root/source/common/deblock.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. deblockCTU
  2. bsCuEdge
  3. deblockCU
  4. calcBsIdx
  5. setEdgefilterMultiple
  6. setEdgefilterTU
  7. setEdgefilterPU
  8. getBoundaryStrength
  9. calcDP
  10. calcDQ
  11. useStrongFiltering
  12. pelFilterLuma
  13. edgeFilterLuma
  14. edgeFilterChroma

/*****************************************************************************
* Copyright (C) 2013-2017 MulticoreWare, Inc
*
* Author: Gopu Govindaswamy <gopu@multicorewareinc.com>
*         Min Chen <chenm003@163.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/

#include "common.h"
#include "deblock.h"
#include "framedata.h"
#include "picyuv.h"
#include "slice.h"
#include "mv.h"

using namespace X265_NS;

#define DEBLOCK_SMALLEST_BLOCK  8
#define DEFAULT_INTRA_TC_OFFSET 2

void Deblock::deblockCTU(const CUData* ctu, const CUGeom& cuGeom, int32_t dir)
{
    uint8_t blockStrength[MAX_NUM_PARTITIONS];

    memset(blockStrength, 0, sizeof(uint8_t) * cuGeom.numPartitions);

    deblockCU(ctu, cuGeom, dir, blockStrength);
}

static inline uint8_t bsCuEdge(const CUData* cu, uint32_t absPartIdx, int32_t dir)
{
    if (dir == Deblock::EDGE_VER)
    {
        if (cu->m_cuPelX + g_zscanToPelX[absPartIdx] > 0)
        {
            uint32_t    tempPartIdx;
            const CUData* tempCU = cu->getPULeft(tempPartIdx, absPartIdx);
            return tempCU ? 2 : 0;
        }
    }
    else
    {
        if (cu->m_cuPelY + g_zscanToPelY[absPartIdx] > 0)
        {
            uint32_t    tempPartIdx;
            const CUData* tempCU = cu->getPUAbove(tempPartIdx, absPartIdx);
            return tempCU ? 2 : 0;
        }
    }

    return 0;
}

/* Deblocking filter process in CU-based (the same function as conventional's)
 * param Edge the direction of the edge in block boundary (horizonta/vertical), which is added newly */
void Deblock::deblockCU(const CUData* cu, const CUGeom& cuGeom, const int32_t dir, uint8_t blockStrength[])
{
    uint32_t absPartIdx = cuGeom.absPartIdx;
    uint32_t depth = cuGeom.depth;
    if (cu->m_predMode[absPartIdx] == MODE_NONE)
        return;

    if (cu->m_cuDepth[absPartIdx] > depth)
    {
        for (uint32_t subPartIdx = 0; subPartIdx < 4; subPartIdx++)
        {
            const CUGeom& childGeom = *(&cuGeom + cuGeom.childOffset + subPartIdx);
            if (childGeom.flags & CUGeom::PRESENT)
                deblockCU(cu, childGeom, dir, blockStrength);
        }
        return;
    }

    uint32_t numUnits = 1 << (cuGeom.log2CUSize - LOG2_UNIT_SIZE);
    setEdgefilterPU(cu, absPartIdx, dir, blockStrength, numUnits);
    setEdgefilterTU(cu, absPartIdx, 0, dir, blockStrength);
    setEdgefilterMultiple(absPartIdx, dir, 0, bsCuEdge(cu, absPartIdx, dir), blockStrength, numUnits);

    uint32_t numParts = cuGeom.numPartitions;
    for (uint32_t partIdx = absPartIdx; partIdx < absPartIdx + numParts; partIdx++)
    {
        uint32_t bsCheck = !(partIdx & (1 << dir));

        if (bsCheck && blockStrength[partIdx])
            blockStrength[partIdx] = getBoundaryStrength(cu, dir, partIdx, blockStrength);
    }

