root/Source/core/rendering/shapes/PolygonShape.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. computeXIntersection
  2. inwardEdgeNormal
  3. outwardEdgeNormal
  4. appendArc
  5. snapVerticesToLayoutUnitGrid
  6. computeShapeMarginBounds
  7. shapeMarginBounds
  8. getVertexIntersectionVertices
  9. appendIntervalX
  10. compareEdgeIntersectionX
  11. computeXIntersections
  12. compareX1
  13. sortAndMergeShapeIntervals
  14. computeOverlappingEdgeXProjections
  15. getExcludedIntervals

/*
 * Copyright (C) 2012 Adobe Systems Incorporated. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above
 *    copyright notice, this list of conditions and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above
 *    copyright notice, this list of conditions and the following
 *    disclaimer in the documentation and/or other materials
 *    provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "core/rendering/shapes/PolygonShape.h"

#include "core/rendering/shapes/ShapeInterval.h"
#include "platform/geometry/LayoutPoint.h"
#include "wtf/MathExtras.h"

namespace WebCore {

enum EdgeIntersectionType {
    Normal,
    VertexMinY,
    VertexMaxY,
    VertexYBoth
};

struct EdgeIntersection {
    const FloatPolygonEdge* edge;
    FloatPoint point;
    EdgeIntersectionType type;
};

static bool computeXIntersection(const FloatPolygonEdge* edgePointer, float y, EdgeIntersection& result)
{
    const FloatPolygonEdge& edge = *edgePointer;

    if (edge.minY() > y || edge.maxY() < y)
        return false;

    const FloatPoint& vertex1 = edge.vertex1();
    const FloatPoint& vertex2 = edge.vertex2();
    float dy = vertex2.y() - vertex1.y();

    float intersectionX;
    EdgeIntersectionType intersectionType;

    if (!dy) {
        intersectionType = VertexYBoth;
        intersectionX = edge.minX();
    } else if (y == edge.minY()) {
        intersectionType = VertexMinY;
        intersectionX = (vertex1.y() < vertex2.y()) ? vertex1.x() : vertex2.x();
    } else if (y == edge.maxY()) {
        intersectionType = VertexMaxY;
        intersectionX = (vertex1.y() > vertex2.y()) ? vertex1.x() : vertex2.x();
    } else {
        intersectionType = Normal;
        intersectionX = ((y - vertex1.y()) * (vertex2.x() - vertex1.x()) / dy) + vertex1.x();
    }

    result.edge = edgePointer;
    result.type = intersectionType;
    result.point.set(intersectionX, y);

    return true;
}

static inline FloatSize inwardEdgeNormal(const FloatPolygonEdge& edge)
{
    FloatSize edgeDelta = edge.vertex2() - edge.vertex1();
    if (!edgeDelta.width())
        return FloatSize((edgeDelta.height() > 0 ? -1 : 1), 0);
    if (!edgeDelta.height())
        return FloatSize(0, (edgeDelta.width() > 0 ? 1 : -1));
    float edgeLength = edgeDelta.diagonalLength();
    return FloatSize(-edgeDelta.height() / edgeLength, edgeDelta.width() / edgeLength);
}

static inline FloatSize outwardEdgeNormal(const FloatPolygonEdge& edge)
{
    return -inwardEdgeNormal(edge);
}

static inline void appendArc(Vector<FloatPoint>& vertices, const FloatPoint& arcCenter, float arcRadius, const FloatPoint& startArcVertex, const FloatPoint& endArcVertex, bool padding)
{
    float startAngle = atan2(startArcVertex.y() - arcCenter.y(), startArcVertex.x() - arcCenter.x());
    float endAngle = atan2(endArcVertex.y() - arcCenter.y(), endArcVertex.x() - arcCenter.x());
    if (startAngle < 0)
        startAngle += twoPiFloat;
    if (endAngle < 0)
        endAngle += twoPiFloat;
    float angle = (startAngle > endAngle) ? (startAngle - endAngle) : (startAngle + twoPiFloat - endAngle);
    const float arcSegmentCount = 6; // An even number so that one arc vertex will be eactly arcRadius from arcCenter.
    float arcSegmentAngle =  ((padding) ? -angle : twoPiFloat - angle) / arcSegmentCount;

    vertices.append(startArcVertex);
    for (unsigned i = 1; i < arcSegmentCount; ++i) {
        float angle = startAngle + arcSegmentAngle * i;
        vertices.append(arcCenter + FloatPoint(cos(angle) * arcRadius, sin(angle) * arcRadius));
    }
    vertices.append(endArcVertex);
}

static inline void snapVerticesToLayoutUnitGrid(Vector<FloatPoint>& vertices)
{
    for (unsigned i = 0; i < vertices.size(); ++i)
        vertices[i] = flooredLayoutPoint(vertices[i]);
}

