));
// Restore sign if necessary.
cmp(sign, Operand(0));
result = sign;
sign = no_reg;
rsb(result, input_high, Operand(0), LeaveCC, ne);
mov(result, input_high, LeaveCC, eq);
bind(&done);
}
void MacroAssembler::EmitECMATruncate(Register result,
DwVfpRegister double_input,
SwVfpRegister single_scratch,
Register scratch,
Register input_high,
Register input_low) {
CpuFeatures::Scope scope(VFP3);
ASSERT(!input_high.is(result));
ASSERT(!input_low.is(result));
ASSERT(!input_low.is(input_high));
ASSERT(!scratch.is(result) &&
!scratch.is(input_high) &&
!scratch.is(input_low));
ASSERT(!single_scratch.is(double_input.low()) &&
!single_scratch.is(double_input.high()));
Label done;
// Clear cumulative exception flags.
ClearFPSCRBits(kVFPExceptionMask, scratch);
// Try a conversion to a signed integer.
vcvt_s32_f64(single_scratch, double_input);
vmov(result, single_scratch);
// Retrieve he FPSCR.
vmrs(scratch);
// Check for overflow and NaNs.
tst(scratch, Operand(kVFPOverflowExceptionBit |
kVFPUnderflowExceptionBit |
kVFPInvalidOpExceptionBit));
// If we had no exceptions we are done.
b(eq, &done);
// Load the double value and perform a manual truncation.
vmov(input_low, input_high, double_input);
EmitOutOfInt32RangeTruncate(result,
input_high,
input_low,
scratch);
bind(&done);
}
void MacroAssembler::GetLeastBitsFromSmi(Register dst,
Register src,
int num_least_bits) {
if (CpuFeatures::IsSupported(ARMv7)) {
ubfx(dst, src, kSmiTagSize, num_least_bits);
} else {
mov(dst, Operand(src, ASR, kSmiTagSize));
and_(dst, dst, Operand((1 << num_least_bits) - 1));
}
}
void MacroAssembler::GetLeastBitsFromInt32(Register dst,
Register src,
int num_least_bits) {
and_(dst, src, Operand((1 << num_least_bits) - 1));
}
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments) {
// All parameters are on the stack. r0 has the return value after call.
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
if (f->nargs >= 0 && f->nargs != num_arguments) {
IllegalOperation(num_arguments);
return;
}
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
mov(r0, Operand(num_arguments));
mov(r1, Operand(ExternalReference(f, isolate())));
CEntryStub stub(1);
CallStub(&stub);
}
void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments);
}
void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
const Runtime::Function* function = Runtime::FunctionForId(id);
mov(r0, Operand(function->nargs));
mov(r1, Operand(ExternalReference(function, isolate())));
CEntryStub stub(1, kSaveFPRegs);
CallStub(&stub);
}
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
int num_arguments) {
mov(r0, Operand(num_arguments));
mov(r1, Operand(ext));
CEntryStub stub(1);
CallStub(&stub);
}
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size) {
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
mov(r0, Operand(num_arguments));
JumpToExternalReference(ext);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size) {
TailCallExternalReference(ExternalReference(fid, isolate()),
num_arguments,
result_size);
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
#if defined(__thumb__)
// Thumb mode builtin.
ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
#endif
mov(r1, Operand(builtin));
CEntryStub stub(1);
Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a builtin without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
GetBuiltinEntry(r2, id);
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(r2));
SetCallKind(r5, CALL_AS_METHOD);
Call(r2);
call_wrapper.AfterCall();
} else {
ASSERT(flag == JUMP_FUNCTION);
SetCallKind(r5, CALL_AS_METHOD);
Jump(r2);
}
}
void MacroAssembler::GetBuiltinFunction(Register target,
Builtins::JavaScript id) {
// Load the builtins object into target register.
ldr(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
// Load the JavaScript builtin function from the builtins object.