    const uint32_t partIdxIncr = DEBLOCK_SMALLEST_BLOCK >> LOG2_UNIT_SIZE;
    uint32_t shiftFactor = (dir == EDGE_VER) ? cu->m_hChromaShift : cu->m_vChromaShift;
    uint32_t chromaMask = ((DEBLOCK_SMALLEST_BLOCK << shiftFactor) >> LOG2_UNIT_SIZE) - 1;
    uint32_t e0 = (dir == EDGE_VER ? g_zscanToPelX[absPartIdx] : g_zscanToPelY[absPartIdx]) >> LOG2_UNIT_SIZE;
        
    for (uint32_t e = 0; e < numUnits; e += partIdxIncr)
    {
        edgeFilterLuma(cu, absPartIdx, depth, dir, e, blockStrength);
        if (!((e0 + e) & chromaMask) && cu->m_chromaFormat != X265_CSP_I400)
            edgeFilterChroma(cu, absPartIdx, depth, dir, e, blockStrength);
    }
}

static inline uint32_t calcBsIdx(uint32_t absPartIdx, int32_t dir, int32_t edgeIdx, int32_t baseUnitIdx)
{
    if (dir)
        return g_rasterToZscan[g_zscanToRaster[absPartIdx] + (edgeIdx << LOG2_RASTER_SIZE) + baseUnitIdx];
    else
        return g_rasterToZscan[g_zscanToRaster[absPartIdx] + (baseUnitIdx << LOG2_RASTER_SIZE) + edgeIdx];
}

void Deblock::setEdgefilterMultiple(uint32_t scanIdx, int32_t dir, int32_t edgeIdx, uint8_t value, uint8_t blockStrength[], uint32_t numUnits)
{
    X265_CHECK(numUnits > 0, "numUnits edge filter check\n");
    for (uint32_t i = 0; i < numUnits; i++)
    {
        const uint32_t bsidx = calcBsIdx(scanIdx, dir, edgeIdx, i);
        blockStrength[bsidx] = value;
    }
}

void Deblock::setEdgefilterTU(const CUData* cu, uint32_t absPartIdx, uint32_t tuDepth, int32_t dir, uint8_t blockStrength[])
{
    uint32_t log2TrSize = cu->m_log2CUSize[absPartIdx] - tuDepth;
    if (cu->m_tuDepth[absPartIdx] > tuDepth)
    {
        uint32_t qNumParts = 1 << (log2TrSize - LOG2_UNIT_SIZE - 1) * 2;
        for (uint32_t qIdx = 0; qIdx < 4; ++qIdx, absPartIdx += qNumParts)
            setEdgefilterTU(cu, absPartIdx, tuDepth + 1, dir, blockStrength);
        return;
    }

    uint32_t numUnits = 1 << (log2TrSize - LOG2_UNIT_SIZE);
    setEdgefilterMultiple(absPartIdx, dir, 0, 2, blockStrength, numUnits);
}

void Deblock::setEdgefilterPU(const CUData* cu, uint32_t absPartIdx, int32_t dir, uint8_t blockStrength[], uint32_t numUnits)
{
    const uint32_t hNumUnits = numUnits >> 1;
    const uint32_t qNumUnits = numUnits >> 2;

    switch (cu->m_partSize[absPartIdx])
    {
    case SIZE_2NxN:
        if (EDGE_HOR == dir)
            setEdgefilterMultiple(absPartIdx, dir, hNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_Nx2N:
        if (EDGE_VER == dir)
            setEdgefilterMultiple(absPartIdx, dir, hNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_NxN:
        setEdgefilterMultiple(absPartIdx, dir, hNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_2NxnU:
        if (EDGE_HOR == dir)
            setEdgefilterMultiple(absPartIdx, dir, qNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_nLx2N:
        if (EDGE_VER == dir)
            setEdgefilterMultiple(absPartIdx, dir, qNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_2NxnD:
        if (EDGE_HOR == dir)
            setEdgefilterMultiple(absPartIdx, dir, numUnits - qNumUnits, 1, blockStrength, numUnits);
        break;
    case SIZE_nRx2N:
        if (EDGE_VER == dir)
            setEdgefilterMultiple(absPartIdx, dir, numUnits - qNumUnits, 1, blockStrength, numUnits);
        break;

