root/src/hydrogen-instructions.cc
/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- HYDROGEN_CONCRETE_INSTRUCTION_LIST
- LoopWeight
- AssumeRepresentation
- ConvertAndSetOverflow
- AddWithoutOverflow
- SubWithoutOverflow
- MulWithoutOverflow
- Mask
- AddConstant
- Intersect
- Union
- Sar
- Shl
- AddAndCheckOverflow
- SubAndCheckOverflow
- KeepOrder
- Verify
- MulAndCheckOverflow
- ToString
- TypeFromValue
- IsDefinedAfter
- tail
- CheckUsesForFlag
- Advance
- UseCount
- RemoveUse
- Equals
- Hashcode
- Mnemonic
- SetOperandAt
- DeleteAndReplaceWith
- ReplaceAllUsesWith
- Kill
- SetBlock
- PrintTypeTo
- PrintRangeTo
- PrintChangesTo
- PrintNameTo
- UpdateInferredType
- RegisterUse
- AddNewRange
- RemoveLastAddedRange
- ComputeInitialRange
- PrintTo
- PrintMnemonicTo
- Unlink
- InsertBefore
- InsertAfter
- Verify
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- OpName
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- Canonicalize
- Canonicalize
- Canonicalize
- Canonicalize
- Canonicalize
- Canonicalize
- Canonicalize
- Canonicalize
- PrintDataTo
- PrintDataTo
- PrintDataTo
- Canonicalize
- Canonicalize
- GetCheckInterval
- GetCheckMaskAndTag
- PrintDataTo
- PrintDataTo
- GetCheckName
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- InferRange
- InferRange
- InferRange
- InferRange
- InferRange
- InferRange
- InferRange
- InferRange
- InferRange
- PrintTo
- AddInput
- HasRealUses
- GetRedundantReplacement
- DeleteFromGraph
- InitRealUses
- AddNonPhiUsesFrom
- AddIndirectUsesTo
- ResetInteger32Uses
- PrintDataTo
- PrintDataTo
- PrintDataTo
- IsInteger32
- has_double_value_
- double_value_
- double_value_
- CopyToRepresentation
- CopyToTruncatedInt32
- ToBoolean
- PrintDataTo
- IsCopyOnWrite
- PrintDataTo
- InferRange
- InferRange
- InferRange
- InferRange
- InferRange
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- SetInputRepresentation
- PrintDataTo
- PrintDataTo
- PrototypeChainCanNeverResolve
- need_generic_
- DataEquals
- PrintDataTo
- PrintDataTo
- PrintDataTo
- RequiresHoleCheck
- PrintDataTo
- PrintDataTo
- Canonicalize
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- RequiresHoleCheck
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- PrintDataTo
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- CalculateInferredType
- EnsureAndPropagateNotMinusZero
- EnsureAndPropagateNotMinusZero
- EnsureAndPropagateNotMinusZero
- EnsureAndPropagateNotMinusZero
- EnsureAndPropagateNotMinusZero
- EnsureAndPropagateNotMinusZero
- EnsureAndPropagateNotMinusZero
- EnsureAndPropagateNotMinusZero
- EnsureAndPropagateNotMinusZero
- NeedsCanonicalization
- DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
- NewHDiv
- NewHBitwise
- DEFINE_NEW_H_BITWISE_INSTR
- PrintDataTo
- PrintDataTo
- InferredRepresentation
- Verify
- Verify
- Verify
- Verify
- Verify
- Verify
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "factory.h"
#include "hydrogen.h"
#if V8_TARGET_ARCH_IA32
#include "ia32/lithium-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/lithium-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/lithium-arm.h"
#elif V8_TARGET_ARCH_MIPS
#include "mips/lithium-mips.h"
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
#define DEFINE_COMPILE(type) \
LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) { \
return builder->Do##type(this); \
}
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
#undef DEFINE_COMPILE
const char* Representation::Mnemonic() const {
switch (kind_) {
case kNone: return "v";
case kTagged: return "t";
case kDouble: return "d";
case kInteger32: return "i";
case kExternal: return "x";
default:
UNREACHABLE();
return NULL;
}
}
int HValue::LoopWeight() const {
const int w = FLAG_loop_weight;
static const int weights[] = { 1, w, w*w, w*w*w, w*w*w*w };
return weights[Min(block()->LoopNestingDepth(),
static_cast<int>(ARRAY_SIZE(weights)-1))];
}
void HValue::AssumeRepresentation(Representation r) {
if (CheckFlag(kFlexibleRepresentation)) {
ChangeRepresentation(r);
// The representation of the value is dictated by type feedback and
// will not be changed later.
ClearFlag(kFlexibleRepresentation);
}
}
static int32_t ConvertAndSetOverflow(int64_t result, bool* overflow) {
if (result > kMaxInt) {
*overflow = true;
return kMaxInt;
}
if (result < kMinInt) {
*overflow = true;
return kMinInt;
}
return static_cast<int32_t>(result);
}
static int32_t AddWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
return ConvertAndSetOverflow(result, overflow);
}
static int32_t SubWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
return ConvertAndSetOverflow(result, overflow);
}
static int32_t MulWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
return ConvertAndSetOverflow(result, overflow);
}
int32_t Range::Mask() const {
if (lower_ == upper_) return lower_;
if (lower_ >= 0) {
int32_t res = 1;
while (res < upper_) {
res = (res << 1) | 1;
}
return res;
}
return 0xffffffff;
}
void Range::AddConstant(int32_t value) {
if (value == 0) return;
bool may_overflow = false; // Overflow is ignored here.
lower_ = AddWithoutOverflow(lower_, value, &may_overflow);
upper_ = AddWithoutOverflow(upper_, value, &may_overflow);
#ifdef DEBUG
Verify();
#endif
}
void Range::Intersect(Range* other) {
upper_ = Min(upper_, other->upper_);
lower_ = Max(lower_, other->lower_);
bool b = CanBeMinusZero() && other->CanBeMinusZero();
set_can_be_minus_zero(b);
}
void Range::Union(Range* other) {
upper_ = Max(upper_, other->upper_);
lower_ = Min(lower_, other->lower_);
bool b = CanBeMinusZero() || other->CanBeMinusZero();
set_can_be_minus_zero(b);
}
void Range::Sar(int32_t value) {
int32_t bits = value & 0x1F;
lower_ = lower_ >> bits;
upper_ = upper_ >> bits;
set_can_be_minus_zero(false);
}
void Range::Shl(int32_t value) {
int32_t bits = value & 0x1F;
int old_lower = lower_;
int old_upper = upper_;
lower_ = lower_ << bits;
upper_ = upper_ << bits;
if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
upper_ = kMaxInt;
lower_ = kMinInt;
}
set_can_be_minus_zero(false);
}
bool Range::AddAndCheckOverflow(Range* other) {
bool may_overflow = false;
lower_ = AddWithoutOverflow(lower_, other->lower(), &may_overflow);
upper_ = AddWithoutOverflow(upper_, other->upper(), &may_overflow);
KeepOrder();
#ifdef DEBUG
Verify();
#endif
return may_overflow;
}
bool Range::SubAndCheckOverflow(Range* other) {
bool may_overflow = false;
lower_ = SubWithoutOverflow(lower_, other->upper(), &may_overflow);
upper_ = SubWithoutOverflow(upper_, other->lower(), &may_overflow);
KeepOrder();
#ifdef DEBUG
Verify();
#endif
return may_overflow;
}
void Range::KeepOrder() {
if (lower_ > upper_) {
int32_t tmp = lower_;
lower_ = upper_;
upper_ = tmp;
}
}
#ifdef DEBUG
void Range::Verify() const {
ASSERT(lower_ <= upper_);
}
#endif
bool Range::MulAndCheckOverflow(Range* other) {
bool may_overflow = false;
int v1 = MulWithoutOverflow(lower_, other->lower(), &may_overflow);
int v2 = MulWithoutOverflow(lower_, other->upper(), &may_overflow);
int v3 = MulWithoutOverflow(upper_, other->lower(), &may_overflow);
int v4 = MulWithoutOverflow(upper_, other->upper(), &may_overflow);
lower_ = Min(Min(v1, v2), Min(v3, v4));
upper_ = Max(Max(v1, v2), Max(v3, v4));
#ifdef DEBUG
Verify();
#endif
return may_overflow;
}
const char* HType::ToString() {
switch (type_) {
case kTagged: return "tagged";
case kTaggedPrimitive: return "primitive";
case kTaggedNumber: return "number";
case kSmi: return "smi";
case kHeapNumber: return "heap-number";
case kString: return "string";
case kBoolean: return "boolean";
case kNonPrimitive: return "non-primitive";
case kJSArray: return "array";
case kJSObject: return "object";
case kUninitialized: return "uninitialized";
}
UNREACHABLE();
return "Unreachable code";
}
HType HType::TypeFromValue(Handle<Object> value) {
HType result = HType::Tagged();
if (value->IsSmi()) {
result = HType::Smi();
} else if (value->IsHeapNumber()) {
result = HType::HeapNumber();
} else if (value->IsString()) {
result = HType::String();
} else if (value->IsBoolean()) {
result = HType::Boolean();
} else if (value->IsJSObject()) {
result = HType::JSObject();
} else if (value->IsJSArray()) {
result = HType::JSArray();
}
return result;
}
bool HValue::IsDefinedAfter(HBasicBlock* other) const {
return block()->block_id() > other->block_id();
}
HUseListNode* HUseListNode::tail() {
// Skip and remove dead items in the use list.