ldr(target, FieldMemOperand(target,
JSBuiltinsObject::OffsetOfFunctionWithId(id)));
}
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
ASSERT(!target.is(r1));
GetBuiltinFunction(r1, id);
// Load the code entry point from the builtins object.
ldr(target, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch1, Operand(value));
mov(scratch2, Operand(ExternalReference(counter)));
str(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch2, Operand(ExternalReference(counter)));
ldr(scratch1, MemOperand(scratch2));
add(scratch1, scratch1, Operand(value));
str(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch2, Operand(ExternalReference(counter)));
ldr(scratch1, MemOperand(scratch2));
sub(scratch1, scratch1, Operand(value));
str(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::Assert(Condition cond, const char* msg) {
if (emit_debug_code())
Check(cond, msg);
}
void MacroAssembler::AssertRegisterIsRoot(Register reg,
Heap::RootListIndex index) {
if (emit_debug_code()) {
LoadRoot(ip, index);
cmp(reg, ip);
Check(eq, "Register did not match expected root");
}
}
void MacroAssembler::AssertFastElements(Register elements) {
if (emit_debug_code()) {
ASSERT(!elements.is(ip));
Label ok;
push(elements);
ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
cmp(elements, ip);
b(eq, &ok);
LoadRoot(ip, Heap::kFixedDoubleArrayMapRootIndex);
cmp(elements, ip);
b(eq, &ok);
LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
cmp(elements, ip);
b(eq, &ok);
Abort("JSObject with fast elements map has slow elements");
bind(&ok);
pop(elements);
}
}
void MacroAssembler::Check(Condition cond, const char* msg) {
Label L;
b(cond, &L);
Abort(msg);
// will not return here
bind(&L);
}
void MacroAssembler::Abort(const char* msg) {
Label abort_start;
bind(&abort_start);
// We want to pass the msg string like a smi to avoid GC
// problems, however msg is not guaranteed to be aligned
// properly. Instead, we pass an aligned pointer that is
// a proper v8 smi, but also pass the alignment difference
// from the real pointer as a smi.
intptr_t p1 = reinterpret_cast<intptr_t>(msg);
intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
#ifdef DEBUG
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
#endif
mov(r0, Operand(p0));
push(r0);
mov(r0, Operand(Smi::FromInt(p1 - p0)));
push(r0);
// Disable stub call restrictions to always allow calls to abort.
if (!has_frame_) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NONE);
CallRuntime(Runtime::kAbort, 2);
} else {
CallRuntime(Runtime::kAbort, 2);
}
// will not return here
if (is_const_pool_blocked()) {
// If the calling code cares about the exact number of
// instructions generated, we insert padding here to keep the size
// of the Abort macro constant.
static const int kExpectedAbortInstructions = 10;
int abort_instructions = InstructionsGeneratedSince(&abort_start);
ASSERT(abort_instructions <= kExpectedAbortInstructions);
while (abort_instructions++ < kExpectedAbortInstructions) {
nop();
}
}
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
for (int i = 1; i < context_chain_length; i++) {
ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
} else {
// Slot is in the current function context. Move it into the
// destination register in case we store into it (the write barrier
// cannot be allowed to destroy the context in esi).
mov(dst, cp);
}
}
void MacroAssembler::LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match) {
// Load the global or builtins object from the current context.
ldr(scratch, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
// Check that the function's map is the same as the expected cached map.
ldr(scratch,
MemOperand(scratch,
Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
size_t offset = expected_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
ldr(ip, FieldMemOperand(scratch, offset));
cmp(map_in_out, ip);
b(ne, no_map_match);
// Use the transitioned cached map.
offset = transitioned_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
ldr(map_in_out, FieldMemOperand(scratch, offset));
}
void MacroAssembler::LoadInitialArrayMap(
Register function_in, Register scratch,
Register map_out, bool can_have_holes) {
ASSERT(!function_in.is(map_out));
Label done;
ldr(map_out, FieldMemOperand(function_in,
JSFunction::kPrototypeOrInitialMapOffset));
if (!FLAG_smi_only_arrays) {
ElementsKind kind = can_have_holes ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS;
LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
kind,
map_out,
scratch,
&done);
} else if (can_have_holes) {
LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_HOLEY_SMI_ELEMENTS,
map_out,
scratch,
&done);
}
bind(&done);
}
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
// Load the global or builtins object from the current context.
