root/src/liblzma/common/block_buffer_encoder.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. lzma2_bound
  2. LZMA_API
  3. block_encode_uncompressed
  4. block_encode_normal
  5. LZMA_API

///////////////////////////////////////////////////////////////////////////////
//
/// \file       block_buffer_encoder.c
/// \brief      Single-call .xz Block encoder
//
//  Author:     Lasse Collin
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#include "block_encoder.h"
#include "filter_encoder.h"
#include "lzma2_encoder.h"
#include "check.h"


/// Estimate the maximum size of the Block Header and Check fields for
/// a Block that uses LZMA2 uncompressed chunks. We could use
/// lzma_block_header_size() but this is simpler.
///
/// Block Header Size + Block Flags + Compressed Size
/// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check
/// and round up to the next multiple of four to take Header Padding
/// into account.
#define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \
                + LZMA_CHECK_SIZE_MAX + 3) & ~3)


static lzma_vli
lzma2_bound(lzma_vli uncompressed_size)
{
        // Prevent integer overflow in overhead calculation.
        if (uncompressed_size > COMPRESSED_SIZE_MAX)
                return 0;

        // Calculate the exact overhead of the LZMA2 headers: Round
        // uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX,
        // multiply by the size of per-chunk header, and add one byte for
        // the end marker.
        const lzma_vli overhead = ((uncompressed_size + LZMA2_CHUNK_MAX - 1)
                                / LZMA2_CHUNK_MAX)
                        * LZMA2_HEADER_UNCOMPRESSED + 1;

        // Catch the possible integer overflow.
        if (COMPRESSED_SIZE_MAX - overhead < uncompressed_size)
                return 0;

        return uncompressed_size + overhead;
}


extern LZMA_API(size_t)
lzma_block_buffer_bound(size_t uncompressed_size)
{
        // For now, if the data doesn't compress, we always use uncompressed
        // chunks of LZMA2. In future we may use Subblock filter too, but
        // but for simplicity we probably will still use the same bound
        // calculation even though Subblock filter would have slightly less
        // overhead.
        lzma_vli lzma2_size = lzma2_bound(uncompressed_size);
        if (lzma2_size == 0)
                return 0;

        // Take Block Padding into account.
        lzma2_size = (lzma2_size + 3) & ~LZMA_VLI_C(3);

#if SIZE_MAX < LZMA_VLI_MAX
        // Catch the possible integer overflow on 32-bit systems. There's no
        // overflow on 64-bit systems, because lzma2_bound() already takes
        // into account the size of the headers in the Block.
        if (SIZE_MAX - HEADERS_BOUND < lzma2_size)
                return 0;
#endif

        return HEADERS_BOUND + lzma2_size;
}


static lzma_ret
block_encode_uncompressed(lzma_block *block, const uint8_t *in, size_t in_size,
                uint8_t *out, size_t *out_pos, size_t out_size)
{
        // TODO: Figure out if the last filter is LZMA2 or Subblock and use
        // that filter to encode the uncompressed chunks.

        // Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at
        // all, but LZMA2 always requires a dictionary, so use the minimum
        // value to minimize memory usage of the decoder.
        lzma_options_lzma lzma2 = {
                .dict_size = LZMA_DICT_SIZE_MIN,
        };

        lzma_filter filters[2];
        filters[0].id = LZMA_FILTER_LZMA2;
        filters[0].options = &lzma2;
        filters[1].id = LZMA_VLI_UNKNOWN;

        // Set the above filter options to *block temporarily so that we can
        // encode the Block Header.
        lzma_filter *filters_orig = block->filters;
        block->filters = filters;

        if (lzma_block_header_size(block) != LZMA_OK) {
                block->filters = filters_orig;
                return LZMA_PROG_ERROR;
        }

        // Check that there's enough output space. The caller has already
        // set block->compressed_size to what lzma2_bound() has returned,
        // so we can reuse that value. We know that compressed_size is a
        // known valid VLI and header_size is a small value so their sum
        // will never overflow.
        assert(block->compressed_size == lzma2_bound(in_size));
        if (out_size - *out_pos
                        < block->header_size + block->compressed_size) {
                block->filters = filters_orig;
                return LZMA_BUF_ERROR;
        }

        if (lzma_block_header_encode(block, out + *out_pos) != LZMA_OK) {
                block->filters = filters_orig;
                return LZMA_PROG_ERROR;
        }

        block->filters = filters_orig;
        *out_pos += block->header_size;

        // Encode the data using LZMA2 uncompressed chunks.
        size_t in_pos = 0;
        uint8_t control = 0x01; // Dictionary reset

        while (in_pos < in_size) {
                // Control byte: Indicate uncompressed chunk, of which
                // the first resets the dictionary.
                out[(*out_pos)++] = control;
                control = 0x02; // No dictionary reset

                // Size of the uncompressed chunk
                const size_t copy_size
                                = my_min(in_size - in_pos, LZMA2_CHUNK_MAX);
                out[(*out_pos)++] = (copy_size - 1) >> 8;
                out[(*out_pos)++] = (copy_size - 1) & 0xFF;