while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
tail_ = tail_->tail_;
}
return tail_;
}
bool HValue::CheckUsesForFlag(Flag f) {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
if (!it.value()->CheckFlag(f)) return false;
}
return true;
}
HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
Advance();
}
void HUseIterator::Advance() {
current_ = next_;
if (current_ != NULL) {
next_ = current_->tail();
value_ = current_->value();
index_ = current_->index();
}
}
int HValue::UseCount() const {
int count = 0;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
return count;
}
HUseListNode* HValue::RemoveUse(HValue* value, int index) {
HUseListNode* previous = NULL;
HUseListNode* current = use_list_;
while (current != NULL) {
if (current->value() == value && current->index() == index) {
if (previous == NULL) {
use_list_ = current->tail();
} else {
previous->set_tail(current->tail());
}
break;
}
previous = current;
current = current->tail();
}
#ifdef DEBUG
// Do not reuse use list nodes in debug mode, zap them.
if (current != NULL) {
HUseListNode* temp =
new(block()->zone())
HUseListNode(current->value(), current->index(), NULL);
current->Zap();
current = temp;
}
#endif
return current;
}
bool HValue::Equals(HValue* other) {
if (other->opcode() != opcode()) return false;
if (!other->representation().Equals(representation())) return false;
if (!other->type_.Equals(type_)) return false;
if (other->flags() != flags()) return false;
if (OperandCount() != other->OperandCount()) return false;
for (int i = 0; i < OperandCount(); ++i) {
if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
}
bool result = DataEquals(other);
ASSERT(!result || Hashcode() == other->Hashcode());
return result;
}
intptr_t HValue::Hashcode() {
intptr_t result = opcode();
int count = OperandCount();
for (int i = 0; i < count; ++i) {
result = result * 19 + OperandAt(i)->id() + (result >> 7);
}
return result;
}
const char* HValue::Mnemonic() const {
switch (opcode()) {
#define MAKE_CASE(type) case k##type: return #type;
HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
#undef MAKE_CASE
case kPhi: return "Phi";
default: return "";
}
}
void HValue::SetOperandAt(int index, HValue* value) {
RegisterUse(index, value);
InternalSetOperandAt(index, value);
}
void HValue::DeleteAndReplaceWith(HValue* other) {
// We replace all uses first, so Delete can assert that there are none.
if (other != NULL) ReplaceAllUsesWith(other);
ASSERT(HasNoUses());
Kill();
DeleteFromGraph();
}
void HValue::ReplaceAllUsesWith(HValue* other) {
while (use_list_ != NULL) {
HUseListNode* list_node = use_list_;
HValue* value = list_node->value();
ASSERT(!value->block()->IsStartBlock());
value->InternalSetOperandAt(list_node->index(), other);
use_list_ = list_node->tail();
list_node->set_tail(other->use_list_);
other->use_list_ = list_node;
}
}
void HValue::Kill() {
// Instead of going through the entire use list of each operand, we only
// check the first item in each use list and rely on the tail() method to
// skip dead items, removing them lazily next time we traverse the list.
SetFlag(kIsDead);
for (int i = 0; i < OperandCount(); ++i) {
HValue* operand = OperandAt(i);
if (operand == NULL) continue;
HUseListNode* first = operand->use_list_;
if (first != NULL && first->value() == this && first->index() == i) {
operand->use_list_ = first->tail();
}
}
}
void HValue::SetBlock(HBasicBlock* block) {
ASSERT(block_ == NULL || block == NULL);
block_ = block;
if (id_ == kNoNumber && block != NULL) {
id_ = block->graph()->GetNextValueID(this);
}
}
void HValue::PrintTypeTo(StringStream* stream) {
if (!representation().IsTagged() || type().Equals(HType::Tagged())) return;
stream->Add(" type[%s]", type().ToString());
}
void HValue::PrintRangeTo(StringStream* stream) {
if (range() == NULL || range()->IsMostGeneric()) return;
stream->Add(" range[%d,%d,m0=%d]",
range()->lower(),
range()->upper(),
static_cast<int>(range()->CanBeMinusZero()));
}
void HValue::PrintChangesTo(StringStream* stream) {
GVNFlagSet changes_flags = ChangesFlags();
if (changes_flags.IsEmpty()) return;
stream->Add(" changes[");
if (changes_flags == AllSideEffectsFlagSet()) {
stream->Add("*");
} else {
bool add_comma = false;
#define PRINT_DO(type) \
if (changes_flags.Contains(kChanges##type)) { \
if (add_comma) stream->Add(","); \
add_comma = true; \
stream->Add(#type); \
}
GVN_TRACKED_FLAG_LIST(PRINT_DO);
GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
#undef PRINT_DO
}
stream->Add("]");
}
void HValue::PrintNameTo(StringStream* stream) {
stream->Add("%s%d", representation_.Mnemonic(), id());
}
bool HValue::UpdateInferredType() {
HType type = CalculateInferredType();
bool result = (!type.Equals(type_));
type_ = type;
return result;
}
void HValue::RegisterUse(int index, HValue* new_value) {
HValue* old_value = OperandAt(index);
if (old_value == new_value) return;
HUseListNode* removed = NULL;
if (old_value != NULL) {
removed = old_value->RemoveUse(this, index);
}
if (new_value != NULL) {
if (removed == NULL) {
new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
this, index, new_value->use_list_);
} else {
removed->set_tail(new_value->use_list_);
new_value->use_list_ = removed;
}
}
}
void HValue::AddNewRange(Range* r, Zone* zone) {
if (!HasRange()) ComputeInitialRange(zone);
if (!HasRange()) range_ = new(zone) Range();
ASSERT(HasRange());
r->StackUpon(range_);
range_ = r;
}
void HValue::RemoveLastAddedRange() {
ASSERT(HasRange());
ASSERT(range_->next() != NULL);
range_ = range_->next();
}
void HValue::ComputeInitialRange(Zone* zone) {
ASSERT(!HasRange());
range_ = InferRange(zone);
ASSERT(HasRange());
}
void HInstruction::PrintTo(StringStream* stream) {
PrintMnemonicTo(stream);
PrintDataTo(stream);
PrintRangeTo(stream);
PrintChangesTo(stream);
PrintTypeTo(stream);
}
void HInstruction::PrintMnemonicTo(StringStream* stream) {
stream->Add("%s ", Mnemonic());
}
void HInstruction::Unlink() {
ASSERT(IsLinked());
ASSERT(!IsControlInstruction()); // Must never move control instructions.
ASSERT(!IsBlockEntry()); // Doesn't make sense to delete these.