ldr(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Load the global context from the global or builtins object.
ldr(function, FieldMemOperand(function,
GlobalObject::kGlobalContextOffset));
// Load the function from the global context.
ldr(function, MemOperand(function, Context::SlotOffset(index)));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch) {
// Load the initial map. The global functions all have initial maps.
ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (emit_debug_code()) {
Label ok, fail;
CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
b(&ok);
bind(&fail);
Abort("Global functions must have initial map");
bind(&ok);
}
}
void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
Register reg,
Register scratch,
Label* not_power_of_two_or_zero) {
sub(scratch, reg, Operand(1), SetCC);
b(mi, not_power_of_two_or_zero);
tst(scratch, reg);
b(ne, not_power_of_two_or_zero);
}
void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(
Register reg,
Register scratch,
Label* zero_and_neg,
Label* not_power_of_two) {
sub(scratch, reg, Operand(1), SetCC);
b(mi, zero_and_neg);
tst(scratch, reg);
b(ne, not_power_of_two);
}
void MacroAssembler::JumpIfNotBothSmi(Register reg1,
Register reg2,
Label* on_not_both_smi) {
STATIC_ASSERT(kSmiTag == 0);
tst(reg1, Operand(kSmiTagMask));
tst(reg2, Operand(kSmiTagMask), eq);
b(ne, on_not_both_smi);
}
void MacroAssembler::UntagAndJumpIfSmi(
Register dst, Register src, Label* smi_case) {
STATIC_ASSERT(kSmiTag == 0);
mov(dst, Operand(src, ASR, kSmiTagSize), SetCC);
b(cc, smi_case); // Shifter carry is not set for a smi.
}
void MacroAssembler::UntagAndJumpIfNotSmi(
Register dst, Register src, Label* non_smi_case) {
STATIC_ASSERT(kSmiTag == 0);
mov(dst, Operand(src, ASR, kSmiTagSize), SetCC);
b(cs, non_smi_case); // Shifter carry is set for a non-smi.
}
void MacroAssembler::JumpIfEitherSmi(Register reg1,
Register reg2,
Label* on_either_smi) {
STATIC_ASSERT(kSmiTag == 0);
tst(reg1, Operand(kSmiTagMask));
tst(reg2, Operand(kSmiTagMask), ne);
b(eq, on_either_smi);
}
void MacroAssembler::AbortIfSmi(Register object) {
STATIC_ASSERT(kSmiTag == 0);
tst(object, Operand(kSmiTagMask));
Assert(ne, "Operand is a smi");
}
void MacroAssembler::AbortIfNotSmi(Register object) {
STATIC_ASSERT(kSmiTag == 0);
tst(object, Operand(kSmiTagMask));
Assert(eq, "Operand is not smi");
}
void MacroAssembler::AbortIfNotString(Register object) {
STATIC_ASSERT(kSmiTag == 0);
tst(object, Operand(kSmiTagMask));
Assert(ne, "Operand is not a string");
push(object);
ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
pop(object);
Assert(lo, "Operand is not a string");
}
void MacroAssembler::AbortIfNotRootValue(Register src,
Heap::RootListIndex root_value_index,
const char* message) {
CompareRoot(src, root_value_index);
Assert(eq, message);
}
void MacroAssembler::JumpIfNotHeapNumber(Register object,
Register heap_number_map,
Register scratch,
Label* on_not_heap_number) {
ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
cmp(scratch, heap_number_map);
b(ne, on_not_heap_number);
}
void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
// Test that both first and second are sequential ASCII strings.
// Assume that they are non-smis.
ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
scratch2,
scratch1,
scratch2,
failure);
}
void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
// Check that neither is a smi.