    case SIZE_2Nx2N:
    default:
        break;
    }
}

uint8_t Deblock::getBoundaryStrength(const CUData* cuQ, int32_t dir, uint32_t partQ, const uint8_t blockStrength[])
{
    // Calculate block index
    uint32_t partP;
    const CUData* cuP = (dir == EDGE_VER ? cuQ->getPULeft(partP, partQ) : cuQ->getPUAbove(partP, partQ));

    // Set BS for Intra MB : BS = 2
    if (cuP->isIntra(partP) || cuQ->isIntra(partQ))
        return 2;

    // Set BS for not Intra MB : BS = 1 or 0
    if (blockStrength[partQ] > 1 &&
        (cuQ->getCbf(partQ, TEXT_LUMA, cuQ->m_tuDepth[partQ]) ||
         cuP->getCbf(partP, TEXT_LUMA, cuP->m_tuDepth[partP])))
        return 1;

    static const MV zeroMv(0, 0);
    const Slice* const sliceQ = cuQ->m_slice;
    const Slice* const sliceP = cuP->m_slice;

    const Frame* refP0 = sliceP->m_refFrameList[0][cuP->m_refIdx[0][partP]];
    const Frame* refQ0 = sliceQ->m_refFrameList[0][cuQ->m_refIdx[0][partQ]];
    const MV& mvP0 = refP0 ? cuP->m_mv[0][partP] : zeroMv;
    const MV& mvQ0 = refQ0 ? cuQ->m_mv[0][partQ] : zeroMv;

    if (sliceQ->isInterP() && sliceP->isInterP())
    {
        return ((refP0 != refQ0) ||
                (abs(mvQ0.x - mvP0.x) >= 4) || (abs(mvQ0.y - mvP0.y) >= 4)) ? 1 : 0;
    }

    // (sliceQ->isInterB() || sliceP->isInterB())
    const Frame* refP1 = sliceP->m_refFrameList[1][cuP->m_refIdx[1][partP]];
    const Frame* refQ1 = sliceQ->m_refFrameList[1][cuQ->m_refIdx[1][partQ]];
    const MV& mvP1 = refP1 ? cuP->m_mv[1][partP] : zeroMv;
    const MV& mvQ1 = refQ1 ? cuQ->m_mv[1][partQ] : zeroMv;

    if (((refP0 == refQ0) && (refP1 == refQ1)) || ((refP0 == refQ1) && (refP1 == refQ0)))
    {
        if (refP0 != refP1) // Different L0 & L1
        {
            if (refP0 == refQ0)
                return ((abs(mvQ0.x - mvP0.x) >= 4) || (abs(mvQ0.y - mvP0.y) >= 4) ||
                        (abs(mvQ1.x - mvP1.x) >= 4) || (abs(mvQ1.y - mvP1.y) >= 4)) ? 1 : 0;
            else
                return ((abs(mvQ1.x - mvP0.x) >= 4) || (abs(mvQ1.y - mvP0.y) >= 4) ||
                        (abs(mvQ0.x - mvP1.x) >= 4) || (abs(mvQ0.y - mvP1.y) >= 4)) ? 1 : 0;
        }
        else // Same L0 & L1
        {
            return (((abs(mvQ0.x - mvP0.x) >= 4) || (abs(mvQ0.y - mvP0.y) >= 4) ||
                     (abs(mvQ1.x - mvP1.x) >= 4) || (abs(mvQ1.y - mvP1.y) >= 4)) &&
                    ((abs(mvQ1.x - mvP0.x) >= 4) || (abs(mvQ1.y - mvP0.y) >= 4) ||
                     (abs(mvQ0.x - mvP1.x) >= 4) || (abs(mvQ0.y - mvP1.y) >= 4))) ? 1 : 0;
        }
    }
        