ASSERT(previous_ != NULL);
previous_->next_ = next_;
if (next_ == NULL) {
ASSERT(block()->last() == this);
block()->set_last(previous_);
} else {
next_->previous_ = previous_;
}
clear_block();
}
void HInstruction::InsertBefore(HInstruction* next) {
ASSERT(!IsLinked());
ASSERT(!next->IsBlockEntry());
ASSERT(!IsControlInstruction());
ASSERT(!next->block()->IsStartBlock());
ASSERT(next->previous_ != NULL);
HInstruction* prev = next->previous();
prev->next_ = this;
next->previous_ = this;
next_ = next;
previous_ = prev;
SetBlock(next->block());
}
void HInstruction::InsertAfter(HInstruction* previous) {
ASSERT(!IsLinked());
ASSERT(!previous->IsControlInstruction());
ASSERT(!IsControlInstruction() || previous->next_ == NULL);
HBasicBlock* block = previous->block();
// Never insert anything except constants into the start block after finishing
// it.
if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
ASSERT(block->end()->SecondSuccessor() == NULL);
InsertAfter(block->end()->FirstSuccessor()->first());
return;
}
// If we're inserting after an instruction with side-effects that is
// followed by a simulate instruction, we need to insert after the
// simulate instruction instead.
HInstruction* next = previous->next_;
if (previous->HasObservableSideEffects() && next != NULL) {
ASSERT(next->IsSimulate());
previous = next;
next = previous->next_;
}
previous_ = previous;
next_ = next;
SetBlock(block);
previous->next_ = this;
if (next != NULL) next->previous_ = this;
if (block->last() == previous) {
block->set_last(this);
}
}
#ifdef DEBUG
void HInstruction::Verify() {
// Verify that input operands are defined before use.
HBasicBlock* cur_block = block();
for (int i = 0; i < OperandCount(); ++i) {
HValue* other_operand = OperandAt(i);
if (other_operand == NULL) continue;
HBasicBlock* other_block = other_operand->block();
if (cur_block == other_block) {
if (!other_operand->IsPhi()) {
HInstruction* cur = this->previous();
while (cur != NULL) {
if (cur == other_operand) break;
cur = cur->previous();
}
// Must reach other operand in the same block!
ASSERT(cur == other_operand);
}
} else {
// If the following assert fires, you may have forgotten an
// AddInstruction.
ASSERT(other_block->Dominates(cur_block));
}
}
// Verify that instructions that may have side-effects are followed
// by a simulate instruction.
if (HasObservableSideEffects() && !IsOsrEntry()) {
ASSERT(next()->IsSimulate());
}
// Verify that instructions that can be eliminated by GVN have overridden
// HValue::DataEquals. The default implementation is UNREACHABLE. We
// don't actually care whether DataEquals returns true or false here.
if (CheckFlag(kUseGVN)) DataEquals(this);
}
#endif
void HUnaryCall::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" ");
stream->Add("#%d", argument_count());
}
void HBinaryCall::PrintDataTo(StringStream* stream) {
first()->PrintNameTo(stream);
stream->Add(" ");
second()->PrintNameTo(stream);
stream->Add(" ");
stream->Add("#%d", argument_count());
}
void HBoundsCheck::PrintDataTo(StringStream* stream) {
index()->PrintNameTo(stream);
stream->Add(" ");
length()->PrintNameTo(stream);
}
void HCallConstantFunction::PrintDataTo(StringStream* stream) {
if (IsApplyFunction()) {
stream->Add("optimized apply ");
} else {
stream->Add("%o ", function()->shared()->DebugName());
}
stream->Add("#%d", argument_count());
}
void HCallNamed::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
HUnaryCall::PrintDataTo(stream);
}
void HCallGlobal::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
HUnaryCall::PrintDataTo(stream);
}
void HCallKnownGlobal::PrintDataTo(StringStream* stream) {
stream->Add("o ", target()->shared()->DebugName());
stream->Add("#%d", argument_count());
}
void HCallRuntime::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
stream->Add("#%d", argument_count());
}
void HClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("class_of_test(");
value()->PrintNameTo(stream);
stream->Add(", \"%o\")", *class_name());
}
void HAccessArgumentsAt::PrintDataTo(StringStream* stream) {
arguments()->PrintNameTo(stream);
stream->Add("[");
index()->PrintNameTo(stream);
stream->Add("], length ");
length()->PrintNameTo(stream);
}
void HControlInstruction::PrintDataTo(StringStream* stream) {
stream->Add(" goto (");
bool first_block = true;
for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
stream->Add(first_block ? "B%d" : ", B%d", it.Current()->block_id());
first_block = false;
}
stream->Add(")");
}
void HUnaryControlInstruction::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
HControlInstruction::PrintDataTo(stream);
}
void HIsNilAndBranch::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(kind() == kStrictEquality ? " === " : " == ");
stream->Add(nil() == kNullValue ? "null" : "undefined");
HControlInstruction::PrintDataTo(stream);
}
void HReturn::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
}
void HCompareMap::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" (%p)", *map());
HControlInstruction::PrintDataTo(stream);
}
const char* HUnaryMathOperation::OpName() const {
switch (op()) {
case kMathFloor: return "floor";
case kMathRound: return "round";
case kMathCeil: return "ceil";
case kMathAbs: return "abs";
case kMathLog: return "log";
case kMathSin: return "sin";
case kMathCos: return "cos";
case kMathTan: return "tan";
case kMathASin: return "asin";
case kMathACos: return "acos";
case kMathATan: return "atan";
case kMathExp: return "exp";
case kMathSqrt: return "sqrt";
default: break;
}
return "(unknown operation)";
}
void HUnaryMathOperation::PrintDataTo(StringStream* stream) {
const char* name = OpName();
stream->Add("%s ", name);
value()->PrintNameTo(stream);
}
void HUnaryOperation::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
}
void HHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
switch (from_) {
case FIRST_JS_RECEIVER_TYPE:
if (to_ == LAST_TYPE) stream->Add(" spec_object");
break;
case JS_REGEXP_TYPE:
if (to_ == JS_REGEXP_TYPE) stream->Add(" reg_exp");
break;
case JS_ARRAY_TYPE:
if (to_ == JS_ARRAY_TYPE) stream->Add(" array");
break;
case JS_FUNCTION_TYPE:
if (to_ == JS_FUNCTION_TYPE) stream->Add(" function");
break;
default:
break;
}
}
void HTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" == %o", *type_literal_);
HControlInstruction::PrintDataTo(stream);
}
void HCheckMapValue::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" ");
map()->PrintNameTo(stream);
}
void HForInPrepareMap::PrintDataTo(StringStream* stream) {
enumerable()->PrintNameTo(stream);
}
void HForInCacheArray::PrintDataTo(StringStream* stream) {
enumerable()->PrintNameTo(stream);
stream->Add(" ");
map()->PrintNameTo(stream);
stream->Add("[%d]", idx_);
}
void HLoadFieldByIndex::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(" ");
index()->PrintNameTo(stream);
}
HValue* HConstant::Canonicalize() {
return HasNoUses() ? NULL : this;
}
HValue* HTypeof::Canonicalize() {
return HasNoUses() ? NULL : this;
}
HValue* HBitwise::Canonicalize() {
if (!representation().IsInteger32()) return this;
// If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
if (left()->IsConstant() &&
HConstant::cast(left())->HasInteger32Value() &&
HConstant::cast(left())->Integer32Value() == nop_constant) {
return right();
}
if (right()->IsConstant() &&
HConstant::cast(right())->HasInteger32Value() &&
HConstant::cast(right())->Integer32Value() == nop_constant) {
return left();
}
return this;
}
HValue* HBitNot::Canonicalize() {
// Optimize ~~x, a common pattern used for ToInt32(x).
if (value()->IsBitNot()) {
HValue* result = HBitNot::cast(value())->value();
ASSERT(result->representation().IsInteger32());
return result;
}
return this;
}
HValue* HAdd::Canonicalize() {
if (!representation().IsInteger32()) return this;
if (CheckUsesForFlag(kTruncatingToInt32)) ClearFlag(kCanOverflow);
return this;
}
HValue* HSub::Canonicalize() {
if (!representation().IsInteger32()) return this;
if (CheckUsesForFlag(kTruncatingToInt32)) ClearFlag(kCanOverflow);
return this;
}
HValue* HChange::Canonicalize() {
return (from().Equals(to())) ? value() : this;
}
HValue* HWrapReceiver::Canonicalize() {
if (HasNoUses()) return NULL;
if (receiver()->type().IsJSObject()) {
return receiver();
}
return this;
}
void HTypeof::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
}
void HChange::PrintDataTo(StringStream* stream) {
HUnaryOperation::PrintDataTo(stream);
stream->Add(" %s to %s", from().Mnemonic(), to().Mnemonic());
if (CanTruncateToInt32()) stream->Add(" truncating-int32");
if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
if (CheckFlag(kDeoptimizeOnUndefined)) stream->Add(" deopt-on-undefined");
}
void HJSArrayLength::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" ");
typecheck()->PrintNameTo(stream);
}
HValue* HUnaryMathOperation::Canonicalize() {
if (op() == kMathFloor) {
// If the input is integer32 then we replace the floor instruction
// with its input. This happens before the representation changes are
// introduced.
if (value()->representation().IsInteger32()) return value();
#if defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_IA32) || \
defined(V8_TARGET_ARCH_X64)
if (value()->IsDiv() && (value()->UseCount() == 1)) {
// TODO(2038): Implement this optimization for non ARM architectures.
