root/src/liblzma/common/common.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. LZMA_API
  2. LZMA_API
  3. lzma_attribute
  4. lzma_free
  5. lzma_bufcpy
  6. lzma_next_filter_init
  7. lzma_next_filter_update
  8. lzma_next_end
  9. lzma_strm_init
  10. LZMA_API
  11. LZMA_API
  12. LZMA_API
  13. LZMA_API
  14. LZMA_API
  15. LZMA_API

///////////////////////////////////////////////////////////////////////////////
//
/// \file       common.h
/// \brief      Common functions needed in many places in liblzma
//
//  Author:     Lasse Collin
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#include "common.h"


/////////////
// Version //
/////////////

extern LZMA_API(uint32_t)
lzma_version_number(void)
{
        return LZMA_VERSION;
}


extern LZMA_API(const char *)
lzma_version_string(void)
{
        return LZMA_VERSION_STRING;
}


///////////////////////
// Memory allocation //
///////////////////////

extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1)
lzma_alloc(size_t size, lzma_allocator *allocator)
{
        // Some malloc() variants return NULL if called with size == 0.
        if (size == 0)
                size = 1;

        void *ptr;

        if (allocator != NULL && allocator->alloc != NULL)
                ptr = allocator->alloc(allocator->opaque, 1, size);
        else
                ptr = malloc(size);

        return ptr;
}


extern void
lzma_free(void *ptr, lzma_allocator *allocator)
{
        if (allocator != NULL && allocator->free != NULL)
                allocator->free(allocator->opaque, ptr);
        else
                free(ptr);

        return;
}


//////////
// Misc //
//////////

extern size_t
lzma_bufcpy(const uint8_t *restrict in, size_t *restrict in_pos,
                size_t in_size, uint8_t *restrict out,
                size_t *restrict out_pos, size_t out_size)
{
        const size_t in_avail = in_size - *in_pos;
        const size_t out_avail = out_size - *out_pos;
        const size_t copy_size = my_min(in_avail, out_avail);

        memcpy(out + *out_pos, in + *in_pos, copy_size);

        *in_pos += copy_size;
        *out_pos += copy_size;

        return copy_size;
}


extern lzma_ret
lzma_next_filter_init(lzma_next_coder *next, lzma_allocator *allocator,
                const lzma_filter_info *filters)
{
        lzma_next_coder_init(filters[0].init, next, allocator);
        next->id = filters[0].id;
        return filters[0].init == NULL
                        ? LZMA_OK : filters[0].init(next, allocator, filters);
}


extern lzma_ret
lzma_next_filter_update(lzma_next_coder *next, lzma_allocator *allocator,
                const lzma_filter *reversed_filters)
{
        // Check that the application isn't trying to change the Filter ID.
        // End of filters is indicated with LZMA_VLI_UNKNOWN in both
        // reversed_filters[0].id and next->id.
        if (reversed_filters[0].id != next->id)
                return LZMA_PROG_ERROR;

        if (reversed_filters[0].id == LZMA_VLI_UNKNOWN)
                return LZMA_OK;

        assert(next->update != NULL);
        return next->update(next->coder, allocator, NULL, reversed_filters);
}


extern void
lzma_next_end(lzma_next_coder *next, lzma_allocator *allocator)
{
        if (next->init != (uintptr_t)(NULL)) {
                // To avoid tiny end functions that simply call
                // lzma_free(coder, allocator), we allow leaving next->end
                // NULL and call lzma_free() here.
                if (next->end != NULL)
                        next->end(next->coder, allocator);
                else
                        lzma_free(next->coder, allocator);