STATIC_ASSERT(kSmiTag == 0);
and_(scratch1, first, Operand(second));
JumpIfSmi(scratch1, failure);
JumpIfNonSmisNotBothSequentialAsciiStrings(first,
second,
scratch1,
scratch2,
failure);
}
// Allocates a heap number or jumps to the need_gc label if the young space
// is full and a scavenge is needed.
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required) {
// Allocate an object in the heap for the heap number and tag it as a heap
// object.
AllocateInNewSpace(HeapNumber::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
// Store heap number map in the allocated object.
AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
}
void MacroAssembler::AllocateHeapNumberWithValue(Register result,
DwVfpRegister value,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required) {
AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
sub(scratch1, result, Operand(kHeapObjectTag));
vstr(value, scratch1, HeapNumber::kValueOffset);
}
// Copies a fixed number of fields of heap objects from src to dst.
void MacroAssembler::CopyFields(Register dst,
Register src,
RegList temps,
int field_count) {
// At least one bit set in the first 15 registers.
ASSERT((temps & ((1 << 15) - 1)) != 0);
ASSERT((temps & dst.bit()) == 0);
ASSERT((temps & src.bit()) == 0);
// Primitive implementation using only one temporary register.
Register tmp = no_reg;
// Find a temp register in temps list.
for (int i = 0; i < 15; i++) {
if ((temps & (1 << i)) != 0) {
tmp.set_code(i);
break;
}
}
ASSERT(!tmp.is(no_reg));
for (int i = 0; i < field_count; i++) {
ldr(tmp, FieldMemOperand(src, i * kPointerSize));
str(tmp, FieldMemOperand(dst, i * kPointerSize));
}
}
void MacroAssembler::CopyBytes(Register src,
Register dst,
Register length,
Register scratch) {
Label align_loop, align_loop_1, word_loop, byte_loop, byte_loop_1, done;
// Align src before copying in word size chunks.
bind(&align_loop);
cmp(length, Operand(0));
b(eq, &done);
bind(&align_loop_1);
tst(src, Operand(kPointerSize - 1));
b(eq, &word_loop);
ldrb(scratch, MemOperand(src, 1, PostIndex));
strb(scratch, MemOperand(dst, 1, PostIndex));
sub(length, length, Operand(1), SetCC);
b(ne, &byte_loop_1);
// Copy bytes in word size chunks.
bind(&word_loop);
if (emit_debug_code()) {
tst(src, Operand(kPointerSize - 1));
Assert(eq, "Expecting alignment for CopyBytes");
}
cmp(length, Operand(kPointerSize));
b(lt, &byte_loop);
ldr(scratch, MemOperand(src, kPointerSize, PostIndex));
#if CAN_USE_UNALIGNED_ACCESSES
str(scratch, MemOperand(dst, kPointerSize, PostIndex));
#else
strb(scratch, MemOperand(dst, 1, PostIndex));
mov(scratch, Operand(scratch, LSR, 8));
strb(scratch, MemOperand(dst, 1, PostIndex));
mov(scratch, Operand(scratch, LSR, 8));
strb(scratch, MemOperand(dst, 1, PostIndex));
mov(scratch, Operand(scratch, LSR, 8));
strb(scratch, MemOperand(dst, 1, PostIndex));
#endif
sub(length, length, Operand(kPointerSize));
b(&word_loop);
// Copy the last bytes if any left.
bind(&byte_loop);
cmp(length, Operand(0));
b(eq, &done);
bind(&byte_loop_1);
ldrb(scratch, MemOperand(src, 1, PostIndex));
strb(scratch, MemOperand(dst, 1, PostIndex));
sub(length, length, Operand(1), SetCC);
b(ne, &byte_loop_1);
bind(&done);
}
void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
Register end_offset,
Register filler) {
Label loop, entry;
b(&entry);
bind(&loop);
str(filler, MemOperand(start_offset, kPointerSize, PostIndex));
bind(&entry);
cmp(start_offset, end_offset);
b(lt, &loop);
}
void MacroAssembler::CountLeadingZeros(Register zeros, // Answer.