                // The actual data
                assert(*out_pos + copy_size <= out_size);
                memcpy(out + *out_pos, in + in_pos, copy_size);

                in_pos += copy_size;
                *out_pos += copy_size;
        }

        // End marker
        out[(*out_pos)++] = 0x00;
        assert(*out_pos <= out_size);

        return LZMA_OK;
}


static lzma_ret
block_encode_normal(lzma_block *block, lzma_allocator *allocator,
                const uint8_t *in, size_t in_size,
                uint8_t *out, size_t *out_pos, size_t out_size)
{
        // Find out the size of the Block Header.
        block->compressed_size = lzma2_bound(in_size);
        if (block->compressed_size == 0)
                return LZMA_DATA_ERROR;

        block->uncompressed_size = in_size;
        return_if_error(lzma_block_header_size(block));

        // Reserve space for the Block Header and skip it for now.
        if (out_size - *out_pos <= block->header_size)
                return LZMA_BUF_ERROR;

        const size_t out_start = *out_pos;
        *out_pos += block->header_size;

        // Limit out_size so that we stop encoding if the output would grow
        // bigger than what uncompressed Block would be.
        if (out_size - *out_pos > block->compressed_size)
                out_size = *out_pos + block->compressed_size;

        // TODO: In many common cases this could be optimized to use
        // significantly less memory.
        lzma_next_coder raw_encoder = LZMA_NEXT_CODER_INIT;
        lzma_ret ret = lzma_raw_encoder_init(
                        &raw_encoder, allocator, block->filters);

        if (ret == LZMA_OK) {
                size_t in_pos = 0;
                ret = raw_encoder.code(raw_encoder.coder, allocator,
                                in, &in_pos, in_size, out, out_pos, out_size,
                                LZMA_FINISH);
        }

        // NOTE: This needs to be run even if lzma_raw_encoder_init() failed.
        lzma_next_end(&raw_encoder, allocator);

        if (ret == LZMA_STREAM_END) {
                // Compression was successful. Write the Block Header.
                block->compressed_size
                                = *out_pos - (out_start + block->header_size);
                ret = lzma_block_header_encode(block, out + out_start);
                if (ret != LZMA_OK)
                        ret = LZMA_PROG_ERROR;

        } else if (ret == LZMA_OK) {
                // Output buffer became full.
                ret = LZMA_BUF_ERROR;
        }

        // Reset *out_pos if something went wrong.
        if (ret != LZMA_OK)
                *out_pos = out_start;

        return ret;
}


extern LZMA_API(lzma_ret)
lzma_block_buffer_encode(lzma_block *block, lzma_allocator *allocator,
                const uint8_t *in, size_t in_size,
                uint8_t *out, size_t *out_pos, size_t out_size)
{
        // Validate the arguments.
        if (block == NULL || (in == NULL && in_size != 0) || out == NULL
                        || out_pos == NULL || *out_pos > out_size)
                return LZMA_PROG_ERROR;

        // The contents of the structure may depend on the version so
        // check the version before validating the contents of *block.
        if (block->version != 0)
                return LZMA_OPTIONS_ERROR;

        if ((unsigned int)(block->check) > LZMA_CHECK_ID_MAX
                        || block->filters == NULL)
                return LZMA_PROG_ERROR;

        if (!lzma_check_is_supported(block->check))
                return LZMA_UNSUPPORTED_CHECK;

        // Size of a Block has to be a multiple of four, so limit the size
        // here already. This way we don't need to check it again when adding
        // Block Padding.
        out_size -= (out_size - *out_pos) & 3;

        // Get the size of the Check field.
        const size_t check_size = lzma_check_size(block->check);
        assert(check_size != UINT32_MAX);

        // Reserve space for the Check field.
        if (out_size - *out_pos <= check_size)
                return LZMA_BUF_ERROR;

        out_size -= check_size;

        // Do the actual compression.
        const lzma_ret ret = block_encode_normal(block, allocator,
                        in, in_size, out, out_pos, out_size);
        if (ret != LZMA_OK) {
                // If the error was something else than output buffer
                // becoming full, return the error now.
                if (ret != LZMA_BUF_ERROR)
                        return ret;

                // The data was uncompressible (at least with the options
                // given to us) or the output buffer was too small. Use the
                // uncompressed chunks of LZMA2 to wrap the data into a valid
                // Block. If we haven't been given enough output space, even
                // this may fail.
                return_if_error(block_encode_uncompressed(block, in, in_size,
                                out, out_pos, out_size));
        }

        assert(*out_pos <= out_size);

        // Block Padding. No buffer overflow here, because we already adjusted
        // out_size so that (out_size - out_start) is a multiple of four.
        // Thus, if the buffer is full, the loop body can never run.
        for (size_t i = (size_t)(block->compressed_size); i & 3; ++i) {
                assert(*out_pos < out_size);
                out[(*out_pos)++] = 0x00;
        }

        // If there's no Check field, we are done now.
        if (check_size > 0) {
                // Calculate the integrity check. We reserved space for
                // the Check field earlier so we don't need to check for
                // available output space here.
                lzma_check_state check;
                lzma_check_init(&check, block->check);
                lzma_check_update(&check, block->check, in, in_size);
                lzma_check_finish(&check, block->check);

                memcpy(block->raw_check, check.buffer.u8, check_size);
                memcpy(out + *out_pos, check.buffer.u8, check_size);
                *out_pos += check_size;
        }

        return LZMA_OK;
}

/* [<][>][^][v][top][bottom][index][help] */