static inline PassOwnPtr<FloatPolygon> computeShapeMarginBounds(const FloatPolygon& polygon, float margin, WindRule fillRule)
{
    OwnPtr<Vector<FloatPoint> > marginVertices = adoptPtr(new Vector<FloatPoint>());
    FloatPoint intersection;

    for (unsigned i = 0; i < polygon.numberOfEdges(); ++i) {
        const FloatPolygonEdge& thisEdge = polygon.edgeAt(i);
        const FloatPolygonEdge& prevEdge = thisEdge.previousEdge();
        OffsetPolygonEdge thisOffsetEdge(thisEdge, outwardEdgeNormal(thisEdge) * margin);
        OffsetPolygonEdge prevOffsetEdge(prevEdge, outwardEdgeNormal(prevEdge) * margin);

        if (prevOffsetEdge.intersection(thisOffsetEdge, intersection))
            marginVertices->append(intersection);
        else
            appendArc(*marginVertices, thisEdge.vertex1(), margin, prevOffsetEdge.vertex2(), thisOffsetEdge.vertex1(), false);
    }

    snapVerticesToLayoutUnitGrid(*marginVertices);
    return adoptPtr(new FloatPolygon(marginVertices.release(), fillRule));
}

const FloatPolygon& PolygonShape::shapeMarginBounds() const
{
    ASSERT(shapeMargin() >= 0);
    if (!shapeMargin() || m_polygon.isEmpty())
        return m_polygon;

    if (!m_marginBounds)
        m_marginBounds = computeShapeMarginBounds(m_polygon, shapeMargin(), m_polygon.fillRule());

    return *m_marginBounds;
}

static inline bool getVertexIntersectionVertices(const EdgeIntersection& intersection, FloatPoint& prevVertex, FloatPoint& thisVertex, FloatPoint& nextVertex)
{
    if (intersection.type != VertexMinY && intersection.type != VertexMaxY)
        return false;

    ASSERT(intersection.edge && intersection.edge->polygon());
    const FloatPolygon& polygon = *(intersection.edge->polygon());
    const FloatPolygonEdge& thisEdge = *(intersection.edge);

    if ((intersection.type == VertexMinY && (thisEdge.vertex1().y() < thisEdge.vertex2().y()))
        || (intersection.type == VertexMaxY && (thisEdge.vertex1().y() > thisEdge.vertex2().y()))) {
        prevVertex = polygon.vertexAt(thisEdge.previousEdge().vertexIndex1());
        thisVertex = polygon.vertexAt(thisEdge.vertexIndex1());
        nextVertex = polygon.vertexAt(thisEdge.vertexIndex2());
    } else {
        prevVertex = polygon.vertexAt(thisEdge.vertexIndex1());
        thisVertex = polygon.vertexAt(thisEdge.vertexIndex2());
        nextVertex = polygon.vertexAt(thisEdge.nextEdge().vertexIndex2());
    }

    return true;
}

static inline bool appendIntervalX(float x, bool inside, FloatShapeIntervals& result)
{
    if (!inside)
        result.append(FloatShapeInterval(x, x));
    else
        result.last().setX2(x);

    return !inside;
}

static bool compareEdgeIntersectionX(const EdgeIntersection& intersection1, const EdgeIntersection& intersection2)
{
    float x1 = intersection1.point.x();
    float x2 = intersection2.point.x();
    return (x1 == x2) ? intersection1.type < intersection2.type : x1 < x2;
}

static void computeXIntersections(const FloatPolygon& polygon, float y, bool isMinY, FloatShapeIntervals& result)
{
    Vector<const FloatPolygonEdge*> edges;
    if (!polygon.overlappingEdges(y, y, edges))
        return;

    Vector<EdgeIntersection> intersections;
    EdgeIntersection intersection;
    for (unsigned i = 0; i < edges.size(); ++i) {
        if (computeXIntersection(edges[i], y, intersection) && intersection.type != VertexYBoth)
            intersections.append(intersection);
    }

    if (intersections.size() < 2)
        return;

    std::sort(intersections.begin(), intersections.end(), WebCore::compareEdgeIntersectionX);

    unsigned index = 0;
    int windCount = 0;
    bool inside = false;

    while (index < intersections.size()) {
        const EdgeIntersection& thisIntersection = intersections[index];
        if (index + 1 < intersections.size()) {
            const EdgeIntersection& nextIntersection = intersections[index + 1];
            if ((thisIntersection.point.x() == nextIntersection.point.x()) && (thisIntersection.type == VertexMinY || thisIntersection.type == VertexMaxY)) {
                if (thisIntersection.type == nextIntersection.type) {
                    // Skip pairs of intersections whose types are VertexMaxY,VertexMaxY and VertexMinY,VertexMinY.
                    index += 2;
                } else {
                    // Replace pairs of intersections whose types are VertexMinY,VertexMaxY or VertexMaxY,VertexMinY with one intersection.
                    ++index;
                }
                continue;
            }
        }