Register source, // Input.
Register scratch) {
ASSERT(!zeros.is(source) || !source.is(scratch));
ASSERT(!zeros.is(scratch));
ASSERT(!scratch.is(ip));
ASSERT(!source.is(ip));
ASSERT(!zeros.is(ip));
#ifdef CAN_USE_ARMV5_INSTRUCTIONS
clz(zeros, source); // This instruction is only supported after ARM5.
#else
// Order of the next two lines is important: zeros register
// can be the same as source register.
Move(scratch, source);
mov(zeros, Operand(0, RelocInfo::NONE));
// Top 16.
tst(scratch, Operand(0xffff0000));
add(zeros, zeros, Operand(16), LeaveCC, eq);
mov(scratch, Operand(scratch, LSL, 16), LeaveCC, eq);
// Top 8.
tst(scratch, Operand(0xff000000));
add(zeros, zeros, Operand(8), LeaveCC, eq);
mov(scratch, Operand(scratch, LSL, 8), LeaveCC, eq);
// Top 4.
tst(scratch, Operand(0xf0000000));
add(zeros, zeros, Operand(4), LeaveCC, eq);
mov(scratch, Operand(scratch, LSL, 4), LeaveCC, eq);
// Top 2.
tst(scratch, Operand(0xc0000000));
add(zeros, zeros, Operand(2), LeaveCC, eq);
mov(scratch, Operand(scratch, LSL, 2), LeaveCC, eq);
// Top bit.
tst(scratch, Operand(0x80000000u));
add(zeros, zeros, Operand(1), LeaveCC, eq);
#endif
}
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
int kFlatAsciiStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
int kFlatAsciiStringTag = ASCII_STRING_TYPE;
and_(scratch1, first, Operand(kFlatAsciiStringMask));
and_(scratch2, second, Operand(kFlatAsciiStringMask));
cmp(scratch1, Operand(kFlatAsciiStringTag));
// Ignore second test if first test failed.
cmp(scratch2, Operand(kFlatAsciiStringTag), eq);
b(ne, failure);
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
Register scratch,
Label* failure) {
int kFlatAsciiStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
int kFlatAsciiStringTag = ASCII_STRING_TYPE;
and_(scratch, type, Operand(kFlatAsciiStringMask));
cmp(scratch, Operand(kFlatAsciiStringTag));
b(ne, failure);
}
static const int kRegisterPassedArguments = 4;
int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments) {
int stack_passed_words = 0;
if (use_eabi_hardfloat()) {
// In the hard floating point calling convention, we can use
// all double registers to pass doubles.
if (num_double_arguments > DoubleRegister::kNumRegisters) {
stack_passed_words +=
2 * (num_double_arguments - DoubleRegister::kNumRegisters);
}
} else {
// In the soft floating point calling convention, every double
// argument is passed using two registers.
num_reg_arguments += 2 * num_double_arguments;
}
// Up to four simple arguments are passed in registers r0..r3.
if (num_reg_arguments > kRegisterPassedArguments) {
stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
}
return stack_passed_words;
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
int num_double_arguments,
Register scratch) {
int frame_alignment = ActivationFrameAlignment();
int stack_passed_arguments = CalculateStackPassedWords(
num_reg_arguments, num_double_arguments);
if (frame_alignment > kPointerSize) {
// Make stack end at alignment and make room for num_arguments - 4 words
// and the original value of sp.
