root/src/liblzma/lzma/lzma2_decoder.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. lzma2_decode
  2. lzma2_decoder_end
  3. lzma2_decoder_init
  4. lzma_lzma2_decoder_init
  5. lzma_lzma2_decoder_memusage
  6. lzma_lzma2_props_decode

///////////////////////////////////////////////////////////////////////////////
//
/// \file       lzma2_decoder.c
/// \brief      LZMA2 decoder
///
//  Authors:    Igor Pavlov
//              Lasse Collin
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#include "lzma2_decoder.h"
#include "lz_decoder.h"
#include "lzma_decoder.h"


struct lzma_coder_s {
        enum sequence {
                SEQ_CONTROL,
                SEQ_UNCOMPRESSED_1,
                SEQ_UNCOMPRESSED_2,
                SEQ_COMPRESSED_0,
                SEQ_COMPRESSED_1,
                SEQ_PROPERTIES,
                SEQ_LZMA,
                SEQ_COPY,
        } sequence;

        /// Sequence after the size fields have been decoded.
        enum sequence next_sequence;

        /// LZMA decoder
        lzma_lz_decoder lzma;

        /// Uncompressed size of LZMA chunk
        size_t uncompressed_size;

        /// Compressed size of the chunk (naturally equals to uncompressed
        /// size of uncompressed chunk)
        size_t compressed_size;

        /// True if properties are needed. This is false before the
        /// first LZMA chunk.
        bool need_properties;

        /// True if dictionary reset is needed. This is false before the
        /// first chunk (LZMA or uncompressed).
        bool need_dictionary_reset;

        lzma_options_lzma options;
};


static lzma_ret
lzma2_decode(lzma_coder *restrict coder, lzma_dict *restrict dict,
                const uint8_t *restrict in, size_t *restrict in_pos,
                size_t in_size)
{
        // With SEQ_LZMA it is possible that no new input is needed to do
        // some progress. The rest of the sequences assume that there is
        // at least one byte of input.
        while (*in_pos < in_size || coder->sequence == SEQ_LZMA)
        switch (coder->sequence) {
        case SEQ_CONTROL: {
                const uint32_t control = in[*in_pos];
                ++*in_pos;

                // End marker
                if (control == 0x00)
                        return LZMA_STREAM_END;

                if (control >= 0xE0 || control == 1) {
                        // Dictionary reset implies that next LZMA chunk has
                        // to set new properties.
                        coder->need_properties = true;
                        coder->need_dictionary_reset = true;
                } else if (coder->need_dictionary_reset) {
                        return LZMA_DATA_ERROR;
                }

                if (control >= 0x80) {
                        // LZMA chunk. The highest five bits of the
                        // uncompressed size are taken from the control byte.
                        coder->uncompressed_size = (control & 0x1F) << 16;
                        coder->sequence = SEQ_UNCOMPRESSED_1;

                        // See if there are new properties or if we need to
                        // reset the state.
                        if (control >= 0xC0) {
                                // When there are new properties, state reset
                                // is done at SEQ_PROPERTIES.
                                coder->need_properties = false;
                                coder->next_sequence = SEQ_PROPERTIES;

                        } else if (coder->need_properties) {
                                return LZMA_DATA_ERROR;

                        } else {
                                coder->next_sequence = SEQ_LZMA;

                                // If only state reset is wanted with old
                                // properties, do the resetting here for
                                // simplicity.
                                if (control >= 0xA0)
                                        coder->lzma.reset(coder->lzma.coder,
                                                        &coder->options);
                        }
                } else {
                        // Invalid control values
                        if (control > 2)
                                return LZMA_DATA_ERROR;

                        // It's uncompressed chunk
                        coder->sequence = SEQ_COMPRESSED_0;
                        coder->next_sequence = SEQ_COPY;
                }

                if (coder->need_dictionary_reset) {
                        // Finish the dictionary reset and let the caller
                        // flush the dictionary to the actual output buffer.
                        coder->need_dictionary_reset = false;
                        dict_reset(dict);
                        return LZMA_OK;
                }

                break;
        }

        case SEQ_UNCOMPRESSED_1:
                coder->uncompressed_size += (uint32_t)(in[(*in_pos)++]) << 8;
                coder->sequence = SEQ_UNCOMPRESSED_2;
                break;

        case SEQ_UNCOMPRESSED_2:
                coder->uncompressed_size += in[(*in_pos)++] + 1;
                coder->sequence = SEQ_COMPRESSED_0;
                coder->lzma.set_uncompressed(coder->lzma.coder,
                                coder->uncompressed_size);
                break;

        case SEQ_COMPRESSED_0:
                coder->compressed_size = (uint32_t)(in[(*in_pos)++]) << 8;
                coder->sequence = SEQ_COMPRESSED_1;
                break;

        case SEQ_COMPRESSED_1:
                coder->compressed_size += in[(*in_pos)++] + 1;
                coder->sequence = coder->next_sequence;
                break;

        case SEQ_PROPERTIES:
                if (lzma_lzma_lclppb_decode(&coder->options, in[(*in_pos)++]))
                        return LZMA_DATA_ERROR;

                coder->lzma.reset(coder->lzma.coder, &coder->options);

                coder->sequence = SEQ_LZMA;
                break;

        case SEQ_LZMA: {
                // Store the start offset so that we can update
                // coder->compressed_size later.
                const size_t in_start = *in_pos;