        bool edgeCrossing = thisIntersection.type == Normal;
        if (!edgeCrossing) {
            FloatPoint prevVertex;
            FloatPoint thisVertex;
            FloatPoint nextVertex;

            if (getVertexIntersectionVertices(thisIntersection, prevVertex, thisVertex, nextVertex)) {
                if (nextVertex.y() == y)
                    edgeCrossing = (isMinY) ? prevVertex.y() > y : prevVertex.y() < y;
                else if (prevVertex.y() == y)
                    edgeCrossing = (isMinY) ? nextVertex.y() > y : nextVertex.y() < y;
                else
                    edgeCrossing = true;
            }
        }

        if (edgeCrossing && polygon.fillRule() == RULE_NONZERO) {
            const FloatPolygonEdge& thisEdge = *thisIntersection.edge;
            windCount += (thisEdge.vertex2().y() > thisEdge.vertex1().y()) ? 1 : -1;
        }

        if (edgeCrossing && (!inside || !windCount))
            inside = appendIntervalX(thisIntersection.point.x(), inside, result);

        ++index;
    }
}

static bool compareX1(const FloatShapeInterval a, const FloatShapeInterval& b) { return a.x1() < b.x1(); }

static void sortAndMergeShapeIntervals(FloatShapeIntervals& intervals)
{
    std::sort(intervals.begin(), intervals.end(), compareX1);

    for (unsigned i = 1; i < intervals.size(); ) {
        const FloatShapeInterval& thisInterval = intervals[i];
        FloatShapeInterval& previousInterval = intervals[i - 1];
        if (thisInterval.overlaps(previousInterval)) {
            previousInterval.setX2(std::max<float>(previousInterval.x2(), thisInterval.x2()));
            intervals.remove(i);
        } else {
            ++i;
        }
    }
}

static void computeOverlappingEdgeXProjections(const FloatPolygon& polygon, float y1, float y2, FloatShapeIntervals& result)
{
    Vector<const FloatPolygonEdge*> edges;
    if (!polygon.overlappingEdges(y1, y2, edges))
        return;

    EdgeIntersection intersection;
    for (unsigned i = 0; i < edges.size(); ++i) {
        const FloatPolygonEdge *edge = edges[i];
        float x1;
        float x2;

        if (edge->minY() < y1) {
            computeXIntersection(edge, y1, intersection);
            x1 = intersection.point.x();
        } else {
            x1 = (edge->vertex1().y() < edge->vertex2().y()) ? edge->vertex1().x() : edge->vertex2().x();
        }

        if (edge->maxY() > y2) {
            computeXIntersection(edge, y2, intersection);
            x2 = intersection.point.x();
        } else {
            x2 = (edge->vertex1().y() > edge->vertex2().y()) ? edge->vertex1().x() : edge->vertex2().x();
        }

        if (x1 > x2)
            std::swap(x1, x2);

        if (x2 > x1)
            result.append(FloatShapeInterval(x1, x2));
    }

    sortAndMergeShapeIntervals(result);
}

void PolygonShape::getExcludedIntervals(LayoutUnit logicalTop, LayoutUnit logicalHeight, SegmentList& result) const
{
    const FloatPolygon& polygon = shapeMarginBounds();
    if (polygon.isEmpty())
        return;

    float y1 = logicalTop.toFloat();
    float y2 = (logicalTop + logicalHeight).toFloat();

    FloatShapeIntervals y1XIntervals, y2XIntervals;
    computeXIntersections(polygon, y1, true, y1XIntervals);
    computeXIntersections(polygon, y2, false, y2XIntervals);

    FloatShapeIntervals mergedIntervals;
    FloatShapeInterval::uniteShapeIntervals(y1XIntervals, y2XIntervals, mergedIntervals);

    FloatShapeIntervals edgeIntervals;
    computeOverlappingEdgeXProjections(polygon, y1, y2, edgeIntervals);

    FloatShapeIntervals excludedIntervals;
    FloatShapeInterval::uniteShapeIntervals(mergedIntervals, edgeIntervals, excludedIntervals);

    for (unsigned i = 0; i < excludedIntervals.size(); ++i) {
        const FloatShapeInterval& interval = excludedIntervals[i];
        result.append(LineSegment(interval.x1(), interval.x2()));
    }
}

} // namespace WebCore

/* [<][>][^][v][top][bottom][index][help] */