mov(scratch, sp);
sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
ASSERT(IsPowerOf2(frame_alignment));
and_(sp, sp, Operand(-frame_alignment));
str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
sub(sp, sp, Operand(stack_passed_arguments * kPointerSize));
}
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
Register scratch) {
PrepareCallCFunction(num_reg_arguments, 0, scratch);
}
void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg) {
if (use_eabi_hardfloat()) {
Move(d0, dreg);
} else {
vmov(r0, r1, dreg);
}
}
void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg1,
DoubleRegister dreg2) {
if (use_eabi_hardfloat()) {
if (dreg2.is(d0)) {
ASSERT(!dreg1.is(d1));
Move(d1, dreg2);
Move(d0, dreg1);
} else {
Move(d0, dreg1);
Move(d1, dreg2);
}
} else {
vmov(r0, r1, dreg1);
vmov(r2, r3, dreg2);
}
}
void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg,
Register reg) {
if (use_eabi_hardfloat()) {
Move(d0, dreg);
Move(r0, reg);
} else {
Move(r2, reg);
vmov(r0, r1, dreg);
}
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments) {
mov(ip, Operand(function));
CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments);
}
void MacroAssembler::CallCFunction(Register function,
int num_reg_arguments,
int num_double_arguments) {
CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void MacroAssembler::CallCFunction(Register function,
int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void MacroAssembler::CallCFunctionHelper(Register function,
int num_reg_arguments,
int num_double_arguments) {
ASSERT(has_frame());
// Make sure that the stack is aligned before calling a C function unless
// running in the simulator. The simulator has its own alignment check which
// provides more information.
#if defined(V8_HOST_ARCH_ARM)
if (emit_debug_code()) {
int frame_alignment = OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
ASSERT(IsPowerOf2(frame_alignment));
Label alignment_as_expected;
tst(sp, Operand(frame_alignment_mask));
b(eq, &alignment_as_expected);
// Don't use Check here, as it will call Runtime_Abort possibly
// re-entering here.
stop("Unexpected alignment");
bind(&alignment_as_expected);
}
}
#endif
// Just call directly. The function called cannot cause a GC, or
// allow preemption, so the return address in the link register
// stays correct.
Call(function);
int stack_passed_arguments = CalculateStackPassedWords(
num_reg_arguments, num_double_arguments);
if (ActivationFrameAlignment() > kPointerSize) {
ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
}
}
void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
Register result) {
const uint32_t kLdrOffsetMask = (1 << 12) - 1;
const int32_t kPCRegOffset = 2 * kPointerSize;
ldr(result, MemOperand(ldr_location));
if (emit_debug_code()) {
// Check that the instruction is a ldr reg, [pc + offset] .
and_(result, result, Operand(kLdrPCPattern));
cmp(result, Operand(kLdrPCPattern));
Check(eq, "The instruction to patch should be a load from pc.");
// Result was clobbered. Restore it.
ldr(result, MemOperand(ldr_location));
}
// Get the address of the constant.
and_(result, result, Operand(kLdrOffsetMask));
add(result, ldr_location, Operand(result));
add(result, result, Operand(kPCRegOffset));
}
void MacroAssembler::CheckPageFlag(
Register object,
Register scratch,
int mask,
Condition cc,
Label* condition_met) {
and_(scratch, object, Operand(~Page::kPageAlignmentMask));
ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
tst(scratch, Operand(mask));
b(cc, condition_met);
}
void MacroAssembler::JumpIfBlack(Register object,
Register scratch0,
Register scratch1,
Label* on_black) {
HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
}
void MacroAssembler::HasColor(Register object,
Register bitmap_scratch,
Register mask_scratch,
Label* has_color,
int first_bit,
int second_bit) {
ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg));
GetMarkBits(object, bitmap_scratch, mask_scratch);
Label other_color, word_boundary;
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
tst(ip, Operand(mask_scratch));
b(first_bit == 1 ? eq : ne, &other_color);
// Shift left 1 by adding.
add(mask_scratch, mask_scratch, Operand(mask_scratch), SetCC);
b(eq, &word_boundary);
tst(ip, Operand(mask_scratch));
b(second_bit == 1 ? ne : eq, has_color);
jmp(&other_color);
bind(&word_boundary);
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize));
tst(ip, Operand(1));
b(second_bit == 1 ? ne : eq, has_color);
bind(&other_color);
}
// Detect some, but not all, common pointer-free objects. This is used by the
// incremental write barrier which doesn't care about oddballs (they are always
// marked black immediately so this code is not hit).
void MacroAssembler::JumpIfDataObject(Register value,
Register scratch,
Label* not_data_object) {
Label is_data_object;
ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
b(eq, &is_data_object);
ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
// If it's a string and it's not a cons string then it's an object containing
// no GC pointers.
ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
tst(scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
b(ne, not_data_object);
bind(&is_data_object);
}
void MacroAssembler::GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg) {
ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
and_(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
Ubfx(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
Ubfx(ip, addr_reg, kLowBits, kPageSizeBits - kLowBits);
add(bitmap_reg, bitmap_reg, Operand(ip, LSL, kPointerSizeLog2));
mov(ip, Operand(1));
mov(mask_reg, Operand(ip, LSL, mask_reg));
}
void MacroAssembler::EnsureNotWhite(
Register value,
Register bitmap_scratch,
Register mask_scratch,
Register load_scratch,
Label* value_is_white_and_not_data) {
ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, ip));
GetMarkBits(value, bitmap_scratch, mask_scratch);
// If the value is black or grey we don't need to do anything.
ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
Label done;
// Since both black and grey have a 1 in the first position and white does
// not have a 1 there we only need to check one bit.
ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
tst(mask_scratch, load_scratch);
b(ne, &done);
if (emit_debug_code()) {
// Check for impossible bit pattern.
Label ok;
// LSL may overflow, making the check conservative.
tst(load_scratch, Operand(mask_scratch, LSL, 1));
b(eq, &ok);
stop("Impossible marking bit pattern");
bind(&ok);
}
// Value is white. We check whether it is data that doesn't need scanning.
// Currently only checks for HeapNumber and non-cons strings.
Register map = load_scratch; // Holds map while checking type.
Register length = load_scratch; // Holds length of object after testing type.
Label is_data_object;
// Check for heap-number
ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
CompareRoot(map, Heap::kHeapNumberMapRootIndex);
mov(length, Operand(HeapNumber::kSize), LeaveCC, eq);
b(eq, &is_data_object);
// Check for strings.
ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
// If it's a string and it's not a cons string then it's an object containing
// no GC pointers.
Register instance_type = load_scratch;
ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
tst(instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
b(ne, value_is_white_and_not_data);
// It's a non-indirect (non-cons and non-slice) string.
// If it's external, the length is just ExternalString::kSize.
// Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
// External strings are the only ones with the kExternalStringTag bit
// set.
ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
tst(instance_type, Operand(kExternalStringTag));
mov(length, Operand(ExternalString::kSize), LeaveCC, ne);
b(ne, &is_data_object);
// Sequential string, either ASCII or UC16.
// For ASCII (char-size of 1) we shift the smi tag away to get the length.
// For UC16 (char-size of 2) we just leave the smi tag in place, thereby
// getting the length multiplied by 2.
ASSERT(kAsciiStringTag == 4 && kStringEncodingMask == 4);
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
ldr(ip, FieldMemOperand(value, String::kLengthOffset));
tst(instance_type, Operand(kStringEncodingMask));
mov(ip, Operand(ip, LSR, 1), LeaveCC, ne);
add(length, ip, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
and_(length, length, Operand(~kObjectAlignmentMask));
bind(&is_data_object);
// Value is a data object, and it is white. Mark it black. Since we know
// that the object is white we can make it black by flipping one bit.