    // for all different Ref_Idx
    return 1;
}

static inline int32_t calcDP(pixel* src, intptr_t offset)
{
    return abs(static_cast<int32_t>(src[-offset * 3]) - 2 * src[-offset * 2] + src[-offset]);
}

static inline int32_t calcDQ(pixel* src, intptr_t offset)
{
    return abs(static_cast<int32_t>(src[0]) - 2 * src[offset] + src[offset * 2]);
}

static inline bool useStrongFiltering(intptr_t offset, int32_t beta, int32_t tc, pixel* src)
{
    int16_t m4     = (int16_t)src[0];
    int16_t m3     = (int16_t)src[-offset];
    int16_t m7     = (int16_t)src[offset * 3];
    int16_t m0     = (int16_t)src[-offset * 4];
    int32_t strong = abs(m0 - m3) + abs(m7 - m4);

    return (strong < (beta >> 3)) && (abs(m3 - m4) < ((tc * 5 + 1) >> 1));
}

/* Deblocking for the luminance component with strong or weak filter
 * \param src     pointer to picture data
 * \param offset  offset value for picture data
 * \param tc      tc value
 * \param maskP   indicator to enable filtering on partP
 * \param maskQ   indicator to enable filtering on partQ
 * \param maskP1  decision weak filter/no filter for partP
 * \param maskQ1  decision weak filter/no filter for partQ */
static inline void pelFilterLuma(pixel* src, intptr_t srcStep, intptr_t offset, int32_t tc, int32_t maskP, int32_t maskQ,
                                 int32_t maskP1, int32_t maskQ1)
{
    int32_t thrCut = tc * 10;
    int32_t tc2 = tc >> 1;
    maskP1 &= maskP;
    maskQ1 &= maskQ;

    for (int32_t i = 0; i < UNIT_SIZE; i++, src += srcStep)
    {
        int16_t m4  = (int16_t)src[0];
        int16_t m3  = (int16_t)src[-offset];
        int16_t m5  = (int16_t)src[offset];
        int16_t m2  = (int16_t)src[-offset * 2];

        int32_t delta = (9 * (m4 - m3) - 3 * (m5 - m2) + 8) >> 4;

        if (abs(delta) < thrCut)
        {
            delta = x265_clip3(-tc, tc, delta);

            src[-offset] = x265_clip(m3 + (delta & maskP));
            src[0] = x265_clip(m4 - (delta & maskQ));
            if (maskP1)
            {
                int16_t m1  = (int16_t)src[-offset * 3];
                int32_t delta1 = x265_clip3(-tc2, tc2, ((((m1 + m3 + 1) >> 1) - m2 + delta) >> 1));
                src[-offset * 2] = x265_clip(m2 + delta1);
            }
            if (maskQ1)
            {
                int16_t m6  = (int16_t)src[offset * 2];
                int32_t delta2 = x265_clip3(-tc2, tc2, ((((m6 + m4 + 1) >> 1) - m5 - delta) >> 1));
                src[offset] = x265_clip(m5 + delta2);
            }
        }
    }
}

void Deblock::edgeFilterLuma(const CUData* cuQ, uint32_t absPartIdx, uint32_t depth, int32_t dir, int32_t edge, const uint8_t blockStrength[])
{
    PicYuv* reconPic = cuQ->m_encData->m_reconPic;
    pixel* src = reconPic->getLumaAddr(cuQ->m_cuAddr, absPartIdx);
    intptr_t stride = reconPic->m_stride;
    const PPS* pps = cuQ->m_slice->m_pps;

    intptr_t offset, srcStep;

    int32_t maskP = -1;
    int32_t maskQ = -1;
    int32_t betaOffset = pps->deblockingFilterBetaOffsetDiv2 << 1;
    int32_t tcOffset = pps->deblockingFilterTcOffsetDiv2 << 1;
    bool bCheckNoFilter = pps->bTransquantBypassEnabled;