HDiv* hdiv = HDiv::cast(value());
HValue* left = hdiv->left();
HValue* right = hdiv->right();
// Try to simplify left and right values of the division.
HValue* new_left =
LChunkBuilder::SimplifiedDividendForMathFloorOfDiv(left);
HValue* new_right =
LChunkBuilder::SimplifiedDivisorForMathFloorOfDiv(right);
// Return if left or right are not optimizable.
if ((new_left == NULL) || (new_right == NULL)) return this;
// Insert the new values in the graph.
if (new_left->IsInstruction() &&
!HInstruction::cast(new_left)->IsLinked()) {
HInstruction::cast(new_left)->InsertBefore(this);
}
if (new_right->IsInstruction() &&
!HInstruction::cast(new_right)->IsLinked()) {
HInstruction::cast(new_right)->InsertBefore(this);
}
HMathFloorOfDiv* instr = new(block()->zone()) HMathFloorOfDiv(context(),
new_left,
new_right);
// Replace this HMathFloor instruction by the new HMathFloorOfDiv.
instr->InsertBefore(this);
ReplaceAllUsesWith(instr);
Kill();
// We know the division had no other uses than this HMathFloor. Delete it.
// Also delete the arguments of the division if they are not used any
// more.
hdiv->DeleteAndReplaceWith(NULL);
ASSERT(left->IsChange() || left->IsConstant());
ASSERT(right->IsChange() || right->IsConstant());
if (left->HasNoUses()) left->DeleteAndReplaceWith(NULL);
if (right->HasNoUses()) right->DeleteAndReplaceWith(NULL);
// Return NULL to remove this instruction from the graph.
return NULL;
}
#endif // V8_TARGET_ARCH_ARM
}
return this;
}
HValue* HCheckInstanceType::Canonicalize() {
if (check_ == IS_STRING &&
!value()->type().IsUninitialized() &&
value()->type().IsString()) {
return NULL;
}
if (check_ == IS_SYMBOL &&
value()->IsConstant() &&
HConstant::cast(value())->handle()->IsSymbol()) {
return NULL;
}
return this;
}
void HCheckInstanceType::GetCheckInterval(InstanceType* first,
InstanceType* last) {
ASSERT(is_interval_check());
switch (check_) {
case IS_SPEC_OBJECT:
*first = FIRST_SPEC_OBJECT_TYPE;
*last = LAST_SPEC_OBJECT_TYPE;
return;
case IS_JS_ARRAY:
*first = *last = JS_ARRAY_TYPE;
return;
default:
UNREACHABLE();
}
}
void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
ASSERT(!is_interval_check());
switch (check_) {
case IS_STRING:
*mask = kIsNotStringMask;
*tag = kStringTag;
return;
case IS_SYMBOL:
*mask = kIsSymbolMask;
*tag = kSymbolTag;
return;
default:
UNREACHABLE();
}
}
void HCheckMaps::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" [%p", *map_set()->first());
for (int i = 1; i < map_set()->length(); ++i) {
stream->Add(",%p", *map_set()->at(i));
}
stream->Add("]");
}
void HCheckFunction::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" %p", *target());
}
const char* HCheckInstanceType::GetCheckName() {
switch (check_) {
case IS_SPEC_OBJECT: return "object";
case IS_JS_ARRAY: return "array";
case IS_STRING: return "string";
case IS_SYMBOL: return "symbol";
}
UNREACHABLE();
return "";
}
void HCheckInstanceType::PrintDataTo(StringStream* stream) {
stream->Add("%s ", GetCheckName());
HUnaryOperation::PrintDataTo(stream);
}
void HCheckPrototypeMaps::PrintDataTo(StringStream* stream) {
stream->Add("[receiver_prototype=%p,holder=%p]", *prototype(), *holder());
}
void HCallStub::PrintDataTo(StringStream* stream) {
stream->Add("%s ",
CodeStub::MajorName(major_key_, false));
HUnaryCall::PrintDataTo(stream);
}
void HInstanceOf::PrintDataTo(StringStream* stream) {
left()->PrintNameTo(stream);
stream->Add(" ");
right()->PrintNameTo(stream);
stream->Add(" ");
context()->PrintNameTo(stream);
}
Range* HValue::InferRange(Zone* zone) {
// Untagged integer32 cannot be -0, all other representations can.
Range* result = new(zone) Range();
result->set_can_be_minus_zero(!representation().IsInteger32());
return result;
}
Range* HChange::InferRange(Zone* zone) {
Range* input_range = value()->range();
if (from().IsInteger32() &&
to().IsTagged() &&
input_range != NULL && input_range->IsInSmiRange()) {
set_type(HType::Smi());
}
Range* result = (input_range != NULL)
? input_range->Copy(zone)
: HValue::InferRange(zone);
if (to().IsInteger32()) result->set_can_be_minus_zero(false);
return result;
}
Range* HConstant::InferRange(Zone* zone) {
if (has_int32_value_) {
Range* result = new(zone) Range(int32_value_, int32_value_);
result->set_can_be_minus_zero(false);
return result;
}
return HValue::InferRange(zone);
}
Range* HPhi::InferRange(Zone* zone) {
if (representation().IsInteger32()) {
if (block()->IsLoopHeader()) {
Range* range = new(zone) Range(kMinInt, kMaxInt);
return range;
} else {
Range* range = OperandAt(0)->range()->Copy(zone);
for (int i = 1; i < OperandCount(); ++i) {
range->Union(OperandAt(i)->range());
}
return range;
}
} else {
return HValue::InferRange(zone);
}
}
Range* HAdd::InferRange(Zone* zone) {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy(zone);
if (!res->AddAndCheckOverflow(b)) {
ClearFlag(kCanOverflow);
}
bool m0 = a->CanBeMinusZero() && b->CanBeMinusZero();
res->set_can_be_minus_zero(m0);
return res;
} else {
return HValue::InferRange(zone);
}
}
Range* HSub::InferRange(Zone* zone) {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy(zone);
if (!res->SubAndCheckOverflow(b)) {
ClearFlag(kCanOverflow);
}
res->set_can_be_minus_zero(a->CanBeMinusZero() && b->CanBeZero());
return res;
} else {
return HValue::InferRange(zone);
}
}
Range* HMul::InferRange(Zone* zone) {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy(zone);
if (!res->MulAndCheckOverflow(b)) {
ClearFlag(kCanOverflow);
}
bool m0 = (a->CanBeZero() && b->CanBeNegative()) ||
(a->CanBeNegative() && b->CanBeZero());
res->set_can_be_minus_zero(m0);
return res;
} else {
return HValue::InferRange(zone);
}
}
Range* HDiv::InferRange(Zone* zone) {
if (representation().IsInteger32()) {
Range* result = new(zone) Range();
if (left()->range()->CanBeMinusZero()) {
result->set_can_be_minus_zero(true);
}
if (left()->range()->CanBeZero() && right()->range()->CanBeNegative()) {
result->set_can_be_minus_zero(true);
}
if (right()->range()->Includes(-1) && left()->range()->Includes(kMinInt)) {
SetFlag(HValue::kCanOverflow);
}
if (!right()->range()->CanBeZero()) {
ClearFlag(HValue::kCanBeDivByZero);
}
return result;
} else {
return HValue::InferRange(zone);
}
}
Range* HMod::InferRange(Zone* zone) {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* result = new(zone) Range();
if (a->CanBeMinusZero() || a->CanBeNegative()) {
result->set_can_be_minus_zero(true);
}
if (!right()->range()->CanBeZero()) {
ClearFlag(HValue::kCanBeDivByZero);
}
return result;
} else {
return HValue::InferRange(zone);
}
}
void HPhi::PrintTo(StringStream* stream) {
stream->Add("[");
for (int i = 0; i < OperandCount(); ++i) {
HValue* value = OperandAt(i);
stream->Add(" ");
value->PrintNameTo(stream);
stream->Add(" ");
}
stream->Add(" uses%d_%di_%dd_%dt",
UseCount(),
int32_non_phi_uses() + int32_indirect_uses(),
double_non_phi_uses() + double_indirect_uses(),
tagged_non_phi_uses() + tagged_indirect_uses());
stream->Add("%s%s]",
is_live() ? "_live" : "",
IsConvertibleToInteger() ? "" : "_ncti");
}
void HPhi::AddInput(HValue* value) {
inputs_.Add(NULL, value->block()->zone());
SetOperandAt(OperandCount() - 1, value);
// Mark phis that may have 'arguments' directly or indirectly as an operand.
if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
SetFlag(kIsArguments);
}
}
bool HPhi::HasRealUses() {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
if (!it.value()->IsPhi()) return true;
}
return false;
}
HValue* HPhi::GetRedundantReplacement() {
HValue* candidate = NULL;
int count = OperandCount();
int position = 0;
while (position < count && candidate == NULL) {
HValue* current = OperandAt(position++);
if (current != this) candidate = current;
}
while (position < count) {
HValue* current = OperandAt(position++);
if (current != this && current != candidate) return NULL;
}
ASSERT(candidate != this);
return candidate;
}
void HPhi::DeleteFromGraph() {
ASSERT(block() != NULL);
block()->RemovePhi(this);
ASSERT(block() == NULL);
}
void HPhi::InitRealUses(int phi_id) {
// Initialize real uses.
phi_id_ = phi_id;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* value = it.value();
if (!value->IsPhi()) {
Representation rep = value->ObservedInputRepresentation(it.index());
non_phi_uses_[rep.kind()] += value->LoopWeight();
if (FLAG_trace_representation) {
PrintF("%d %s is used by %d %s as %s\n",
this->id(),
this->Mnemonic(),
value->id(),
value->Mnemonic(),
rep.Mnemonic());
}
}
}
}
void HPhi::AddNonPhiUsesFrom(HPhi* other) {
if (FLAG_trace_representation) {
PrintF("adding to %d %s uses of %d %s: i%d d%d t%d\n",
this->id(),
this->Mnemonic(),
other->id(),
other->Mnemonic(),
other->non_phi_uses_[Representation::kInteger32],
other->non_phi_uses_[Representation::kDouble],
other->non_phi_uses_[Representation::kTagged]);
}
for (int i = 0; i < Representation::kNumRepresentations; i++) {
indirect_uses_[i] += other->non_phi_uses_[i];
}
}
void HPhi::AddIndirectUsesTo(int* dest) {
for (int i = 0; i < Representation::kNumRepresentations; i++) {
dest[i] += indirect_uses_[i];
}
}
void HPhi::ResetInteger32Uses() {
non_phi_uses_[Representation::kInteger32] = 0;
indirect_uses_[Representation::kInteger32] = 0;
}
void HSimulate::PrintDataTo(StringStream* stream) {
stream->Add("id=%d", ast_id());
if (pop_count_ > 0) stream->Add(" pop %d", pop_count_);
if (values_.length() > 0) {
if (pop_count_ > 0) stream->Add(" /");
for (int i = 0; i < values_.length(); ++i) {
if (i > 0) stream->Add(",");
if (HasAssignedIndexAt(i)) {
stream->Add(" var[%d] = ", GetAssignedIndexAt(i));
} else {
stream->Add(" push ");
}
values_[i]->PrintNameTo(stream);
}
}
}
void HDeoptimize::PrintDataTo(StringStream* stream) {
if (OperandCount() == 0) return;
OperandAt(0)->PrintNameTo(stream);
for (int i = 1; i < OperandCount(); ++i) {
stream->Add(" ");
OperandAt(i)->PrintNameTo(stream);
}
}
void HEnterInlined::PrintDataTo(StringStream* stream) {
SmartArrayPointer<char> name = function()->debug_name()->ToCString();
stream->Add("%s, id=%d", *name, function()->id());
}
static bool IsInteger32(double value) {
double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
return BitCast<int64_t>(roundtrip_value) == BitCast<int64_t>(value);
}
HConstant::HConstant(Handle<Object> handle, Representation r)
: handle_(handle),
has_int32_value_(false),
has_double_value_(false) {
set_representation(r);
SetFlag(kUseGVN);
if (handle_->IsNumber()) {
double n = handle_->Number();
has_int32_value_ = IsInteger32(n);
int32_value_ = DoubleToInt32(n);
double_value_ = n;
has_double_value_ = true;
}
}
HConstant::HConstant(int32_t integer_value, Representation r)
: has_int32_value_(true),
has_double_value_(true),
int32_value_(integer_value),
double_value_(FastI2D(integer_value)) {
set_representation(r);
SetFlag(kUseGVN);
}
HConstant::HConstant(double double_value, Representation r)
: has_int32_value_(IsInteger32(double_value)),
has_double_value_(true),
int32_value_(DoubleToInt32(double_value)),
double_value_(double_value) {
set_representation(r);
SetFlag(kUseGVN);
}
HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
if (r.IsInteger32() && !has_int32_value_) return NULL;
if (r.IsDouble() && !has_double_value_) return NULL;
if (handle_.is_null()) {
ASSERT(has_int32_value_ || has_double_value_);
if (has_int32_value_) return new(zone) HConstant(int32_value_, r);
return new(zone) HConstant(double_value_, r);
}
return new(zone) HConstant(handle_, r);
}
HConstant* HConstant::CopyToTruncatedInt32(Zone* zone) const {
if (has_int32_value_) {
if (handle_.is_null()) {
return new(zone) HConstant(int32_value_, Representation::Integer32());
} else {
// Re-use the existing Handle if possible.
return new(zone) HConstant(handle_, Representation::Integer32());
}
} else if (has_double_value_) {
return new(zone) HConstant(DoubleToInt32(double_value_),
Representation::Integer32());
} else {
return NULL;
}
}
bool HConstant::ToBoolean() {
// Converts the constant's boolean value according to
// ECMAScript section 9.2 ToBoolean conversion.
if (HasInteger32Value()) return Integer32Value() != 0;
if (HasDoubleValue()) {
double v = DoubleValue();
return v != 0 && !isnan(v);
}
Handle<Object> literal = handle();
if (literal->IsTrue()) return true;
if (literal->IsFalse()) return false;
if (literal->IsUndefined()) return false;
if (literal->IsNull()) return false;
if (literal->IsString() && String::cast(*literal)->length() == 0) {
return false;
}
return true;
}
void HConstant::PrintDataTo(StringStream* stream) {
if (has_int32_value_) {
stream->Add("%d ", int32_value_);
} else if (has_double_value_) {
stream->Add("%lf ", FmtElm(double_value_));
} else {
handle()->ShortPrint(stream);
}
}
bool HArrayLiteral::IsCopyOnWrite() const {
if (!boilerplate_object_->IsJSObject()) return false;
return Handle<JSObject>::cast(boilerplate_object_)->elements()->map() ==
HEAP->fixed_cow_array_map();
}
void HBinaryOperation::PrintDataTo(StringStream* stream) {
left()->PrintNameTo(stream);
stream->Add(" ");
right()->PrintNameTo(stream);
if (CheckFlag(kCanOverflow)) stream->Add(" !");
if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
}
Range* HBitwise::InferRange(Zone* zone) {
if (op() == Token::BIT_XOR) return HValue::InferRange(zone);
const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
int32_t left_mask = (left()->range() != NULL)
? left()->range()->Mask()
: kDefaultMask;
int32_t right_mask = (right()->range() != NULL)
? right()->range()->Mask()
: kDefaultMask;
int32_t result_mask = (op() == Token::BIT_AND)
? left_mask & right_mask
: left_mask | right_mask;
return (result_mask >= 0)
? new(zone) Range(0, result_mask)
: HValue::InferRange(zone);
}
Range* HSar::InferRange(Zone* zone) {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
Range* result = (left()->range() != NULL)
? left()->range()->Copy(zone)
: new(zone) Range();
result->Sar(c->Integer32Value());
result->set_can_be_minus_zero(false);
return result;
}
}
return HValue::InferRange(zone);
}
Range* HShr::InferRange(Zone* zone) {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
int shift_count = c->Integer32Value() & 0x1f;
if (left()->range()->CanBeNegative()) {
// Only compute bounds if the result always fits into an int32.
return (shift_count >= 1)
? new(zone) Range(0,
static_cast<uint32_t>(0xffffffff) >> shift_count)
: new(zone) Range();
} else {
// For positive inputs we can use the >> operator.