                // Decode from in[] to *dict.
                const lzma_ret ret = coder->lzma.code(coder->lzma.coder,
                                dict, in, in_pos, in_size);

                // Validate and update coder->compressed_size.
                const size_t in_used = *in_pos - in_start;
                if (in_used > coder->compressed_size)
                        return LZMA_DATA_ERROR;

                coder->compressed_size -= in_used;

                // Return if we didn't finish the chunk, or an error occurred.
                if (ret != LZMA_STREAM_END)
                        return ret;

                // The LZMA decoder must have consumed the whole chunk now.
                // We don't need to worry about uncompressed size since it
                // is checked by the LZMA decoder.
                if (coder->compressed_size != 0)
                        return LZMA_DATA_ERROR;

                coder->sequence = SEQ_CONTROL;
                break;
        }

        case SEQ_COPY: {
                // Copy from input to the dictionary as is.
                dict_write(dict, in, in_pos, in_size, &coder->compressed_size);
                if (coder->compressed_size != 0)
                        return LZMA_OK;

                coder->sequence = SEQ_CONTROL;
                break;
        }

        default:
                assert(0);
                return LZMA_PROG_ERROR;
        }

        return LZMA_OK;
}


static void
lzma2_decoder_end(lzma_coder *coder, lzma_allocator *allocator)
{
        assert(coder->lzma.end == NULL);
        lzma_free(coder->lzma.coder, allocator);

        lzma_free(coder, allocator);

        return;
}


static lzma_ret
lzma2_decoder_init(lzma_lz_decoder *lz, lzma_allocator *allocator,
                const void *opt, lzma_lz_options *lz_options)
{
        if (lz->coder == NULL) {
                lz->coder = lzma_alloc(sizeof(lzma_coder), allocator);
                if (lz->coder == NULL)
                        return LZMA_MEM_ERROR;

                lz->code = &lzma2_decode;
                lz->end = &lzma2_decoder_end;

                lz->coder->lzma = LZMA_LZ_DECODER_INIT;
        }

        const lzma_options_lzma *options = opt;

        lz->coder->sequence = SEQ_CONTROL;
        lz->coder->need_properties = true;
        lz->coder->need_dictionary_reset = options->preset_dict == NULL
                        || options->preset_dict_size == 0;

        return lzma_lzma_decoder_create(&lz->coder->lzma,
                        allocator, options, lz_options);
}


extern lzma_ret
lzma_lzma2_decoder_init(lzma_next_coder *next, lzma_allocator *allocator,
                const lzma_filter_info *filters)
{
        // LZMA2 can only be the last filter in the chain. This is enforced
        // by the raw_decoder initialization.
        assert(filters[1].init == NULL);

        return lzma_lz_decoder_init(next, allocator, filters,
                        &lzma2_decoder_init);
}


extern uint64_t
lzma_lzma2_decoder_memusage(const void *options)
{
        return sizeof(lzma_coder)
                        + lzma_lzma_decoder_memusage_nocheck(options);
}


extern lzma_ret
lzma_lzma2_props_decode(void **options, lzma_allocator *allocator,
                const uint8_t *props, size_t props_size)
{
        if (props_size != 1)
                return LZMA_OPTIONS_ERROR;

        // Check that reserved bits are unset.
        if (props[0] & 0xC0)
                return LZMA_OPTIONS_ERROR;

        // Decode the dictionary size.
        if (props[0] > 40)
                return LZMA_OPTIONS_ERROR;

        lzma_options_lzma *opt = lzma_alloc(
                        sizeof(lzma_options_lzma), allocator);
        if (opt == NULL)
                return LZMA_MEM_ERROR;

        if (props[0] == 40) {
                opt->dict_size = UINT32_MAX;
        } else {
                opt->dict_size = 2 | (props[0] & 1);
                opt->dict_size <<= props[0] / 2 + 11;
        }

        opt->preset_dict = NULL;
        opt->preset_dict_size = 0;

        *options = opt;

        return LZMA_OK;
}

/* [<][>][^][v][top][bottom][index][help] */