    if (dir == EDGE_VER)
    {
        offset = 1;
        srcStep = stride;
        src += (edge << LOG2_UNIT_SIZE);
    }
    else // (dir == EDGE_HOR)
    {
        offset = stride;
        srcStep = 1;
        src += (edge << LOG2_UNIT_SIZE) * stride;
    }

    uint32_t numUnits = cuQ->m_slice->m_sps->numPartInCUSize >> depth;
    for (uint32_t idx = 0; idx < numUnits; idx++)
    {
        uint32_t partQ = calcBsIdx(absPartIdx, dir, edge, idx);
        uint32_t bs = blockStrength[partQ];

        if (!bs)
            continue;

        // Derive neighboring PU index
        uint32_t partP;
        const CUData* cuP = (dir == EDGE_VER ? cuQ->getPULeft(partP, partQ) : cuQ->getPUAbove(partP, partQ));

        if (bCheckNoFilter)
        {
            // check if each of PUs is lossless coded
            maskP = cuP->m_tqBypass[partP] - 1;
            maskQ = cuQ->m_tqBypass[partQ] - 1;
            if (!(maskP | maskQ))
                continue;
        }

        int32_t qpQ = cuQ->m_qp[partQ];
        int32_t qpP = cuP->m_qp[partP];
        int32_t qp  = (qpP + qpQ + 1) >> 1;

        int32_t indexB = x265_clip3(0, QP_MAX_SPEC, qp + betaOffset);

        const int32_t bitdepthShift = X265_DEPTH - 8;
        int32_t beta = s_betaTable[indexB] << bitdepthShift;

        intptr_t unitOffset = idx * srcStep << LOG2_UNIT_SIZE;
        int32_t dp0 = calcDP(src + unitOffset              , offset);
        int32_t dq0 = calcDQ(src + unitOffset              , offset);
        int32_t dp3 = calcDP(src + unitOffset + srcStep * 3, offset);
        int32_t dq3 = calcDQ(src + unitOffset + srcStep * 3, offset);
        int32_t d0 = dp0 + dq0;
        int32_t d3 = dp3 + dq3;

        int32_t d =  d0 + d3;

        if (d >= beta)
            continue;

        int32_t indexTC = x265_clip3(0, QP_MAX_SPEC + DEFAULT_INTRA_TC_OFFSET, int32_t(qp + DEFAULT_INTRA_TC_OFFSET * (bs - 1) + tcOffset));
        int32_t tc = s_tcTable[indexTC] << bitdepthShift;

        bool sw = (2 * d0 < (beta >> 2) &&
                   2 * d3 < (beta >> 2) &&
                   useStrongFiltering(offset, beta, tc, src + unitOffset              ) &&
                   useStrongFiltering(offset, beta, tc, src + unitOffset + srcStep * 3));

        if (sw)
        {
            int32_t tc2 = 2 * tc;
            int32_t tcP = (tc2 & maskP);
            int32_t tcQ = (tc2 & maskQ);
            primitives.pelFilterLumaStrong[dir](src + unitOffset, srcStep, offset, tcP, tcQ);
        }
        else
        {
            int32_t sideThreshold = (beta + (beta >> 1)) >> 3;
            int32_t dp = dp0 + dp3;
            int32_t dq = dq0 + dq3;
            int32_t maskP1 = (dp < sideThreshold ? -1 : 0);
            int32_t maskQ1 = (dq < sideThreshold ? -1 : 0);

            pelFilterLuma(src + unitOffset, srcStep, offset, tc, maskP, maskQ, maskP1, maskQ1);
        }
    }
}

void Deblock::edgeFilterChroma(const CUData* cuQ, uint32_t absPartIdx, uint32_t depth, int32_t dir, int32_t edge, const uint8_t blockStrength[])
{
    int32_t chFmt = cuQ->m_chromaFormat, chromaShift;
    intptr_t offset, srcStep;
    const PPS* pps = cuQ->m_slice->m_pps;

    int32_t maskP = -1;
    int32_t maskQ = -1;
    int32_t tcOffset = pps->deblockingFilterTcOffsetDiv2 << 1;