Range* result = (left()->range() != NULL)
? left()->range()->Copy(zone)
: new(zone) Range();
result->Sar(c->Integer32Value());
result->set_can_be_minus_zero(false);
return result;
}
}
}
return HValue::InferRange(zone);
}
Range* HShl::InferRange(Zone* zone) {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
Range* result = (left()->range() != NULL)
? left()->range()->Copy(zone)
: new(zone) Range();
result->Shl(c->Integer32Value());
result->set_can_be_minus_zero(false);
return result;
}
}
return HValue::InferRange(zone);
}
Range* HLoadKeyedSpecializedArrayElement::InferRange(Zone* zone) {
switch (elements_kind()) {
case EXTERNAL_PIXEL_ELEMENTS:
return new(zone) Range(0, 255);
case EXTERNAL_BYTE_ELEMENTS:
return new(zone) Range(-128, 127);
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
return new(zone) Range(0, 255);
case EXTERNAL_SHORT_ELEMENTS:
return new(zone) Range(-32768, 32767);
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
return new(zone) Range(0, 65535);
default:
return HValue::InferRange(zone);
}
}
void HCompareGeneric::PrintDataTo(StringStream* stream) {
stream->Add(Token::Name(token()));
stream->Add(" ");
HBinaryOperation::PrintDataTo(stream);
}
void HStringCompareAndBranch::PrintDataTo(StringStream* stream) {
stream->Add(Token::Name(token()));
stream->Add(" ");
HControlInstruction::PrintDataTo(stream);
}
void HCompareIDAndBranch::PrintDataTo(StringStream* stream) {
stream->Add(Token::Name(token()));
stream->Add(" ");
left()->PrintNameTo(stream);
stream->Add(" ");
right()->PrintNameTo(stream);
HControlInstruction::PrintDataTo(stream);
}
void HCompareObjectEqAndBranch::PrintDataTo(StringStream* stream) {
left()->PrintNameTo(stream);
stream->Add(" ");
right()->PrintNameTo(stream);
HControlInstruction::PrintDataTo(stream);
}
void HGoto::PrintDataTo(StringStream* stream) {
stream->Add("B%d", SuccessorAt(0)->block_id());
}
void HCompareIDAndBranch::SetInputRepresentation(Representation r) {
input_representation_ = r;
if (r.IsDouble()) {
// According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
// and !=) have special handling of undefined, e.g. undefined == undefined
// is 'true'. Relational comparisons have a different semantic, first
// calling ToPrimitive() on their arguments. The standard Crankshaft
// tagged-to-double conversion to ensure the HCompareIDAndBranch's inputs
// are doubles caused 'undefined' to be converted to NaN. That's compatible
// out-of-the box with ordered relational comparisons (<, >, <=,
// >=). However, for equality comparisons (and for 'in' and 'instanceof'),
// it is not consistent with the spec. For example, it would cause undefined
// == undefined (should be true) to be evaluated as NaN == NaN
// (false). Therefore, any comparisons other than ordered relational
// comparisons must cause a deopt when one of their arguments is undefined.
// See also v8:1434
if (!Token::IsOrderedRelationalCompareOp(token_)) {
SetFlag(kDeoptimizeOnUndefined);
}
} else {
ASSERT(r.IsInteger32());
}
}
void HParameter::PrintDataTo(StringStream* stream) {
stream->Add("%u", index());
}
void HLoadNamedField::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(" @%d%s", offset(), is_in_object() ? "[in-object]" : "");
}
// Returns true if an instance of this map can never find a property with this
// name in its prototype chain. This means all prototypes up to the top are
// fast and don't have the name in them. It would be good if we could optimize
// polymorphic loads where the property is sometimes found in the prototype
// chain.
static bool PrototypeChainCanNeverResolve(
Handle<Map> map, Handle<String> name) {
Isolate* isolate = map->GetIsolate();
Object* current = map->prototype();
while (current != isolate->heap()->null_value()) {
if (current->IsJSGlobalProxy() ||
current->IsGlobalObject() ||
!current->IsJSObject() ||
JSObject::cast(current)->IsAccessCheckNeeded() ||
!JSObject::cast(current)->HasFastProperties()) {
return false;
}
LookupResult lookup(isolate);
Map* map = JSObject::cast(current)->map();
map->LookupDescriptor(NULL, *name, &lookup);
if (lookup.IsFound()) return false;
if (!lookup.IsCacheable()) return false;
current = JSObject::cast(current)->GetPrototype();
}
return true;
}
HLoadNamedFieldPolymorphic::HLoadNamedFieldPolymorphic(HValue* context,
HValue* object,
SmallMapList* types,
Handle<String> name,
Zone* zone)
: types_(Min(types->length(), kMaxLoadPolymorphism), zone),
name_(name),
need_generic_(false) {
SetOperandAt(0, context);
SetOperandAt(1, object);
set_representation(Representation::Tagged());
SetGVNFlag(kDependsOnMaps);
SmallMapList negative_lookups;
for (int i = 0;
i < types->length() && types_.length() < kMaxLoadPolymorphism;
++i) {
Handle<Map> map = types->at(i);
LookupResult lookup(map->GetIsolate());
map->LookupDescriptor(NULL, *name, &lookup);
if (lookup.IsFound()) {
switch (lookup.type()) {
case FIELD: {
int index = lookup.GetLocalFieldIndexFromMap(*map);
if (index < 0) {
SetGVNFlag(kDependsOnInobjectFields);
} else {
SetGVNFlag(kDependsOnBackingStoreFields);
}
types_.Add(types->at(i), zone);
break;
}
case CONSTANT_FUNCTION:
types_.Add(types->at(i), zone);
break;
case CALLBACKS:
break;
case TRANSITION:
case INTERCEPTOR:
case NONEXISTENT:
case NORMAL:
case HANDLER:
UNREACHABLE();
break;
}
} else if (lookup.IsCacheable() &&
PrototypeChainCanNeverResolve(map, name)) {
negative_lookups.Add(types->at(i), zone);
}
}
bool need_generic =
(types->length() != negative_lookups.length() + types_.length());
if (!need_generic && FLAG_deoptimize_uncommon_cases) {
SetFlag(kUseGVN);
for (int i = 0; i < negative_lookups.length(); i++) {
types_.Add(negative_lookups.at(i), zone);
}
} else {
// We don't have an easy way to handle both a call (to the generic stub) and
// a deopt in the same hydrogen instruction, so in this case we don't add
// the negative lookups which can deopt - just let the generic stub handle
// them.