                // Reset the variables so the we don't accidentally think
                // that it is an already initialized coder.
                *next = LZMA_NEXT_CODER_INIT;
        }

        return;
}


//////////////////////////////////////
// External to internal API wrapper //
//////////////////////////////////////

extern lzma_ret
lzma_strm_init(lzma_stream *strm)
{
        if (strm == NULL)
                return LZMA_PROG_ERROR;

        if (strm->internal == NULL) {
                strm->internal = lzma_alloc(sizeof(lzma_internal),
                                strm->allocator);
                if (strm->internal == NULL)
                        return LZMA_MEM_ERROR;

                strm->internal->next = LZMA_NEXT_CODER_INIT;
        }

        strm->internal->supported_actions[LZMA_RUN] = false;
        strm->internal->supported_actions[LZMA_SYNC_FLUSH] = false;
        strm->internal->supported_actions[LZMA_FULL_FLUSH] = false;
        strm->internal->supported_actions[LZMA_FINISH] = false;
        strm->internal->sequence = ISEQ_RUN;
        strm->internal->allow_buf_error = false;

        strm->total_in = 0;
        strm->total_out = 0;

        return LZMA_OK;
}


extern LZMA_API(lzma_ret)
lzma_code(lzma_stream *strm, lzma_action action)
{
        // Sanity checks
        if ((strm->next_in == NULL && strm->avail_in != 0)
                        || (strm->next_out == NULL && strm->avail_out != 0)
                        || strm->internal == NULL
                        || strm->internal->next.code == NULL
                        || (unsigned int)(action) > LZMA_FINISH
                        || !strm->internal->supported_actions[action])
                return LZMA_PROG_ERROR;

        // Check if unsupported members have been set to non-zero or non-NULL,
        // which would indicate that some new feature is wanted.
        if (strm->reserved_ptr1 != NULL
                        || strm->reserved_ptr2 != NULL
                        || strm->reserved_ptr3 != NULL
                        || strm->reserved_ptr4 != NULL
                        || strm->reserved_int1 != 0
                        || strm->reserved_int2 != 0
                        || strm->reserved_int3 != 0
                        || strm->reserved_int4 != 0
                        || strm->reserved_enum1 != LZMA_RESERVED_ENUM
                        || strm->reserved_enum2 != LZMA_RESERVED_ENUM)
                return LZMA_OPTIONS_ERROR;

        switch (strm->internal->sequence) {
        case ISEQ_RUN:
                switch (action) {
                case LZMA_RUN:
                        break;

                case LZMA_SYNC_FLUSH:
                        strm->internal->sequence = ISEQ_SYNC_FLUSH;
                        break;

                case LZMA_FULL_FLUSH:
                        strm->internal->sequence = ISEQ_FULL_FLUSH;
                        break;

                case LZMA_FINISH:
                        strm->internal->sequence = ISEQ_FINISH;
                        break;
                }

                break;

        case ISEQ_SYNC_FLUSH:
                // The same action must be used until we return
                // LZMA_STREAM_END, and the amount of input must not change.
                if (action != LZMA_SYNC_FLUSH
                                || strm->internal->avail_in != strm->avail_in)
                        return LZMA_PROG_ERROR;

                break;

        case ISEQ_FULL_FLUSH:
                if (action != LZMA_FULL_FLUSH
                                || strm->internal->avail_in != strm->avail_in)
                        return LZMA_PROG_ERROR;

                break;

        case ISEQ_FINISH:
                if (action != LZMA_FINISH
                                || strm->internal->avail_in != strm->avail_in)
                        return LZMA_PROG_ERROR;

                break;

        case ISEQ_END:
                return LZMA_STREAM_END;

        case ISEQ_ERROR:
        default:
                return LZMA_PROG_ERROR;
        }

        size_t in_pos = 0;
        size_t out_pos = 0;
        lzma_ret ret = strm->internal->next.code(
                        strm->internal->next.coder, strm->allocator,
                        strm->next_in, &in_pos, strm->avail_in,
                        strm->next_out, &out_pos, strm->avail_out, action);

        strm->next_in += in_pos;
        strm->avail_in -= in_pos;
        strm->total_in += in_pos;

        strm->next_out += out_pos;
        strm->avail_out -= out_pos;
        strm->total_out += out_pos;

        strm->internal->avail_in = strm->avail_in;

        switch (ret) {
        case LZMA_OK:
                // Don't return LZMA_BUF_ERROR when it happens the first time.
                // This is to avoid returning LZMA_BUF_ERROR when avail_out
                // was zero but still there was no more data left to written
                // to next_out.
                if (out_pos == 0 && in_pos == 0) {
                        if (strm->internal->allow_buf_error)
                                ret = LZMA_BUF_ERROR;
                        else
                                strm->internal->allow_buf_error = true;
                } else {
                        strm->internal->allow_buf_error = false;
                }
                break;

        case LZMA_STREAM_END:
                if (strm->internal->sequence == ISEQ_SYNC_FLUSH
                                || strm->internal->sequence == ISEQ_FULL_FLUSH)
                        strm->internal->sequence = ISEQ_RUN;
                else
                        strm->internal->sequence = ISEQ_END;

        // Fall through

        case LZMA_NO_CHECK:
        case LZMA_UNSUPPORTED_CHECK:
        case LZMA_GET_CHECK:
        case LZMA_MEMLIMIT_ERROR:
                // Something else than LZMA_OK, but not a fatal error,
                // that is, coding may be continued (except if ISEQ_END).
                strm->internal->allow_buf_error = false;
                break;

        default:
                // All the other errors are fatal; coding cannot be continued.
                assert(ret != LZMA_BUF_ERROR);
                strm->internal->sequence = ISEQ_ERROR;
                break;
        }

        return ret;
}


extern LZMA_API(void)
lzma_end(lzma_stream *strm)
{
        if (strm != NULL && strm->internal != NULL) {
                lzma_next_end(&strm->internal->next, strm->allocator);
                lzma_free(strm->internal, strm->allocator);
                strm->internal = NULL;
        }

        return;
}


extern LZMA_API(lzma_check)
lzma_get_check(const lzma_stream *strm)
{
        // Return LZMA_CHECK_NONE if we cannot know the check type.
        // It's a bug in the application if this happens.
        if (strm->internal->next.get_check == NULL)
                return LZMA_CHECK_NONE;

        return strm->internal->next.get_check(strm->internal->next.coder);
}


extern LZMA_API(uint64_t)
lzma_memusage(const lzma_stream *strm)
{
        uint64_t memusage;
        uint64_t old_memlimit;

        if (strm == NULL || strm->internal == NULL
                        || strm->internal->next.memconfig == NULL
                        || strm->internal->next.memconfig(
                                strm->internal->next.coder,
                                &memusage, &old_memlimit, 0) != LZMA_OK)
                return 0;

        return memusage;
}


extern LZMA_API(uint64_t)
lzma_memlimit_get(const lzma_stream *strm)
{
        uint64_t old_memlimit;
        uint64_t memusage;

        if (strm == NULL || strm->internal == NULL
                        || strm->internal->next.memconfig == NULL
                        || strm->internal->next.memconfig(
                                strm->internal->next.coder,
                                &memusage, &old_memlimit, 0) != LZMA_OK)
                return 0;

        return old_memlimit;
}


extern LZMA_API(lzma_ret)
lzma_memlimit_set(lzma_stream *strm, uint64_t new_memlimit)
{
        // Dummy variables to simplify memconfig functions
        uint64_t old_memlimit;
        uint64_t memusage;

        if (strm == NULL || strm->internal == NULL
                        || strm->internal->next.memconfig == NULL)
                return LZMA_PROG_ERROR;

        if (new_memlimit != 0 && new_memlimit < LZMA_MEMUSAGE_BASE)
                return LZMA_MEMLIMIT_ERROR;

        return strm->internal->next.memconfig(strm->internal->next.coder,
                        &memusage, &old_memlimit, new_memlimit);
}

/* [<][>][^][v][top][bottom][index][help] */