    X265_CHECK(((dir == EDGE_VER)
                ? ((g_zscanToPelX[absPartIdx] + edge * UNIT_SIZE) >> cuQ->m_hChromaShift)
                : ((g_zscanToPelY[absPartIdx] + edge * UNIT_SIZE) >> cuQ->m_vChromaShift)) % DEBLOCK_SMALLEST_BLOCK == 0,
               "invalid edge\n");

    PicYuv* reconPic = cuQ->m_encData->m_reconPic;
    intptr_t stride = reconPic->m_strideC;
    intptr_t srcOffset = reconPic->getChromaAddrOffset(cuQ->m_cuAddr, absPartIdx);
    bool bCheckNoFilter = pps->bTransquantBypassEnabled;

    if (dir == EDGE_VER)
    {
        chromaShift = cuQ->m_vChromaShift;
        srcOffset += (edge << (LOG2_UNIT_SIZE - cuQ->m_hChromaShift));
        offset     = 1;
        srcStep    = stride;
    }
    else // (dir == EDGE_HOR)
    {
        chromaShift = cuQ->m_hChromaShift;
        srcOffset += edge * stride << (LOG2_UNIT_SIZE - cuQ->m_vChromaShift);
        offset     = stride;
        srcStep    = 1;
    }

    pixel* srcChroma[2];
    srcChroma[0] = reconPic->m_picOrg[1] + srcOffset;
    srcChroma[1] = reconPic->m_picOrg[2] + srcOffset;

    uint32_t numUnits = cuQ->m_slice->m_sps->numPartInCUSize >> (depth + chromaShift);
    for (uint32_t idx = 0; idx < numUnits; idx++)
    {
        uint32_t partQ = calcBsIdx(absPartIdx, dir, edge, idx << chromaShift);
        uint32_t bs = blockStrength[partQ];

        if (bs <= 1)
            continue;

        // Derive neighboring PU index
        uint32_t partP;
        const CUData* cuP = (dir == EDGE_VER ? cuQ->getPULeft(partP, partQ) : cuQ->getPUAbove(partP, partQ));

        if (bCheckNoFilter)
        {
            // check if each of PUs is lossless coded
            maskP = (cuP->m_tqBypass[partP] ? 0 : -1);
            maskQ = (cuQ->m_tqBypass[partQ] ? 0 : -1);
            if (!(maskP | maskQ))
                continue;
        }

        int32_t qpQ = cuQ->m_qp[partQ];
        int32_t qpP = cuP->m_qp[partP];
        int32_t qpA = (qpP + qpQ + 1) >> 1;

        intptr_t unitOffset = idx * srcStep << LOG2_UNIT_SIZE;
        for (uint32_t chromaIdx = 0; chromaIdx < 2; chromaIdx++)
        {
            int32_t qp = qpA + pps->chromaQpOffset[chromaIdx];
            if (qp >= 30)
                qp = chFmt == X265_CSP_I420 ? g_chromaScale[qp] : X265_MIN(qp, QP_MAX_SPEC);

            int32_t indexTC = x265_clip3(0, QP_MAX_SPEC + DEFAULT_INTRA_TC_OFFSET, int32_t(qp + DEFAULT_INTRA_TC_OFFSET + tcOffset));
            const int32_t bitdepthShift = X265_DEPTH - 8;
            int32_t tc = s_tcTable[indexTC] << bitdepthShift;
            pixel* srcC = srcChroma[chromaIdx];

            primitives.pelFilterChroma[dir](srcC + unitOffset, srcStep, offset, tc, maskP, maskQ);
        }
    }
}

const uint8_t Deblock::s_tcTable[54] =
{
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
    2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24
};

const uint8_t Deblock::s_betaTable[52] =
{
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
    18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64
};


/* [<][>][^][v][top][bottom][index][help] */