SetAllSideEffects();
need_generic_ = true;
}
}
bool HLoadNamedFieldPolymorphic::DataEquals(HValue* value) {
HLoadNamedFieldPolymorphic* other = HLoadNamedFieldPolymorphic::cast(value);
if (types_.length() != other->types()->length()) return false;
if (!name_.is_identical_to(other->name())) return false;
if (need_generic_ != other->need_generic_) return false;
for (int i = 0; i < types_.length(); i++) {
bool found = false;
for (int j = 0; j < types_.length(); j++) {
if (types_.at(j).is_identical_to(other->types()->at(i))) {
found = true;
break;
}
}
if (!found) return false;
}
return true;
}
void HLoadNamedFieldPolymorphic::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(".");
stream->Add(*String::cast(*name())->ToCString());
}
void HLoadNamedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(".");
stream->Add(*String::cast(*name())->ToCString());
}
void HLoadKeyedFastElement::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("]");
if (RequiresHoleCheck()) {
stream->Add(" check_hole");
}
}
bool HLoadKeyedFastElement::RequiresHoleCheck() {
if (IsFastPackedElementsKind(elements_kind())) {
return false;
}
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (!use->IsChange()) return true;
}
return false;
}
void HLoadKeyedFastDoubleElement::PrintDataTo(StringStream* stream) {
elements()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("]");
}
void HLoadKeyedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("]");
}
HValue* HLoadKeyedGeneric::Canonicalize() {
// Recognize generic keyed loads that use property name generated
// by for-in statement as a key and rewrite them into fast property load
// by index.
if (key()->IsLoadKeyedFastElement()) {
HLoadKeyedFastElement* key_load = HLoadKeyedFastElement::cast(key());
if (key_load->object()->IsForInCacheArray()) {
HForInCacheArray* names_cache =
HForInCacheArray::cast(key_load->object());
if (names_cache->enumerable() == object()) {
HForInCacheArray* index_cache =
names_cache->index_cache();
HCheckMapValue* map_check =
new(block()->zone()) HCheckMapValue(object(), names_cache->map());
HInstruction* index = new(block()->zone()) HLoadKeyedFastElement(
index_cache,
key_load->key());
map_check->InsertBefore(this);
index->InsertBefore(this);
HLoadFieldByIndex* load = new(block()->zone()) HLoadFieldByIndex(
object(), index);
load->InsertBefore(this);
return load;
}
}
}
return this;
}
void HLoadKeyedSpecializedArrayElement::PrintDataTo(
StringStream* stream) {
external_pointer()->PrintNameTo(stream);
stream->Add(".");
switch (elements_kind()) {
case EXTERNAL_BYTE_ELEMENTS:
stream->Add("byte");
break;
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
stream->Add("u_byte");
break;
case EXTERNAL_SHORT_ELEMENTS:
stream->Add("short");
break;
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
stream->Add("u_short");
break;
case EXTERNAL_INT_ELEMENTS:
stream->Add("int");
break;
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
stream->Add("u_int");
break;
case EXTERNAL_FLOAT_ELEMENTS:
stream->Add("float");
break;
case EXTERNAL_DOUBLE_ELEMENTS:
stream->Add("double");
break;
case EXTERNAL_PIXEL_ELEMENTS:
stream->Add("pixel");
break;
case FAST_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("]");
}
void HStoreNamedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(".");
ASSERT(name()->IsString());
stream->Add(*String::cast(*name())->ToCString());
stream->Add(" = ");
value()->PrintNameTo(stream);
}
void HStoreNamedField::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(".");
stream->Add(*String::cast(*name())->ToCString());
stream->Add(" = ");
value()->PrintNameTo(stream);
stream->Add(" @%d%s", offset(), is_in_object() ? "[in-object]" : "");
if (NeedsWriteBarrier()) {
stream->Add(" (write-barrier)");
}
if (!transition().is_null()) {
stream->Add(" (transition map %p)", *transition());
}
}
void HStoreKeyedFastElement::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("] = ");
value()->PrintNameTo(stream);
}
void HStoreKeyedFastDoubleElement::PrintDataTo(StringStream* stream) {
elements()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("] = ");
value()->PrintNameTo(stream);
}
void HStoreKeyedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("] = ");
value()->PrintNameTo(stream);
}
void HStoreKeyedSpecializedArrayElement::PrintDataTo(
StringStream* stream) {
external_pointer()->PrintNameTo(stream);
stream->Add(".");
switch (elements_kind()) {
case EXTERNAL_BYTE_ELEMENTS:
stream->Add("byte");
break;
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
stream->Add("u_byte");
break;
case EXTERNAL_SHORT_ELEMENTS:
stream->Add("short");
break;
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
stream->Add("u_short");
break;
case EXTERNAL_INT_ELEMENTS:
stream->Add("int");
break;
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
stream->Add("u_int");
break;
case EXTERNAL_FLOAT_ELEMENTS:
stream->Add("float");
break;
case EXTERNAL_DOUBLE_ELEMENTS:
stream->Add("double");
break;
case EXTERNAL_PIXEL_ELEMENTS:
stream->Add("pixel");
break;
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("] = ");
value()->PrintNameTo(stream);
}
void HTransitionElementsKind::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
ElementsKind from_kind = original_map()->elements_kind();
ElementsKind to_kind = transitioned_map()->elements_kind();
stream->Add(" %p [%s] -> %p [%s]",
*original_map(),
ElementsAccessor::ForKind(from_kind)->name(),
*transitioned_map(),
ElementsAccessor::ForKind(to_kind)->name());
}
void HLoadGlobalCell::PrintDataTo(StringStream* stream) {
stream->Add("[%p]", *cell());
if (!details_.IsDontDelete()) stream->Add(" (deleteable)");
if (details_.IsReadOnly()) stream->Add(" (read-only)");
}
bool HLoadGlobalCell::RequiresHoleCheck() {
if (details_.IsDontDelete() && !details_.IsReadOnly()) return false;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (!use->IsChange()) return true;
}
return false;
}
void HLoadGlobalGeneric::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
}
void HStoreGlobalCell::PrintDataTo(StringStream* stream) {
stream->Add("[%p] = ", *cell());
value()->PrintNameTo(stream);
if (!details_.IsDontDelete()) stream->Add(" (deleteable)");
if (details_.IsReadOnly()) stream->Add(" (read-only)");
}
void HStoreGlobalGeneric::PrintDataTo(StringStream* stream) {
stream->Add("%o = ", *name());
value()->PrintNameTo(stream);
}
void HLoadContextSlot::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add("[%d]", slot_index());
}
void HStoreContextSlot::PrintDataTo(StringStream* stream) {
context()->PrintNameTo(stream);
stream->Add("[%d] = ", slot_index());
value()->PrintNameTo(stream);
}
// Implementation of type inference and type conversions. Calculates
// the inferred type of this instruction based on the input operands.
HType HValue::CalculateInferredType() {
return type_;
}
HType HCheckMaps::CalculateInferredType() {
return value()->type();
}
HType HCheckFunction::CalculateInferredType() {
return value()->type();
}
HType HCheckNonSmi::CalculateInferredType() {
// TODO(kasperl): Is there any way to signal that this isn't a smi?
return HType::Tagged();
}
HType HCheckSmi::CalculateInferredType() {
return HType::Smi();
}
HType HPhi::CalculateInferredType() {
HType result = HType::Uninitialized();
for (int i = 0; i < OperandCount(); ++i) {
HType current = OperandAt(i)->type();
result = result.Combine(current);
}
return result;
}
HType HConstant::CalculateInferredType() {
if (has_int32_value_) {
return Smi::IsValid(int32_value_) ? HType::Smi() : HType::HeapNumber();
}
if (has_double_value_) return HType::HeapNumber();
return HType::TypeFromValue(handle_);
}
HType HCompareGeneric::CalculateInferredType() {
return HType::Boolean();
}
HType HInstanceOf::CalculateInferredType() {
return HType::Boolean();
}
HType HDeleteProperty::CalculateInferredType() {
return HType::Boolean();
}
HType HInstanceOfKnownGlobal::CalculateInferredType() {
return HType::Boolean();
}
HType HChange::CalculateInferredType() {
if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
return type();
}
HType HBitwiseBinaryOperation::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HArithmeticBinaryOperation::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HAdd::CalculateInferredType() {
return HType::Tagged();
}
HType HBitNot::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HUnaryMathOperation::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HStringCharFromCode::CalculateInferredType() {
return HType::String();
}
HType HAllocateObject::CalculateInferredType() {
return HType::JSObject();
}
HType HFastLiteral::CalculateInferredType() {
// TODO(mstarzinger): Be smarter, could also be JSArray here.
return HType::JSObject();
}
HType HArrayLiteral::CalculateInferredType() {
return HType::JSArray();
}
HType HObjectLiteral::CalculateInferredType() {
return HType::JSObject();
}
HType HRegExpLiteral::CalculateInferredType() {
return HType::JSObject();
}
HType HFunctionLiteral::CalculateInferredType() {
return HType::JSObject();
}
HValue* HUnaryMathOperation::EnsureAndPropagateNotMinusZero(
BitVector* visited) {
visited->Add(id());
if (representation().IsInteger32() &&
!value()->representation().IsInteger32()) {
if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
}
if (RequiredInputRepresentation(0).IsInteger32() &&
representation().IsInteger32()) {
return value();
}
return NULL;
}
HValue* HChange::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (from().IsInteger32()) return NULL;
if (CanTruncateToInt32()) return NULL;
if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
ASSERT(!from().IsInteger32() || !to().IsInteger32());
return NULL;
}
HValue* HForceRepresentation::EnsureAndPropagateNotMinusZero(
BitVector* visited) {
visited->Add(id());
return value();
}
HValue* HMod::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (range() == NULL || range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
return left();
}
return NULL;
}
HValue* HDiv::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (range() == NULL || range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
return NULL;
}
HValue* HMathFloorOfDiv::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
SetFlag(kBailoutOnMinusZero);
return NULL;
}
HValue* HMul::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (range() == NULL || range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
return NULL;
}
HValue* HSub::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
// Propagate to the left argument. If the left argument cannot be -0, then
// the result of the add operation cannot be either.
if (range() == NULL || range()->CanBeMinusZero()) {
return left();
}
return NULL;
}
HValue* HAdd::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
// Propagate to the left argument. If the left argument cannot be -0, then
// the result of the sub operation cannot be either.
if (range() == NULL || range()->CanBeMinusZero()) {
return left();
}
return NULL;
}
bool HStoreKeyedFastDoubleElement::NeedsCanonicalization() {
// If value was loaded from unboxed double backing store or
// converted from an integer then we don't have to canonicalize it.
if (value()->IsLoadKeyedFastDoubleElement() ||
(value()->IsChange() && HChange::cast(value())->from().IsInteger32())) {
return false;
}
return true;
}
#define H_CONSTANT_INT32(val) \
new(zone) HConstant(FACTORY->NewNumberFromInt(val, TENURED), \
Representation::Integer32())
#define H_CONSTANT_DOUBLE(val) \
new(zone) HConstant(FACTORY->NewNumber(val, TENURED), \
Representation::Double())
#define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op) \
HInstruction* HInstr::New##HInstr(Zone* zone, \
HValue* context, \
HValue* left, \
HValue* right) { \
if (left->IsConstant() && right->IsConstant()) { \
HConstant* c_left = HConstant::cast(left); \
HConstant* c_right = HConstant::cast(right); \
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
double double_res = c_left->DoubleValue() op c_right->DoubleValue(); \
if (TypeInfo::IsInt32Double(double_res)) { \
return H_CONSTANT_INT32(static_cast<int32_t>(double_res)); \
} \
return H_CONSTANT_DOUBLE(double_res); \
} \
} \
return new(zone) HInstr(context, left, right); \
}
DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
#undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
HInstruction* HMod::NewHMod(Zone* zone,
HValue* context,
HValue* left,
HValue* right) {
if (left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
int32_t dividend = c_left->Integer32Value();
int32_t divisor = c_right->Integer32Value();
if (divisor != 0) {
int32_t res = dividend % divisor;
if ((res == 0) && (dividend < 0)) {
return H_CONSTANT_DOUBLE(-0.0);
}
return H_CONSTANT_INT32(res);
}
}
}
return new(zone) HMod(context, left, right);
}
HInstruction* HDiv::NewHDiv(Zone* zone,
HValue* context,
HValue* left,
HValue* right) {
// If left and right are constant values, try to return a constant value.
if (left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
if (c_right->DoubleValue() != 0) {
double double_res = c_left->DoubleValue() / c_right->DoubleValue();
if (TypeInfo::IsInt32Double(double_res)) {
return H_CONSTANT_INT32(static_cast<int32_t>(double_res));
}
return H_CONSTANT_DOUBLE(double_res);
}
}
}
return new(zone) HDiv(context, left, right);
}
HInstruction* HBitwise::NewHBitwise(Zone* zone,
Token::Value op,
HValue* context,
HValue* left,
HValue* right) {
if (left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
int32_t result;
int32_t v_left = c_left->NumberValueAsInteger32();
int32_t v_right = c_right->NumberValueAsInteger32();
switch (op) {
case Token::BIT_XOR:
result = v_left ^ v_right;
break;
case Token::BIT_AND:
result = v_left & v_right;
break;
case Token::BIT_OR:
result = v_left | v_right;
break;
default:
result = 0; // Please the compiler.
UNREACHABLE();
}
return H_CONSTANT_INT32(result);
}
}
return new(zone) HBitwise(op, context, left, right);
}
#define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result) \
HInstruction* HInstr::New##HInstr(Zone* zone, \
HValue* context, \
HValue* left, \
HValue* right) { \
if (left->IsConstant() && right->IsConstant()) { \
HConstant* c_left = HConstant::cast(left); \
HConstant* c_right = HConstant::cast(right); \
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
return H_CONSTANT_INT32(result); \
} \
} \
return new(zone) HInstr(context, left, right); \
}
DEFINE_NEW_H_BITWISE_INSTR(HSar,
c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
DEFINE_NEW_H_BITWISE_INSTR(HShl,
c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
#undef DEFINE_NEW_H_BITWISE_INSTR
HInstruction* HShr::NewHShr(Zone* zone,
HValue* context,
HValue* left,
HValue* right) {
if (left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
int32_t left_val = c_left->NumberValueAsInteger32();
int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
if ((right_val == 0) && (left_val < 0)) {
return H_CONSTANT_DOUBLE(
static_cast<double>(static_cast<uint32_t>(left_val)));
}
return H_CONSTANT_INT32(static_cast<uint32_t>(left_val) >> right_val);
}
}
return new(zone) HShr(context, left, right);
}
#undef H_CONSTANT_INT32
#undef H_CONSTANT_DOUBLE
void HIn::PrintDataTo(StringStream* stream) {
key()->PrintNameTo(stream);
stream->Add(" ");
object()->PrintNameTo(stream);
}
void HBitwise::PrintDataTo(StringStream* stream) {
stream->Add(Token::Name(op_));
stream->Add(" ");
HBitwiseBinaryOperation::PrintDataTo(stream);
}
Representation HPhi::InferredRepresentation() {
bool double_occurred = false;
bool int32_occurred = false;
for (int i = 0; i < OperandCount(); ++i) {
HValue* value = OperandAt(i);
if (value->IsUnknownOSRValue()) {
HPhi* hint_value = HUnknownOSRValue::cast(value)->incoming_value();
if (hint_value != NULL) {
Representation hint = hint_value->representation();
if (hint.IsDouble()) double_occurred = true;
if (hint.IsInteger32()) int32_occurred = true;
}
continue;
}
if (value->representation().IsDouble()) double_occurred = true;
if (value->representation().IsInteger32()) int32_occurred = true;
if (value->representation().IsTagged()) {
if (value->IsConstant()) {
HConstant* constant = HConstant::cast(value);
if (constant->IsConvertibleToInteger()) {
int32_occurred = true;
} else if (constant->HasNumberValue()) {
double_occurred = true;
} else {
return Representation::Tagged();
}
} else {
return Representation::Tagged();
}
}
}
if (double_occurred) return Representation::Double();
if (int32_occurred) return Representation::Integer32();
return Representation::None();
}
// Node-specific verification code is only included in debug mode.
#ifdef DEBUG
void HPhi::Verify() {
ASSERT(OperandCount() == block()->predecessors()->length());
for (int i = 0; i < OperandCount(); ++i) {
HValue* value = OperandAt(i);
HBasicBlock* defining_block = value->block();
HBasicBlock* predecessor_block = block()->predecessors()->at(i);
ASSERT(defining_block == predecessor_block ||
defining_block->Dominates(predecessor_block));
}
}
void HSimulate::Verify() {
HInstruction::Verify();
ASSERT(HasAstId());
}
void HCheckSmi::Verify() {
HInstruction::Verify();
ASSERT(HasNoUses());
}
void HCheckNonSmi::Verify() {
HInstruction::Verify();
ASSERT(HasNoUses());
}
void HCheckFunction::Verify() {
HInstruction::Verify();
ASSERT(HasNoUses());
}
void HCheckPrototypeMaps::Verify() {
HInstruction::Verify();
ASSERT(HasNoUses());
}
#endif
} } // namespace v8::internal