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
orr(ip, ip, Operand(mask_scratch));
str(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
and_(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
add(ip, ip, Operand(length));
str(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
bind(&done);
}
void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
Usat(output_reg, 8, Operand(input_reg));
}
void MacroAssembler::ClampDoubleToUint8(Register result_reg,
DoubleRegister input_reg,
DoubleRegister temp_double_reg) {
Label above_zero;
Label done;
Label in_bounds;
Vmov(temp_double_reg, 0.0);
VFPCompareAndSetFlags(input_reg, temp_double_reg);
b(gt, &above_zero);
// Double value is less than zero, NaN or Inf, return 0.
mov(result_reg, Operand(0));
b(al, &done);
// Double value is >= 255, return 255.
bind(&above_zero);
Vmov(temp_double_reg, 255.0);
VFPCompareAndSetFlags(input_reg, temp_double_reg);
b(le, &in_bounds);
mov(result_reg, Operand(255));
b(al, &done);
// In 0-255 range, round and truncate.
bind(&in_bounds);
Vmov(temp_double_reg, 0.5);
vadd(temp_double_reg, input_reg, temp_double_reg);
vcvt_u32_f64(temp_double_reg.low(), temp_double_reg);
vmov(result_reg, temp_double_reg.low());
bind(&done);
}
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors,
Register scratch) {
ldr(descriptors,
FieldMemOperand(map, Map::kInstanceDescriptorsOrBackPointerOffset));
Label ok, fail;
CheckMap(descriptors,
scratch,
isolate()->factory()->fixed_array_map(),
&fail,
DONT_DO_SMI_CHECK);
jmp(&ok);
bind(&fail);
mov(descriptors, Operand(FACTORY->empty_descriptor_array()));
bind(&ok);
}
void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
Label next;
// Preload a couple of values used in the loop.
Register empty_fixed_array_value = r6;
LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
Register empty_descriptor_array_value = r7;
LoadRoot(empty_descriptor_array_value,
Heap::kEmptyDescriptorArrayRootIndex);
mov(r1, r0);
bind(&next);
// Check that there are no elements. Register r1 contains the
// current JS object we've reached through the prototype chain.
ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset));
cmp(r2, empty_fixed_array_value);
b(ne, call_runtime);
// Check that instance descriptors are not empty so that we can
// check for an enum cache. Leave the map in r2 for the subsequent
// prototype load.
ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
ldr(r3, FieldMemOperand(r2, Map::kInstanceDescriptorsOrBackPointerOffset));
CheckMap(r3,
r7,
isolate()->factory()->fixed_array_map(),
call_runtime,
DONT_DO_SMI_CHECK);
// Check that there is an enum cache in the non-empty instance
// descriptors (r3). This is the case if the next enumeration
// index field does not contain a smi.
ldr(r3, FieldMemOperand(r3, DescriptorArray::kLastAddedOffset));
JumpIfSmi(r3, call_runtime);
// For all objects but the receiver, check that the cache is empty.
Label check_prototype;
cmp(r1, r0);
b(eq, &check_prototype);
ldr(r3, FieldMemOperand(r3, DescriptorArray::kEnumCacheBridgeCacheOffset));
cmp(r3, empty_fixed_array_value);
b(ne, call_runtime);
// Load the prototype from the map and loop if non-null.
bind(&check_prototype);
ldr(r1, FieldMemOperand(r2, Map::kPrototypeOffset));
cmp(r1, null_value);
b(ne, &next);
}
#ifdef DEBUG
bool AreAliased(Register reg1,
Register reg2,
Register reg3,
Register reg4,
Register reg5,
Register reg6) {
int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid();
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
int n_of_non_aliasing_regs = NumRegs(regs);
return n_of_valid_regs != n_of_non_aliasing_regs;
}
#endif
CodePatcher::CodePatcher(byte* address, int instructions)
: address_(address),
instructions_(instructions),
size_(instructions * Assembler::kInstrSize),
masm_(NULL, address, size_ + Assembler::kGap) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
CPU::FlushICache(address_, size_);
// Check that the code was patched as expected.
ASSERT(masm_.pc_ == address_ + size_);
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
void CodePatcher::Emit(Instr instr) {
masm()->emit(instr);
}
void CodePatcher::Emit(Address addr) {
masm()->emit(reinterpret_cast<Instr>(addr));
}
void CodePatcher::EmitCondition(Condition cond) {
Instr instr = Assembler::instr_at(masm_.pc_);
instr = (instr & ~kCondMask) | cond;
masm_.emit(instr);
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM