root/Source/core/rendering/RenderBlockFlow.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. setAtBeforeSideOfBlock
  2. setAtAfterSideOfBlock
  3. clearMargin
  4. setHasMarginBeforeQuirk
  5. setHasMarginAfterQuirk
  6. setDeterminedMarginBeforeQuirk
  7. setPositiveMargin
  8. setNegativeMargin
  9. setPositiveMarginIfLarger
  10. setNegativeMarginIfLarger
  11. setMargin
  12. setCanCollapseMarginAfterWithChildren
  13. setCanCollapseMarginAfterWithLastChild
  14. setDiscardMargin
  15. atBeforeSideOfBlock
  16. canCollapseWithMarginBefore
  17. canCollapseWithMarginAfter
  18. canCollapseMarginBeforeWithChildren
  19. canCollapseMarginAfterWithChildren
  20. canCollapseMarginAfterWithLastChild
  21. quirkContainer
  22. determinedMarginBeforeQuirk
  23. hasMarginBeforeQuirk
  24. hasMarginAfterQuirk
  25. positiveMargin
  26. negativeMargin
  27. discardMargin
  28. margin
  29. inNormalFlow
  30. createAnonymous
  31. createAnonymousBlockFlow
  32. layoutSpecialExcludedChild
  33. updateLogicalWidthAndColumnWidth
  34. checkForPaginationLogicalHeightChange
  35. shouldRelayoutForPagination
  36. setColumnCountAndHeight
  37. isSelfCollapsingBlock
  38. layoutBlock
  39. layoutBlockFlow
  40. determineLogicalLeftPositionForChild
  41. setLogicalLeftForChild
  42. setLogicalTopForChild
  43. layoutBlockChild
  44. adjustBlockChildForPagination
  45. rebuildFloatsFromIntruding
  46. layoutBlockChildren
  47. m_discardMargin
  48. marginValuesForChild
  49. collapseMargins
  50. adjustPositionedBlock
  51. computeStartPositionDeltaForChildAvoidingFloats
  52. clearFloatsIfNeeded
  53. setCollapsedBottomMargin
  54. marginBeforeEstimateForChild
  55. estimateLogicalTopPosition
  56. marginOffsetForSelfCollapsingBlock
  57. adjustFloatingBlock
  58. handleAfterSideOfBlock
  59. setMustDiscardMarginBefore
  60. setMustDiscardMarginAfter
  61. mustDiscardMarginBefore
  62. mustDiscardMarginAfter
  63. mustDiscardMarginBeforeForChild
  64. mustDiscardMarginAfterForChild
  65. setMaxMarginBeforeValues
  66. setMaxMarginAfterValues
  67. mustSeparateMarginBeforeForChild
  68. mustSeparateMarginAfterForChild
  69. applyBeforeBreak
  70. applyAfterBreak
  71. addOverflowFromFloats
  72. computeOverflow
  73. createAndAppendRootInlineBox
  74. deleteLineBoxTree
  75. markAllDescendantsWithFloatsForLayout
  76. markSiblingsWithFloatsForLayout
  77. getClearDelta
  78. createFloatingObjects
  79. styleWillChange
  80. styleDidChange
  81. updateStaticInlinePositionForChild
  82. setStaticInlinePositionForChild
  83. addChild
  84. moveAllChildrenIncludingFloatsTo
  85. repaintOverhangingFloats
  86. repaintOverflow
  87. paintFloats
  88. clipOutFloatingObjects
  89. clearFloats
  90. containsFloat
  91. removeFloatingObjects
  92. flipFloatForWritingModeForChild
  93. logicalLeftOffsetForPositioningFloat
  94. logicalRightOffsetForPositioningFloat
  95. adjustLogicalLeftOffsetForLine
  96. adjustLogicalRightOffsetForLine
  97. computeLogicalLocationForFloat
  98. insertFloatingObject
  99. removeFloatingObject
  100. removeFloatingObjectsBelow
  101. positionNewFloats
  102. hasOverhangingFloat
  103. addIntrudingFloats
  104. addOverhangingFloats
  105. lowestFloatLogicalBottom
  106. nextFloatLogicalBottomBelow
  107. hitTestFloats
  108. adjustForBorderFit
  109. logicalLeftFloatOffsetForLine
  110. logicalRightFloatOffsetForLine
  111. inlineSelectionGaps
  112. logicalLeftSelectionOffset
  113. logicalRightSelectionOffset
  114. constructTextRunInternal
  115. constructTextRunInternal
  116. constructTextRun
  117. constructTextRun
  118. constructTextRun
  119. constructTextRun
  120. constructTextRun
  121. constructTextRun
  122. constructTextRun
  123. createRootInlineBox
  124. createMultiColumnFlowThreadIfNeeded
  125. ensureRareData

/*
 * Copyright (C) 2013 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "core/rendering/RenderBlockFlow.h"

#include "core/accessibility/AXObjectCache.h"
#include "core/frame/FrameView.h"
#include "core/rendering/FastTextAutosizer.h"
#include "core/rendering/HitTestLocation.h"
#include "core/rendering/LayoutRectRecorder.h"
#include "core/rendering/LayoutRepainter.h"
#include "core/rendering/RenderFlowThread.h"
#include "core/rendering/RenderLayer.h"
#include "core/rendering/RenderMultiColumnFlowThread.h"
#include "core/rendering/RenderText.h"
#include "core/rendering/RenderView.h"
#include "core/rendering/line/LineWidth.h"
#include "core/rendering/svg/SVGTextRunRenderingContext.h"
#include "platform/text/BidiTextRun.h"

using namespace std;

namespace WebCore {

bool RenderBlockFlow::s_canPropagateFloatIntoSibling = false;

struct SameSizeAsMarginInfo {
    uint16_t bitfields;
    LayoutUnit margins[2];
};

COMPILE_ASSERT(sizeof(RenderBlockFlow::MarginValues) == sizeof(LayoutUnit[4]), MarginValues_should_stay_small);

class MarginInfo {
    // Collapsing flags for whether we can collapse our margins with our children's margins.
    bool m_canCollapseWithChildren : 1;
    bool m_canCollapseMarginBeforeWithChildren : 1;
    bool m_canCollapseMarginAfterWithChildren : 1;
    bool m_canCollapseMarginAfterWithLastChild: 1;

    // Whether or not we are a quirky container, i.e., do we collapse away top and bottom
    // margins in our container. Table cells and the body are the common examples. We
    // also have a custom style property for Safari RSS to deal with TypePad blog articles.
    bool m_quirkContainer : 1;

    // This flag tracks whether we are still looking at child margins that can all collapse together at the beginning of a block.
    // They may or may not collapse with the top margin of the block (|m_canCollapseTopWithChildren| tells us that), but they will
    // always be collapsing with one another. This variable can remain set to true through multiple iterations
    // as long as we keep encountering self-collapsing blocks.
    bool m_atBeforeSideOfBlock : 1;

    // This flag is set when we know we're examining bottom margins and we know we're at the bottom of the block.
    bool m_atAfterSideOfBlock : 1;

    // These variables are used to detect quirky margins that we need to collapse away (in table cells
    // and in the body element).
    bool m_hasMarginBeforeQuirk : 1;
    bool m_hasMarginAfterQuirk : 1;
    bool m_determinedMarginBeforeQuirk : 1;

    bool m_discardMargin : 1;

    // These flags track the previous maximal positive and negative margins.
    LayoutUnit m_positiveMargin;
    LayoutUnit m_negativeMargin;

public:
    MarginInfo(RenderBlockFlow*, LayoutUnit beforeBorderPadding, LayoutUnit afterBorderPadding);

    void setAtBeforeSideOfBlock(bool b) { m_atBeforeSideOfBlock = b; }
    void setAtAfterSideOfBlock(bool b) { m_atAfterSideOfBlock = b; }
    void clearMargin()
    {
        m_positiveMargin = 0;
        m_negativeMargin = 0;
    }
    void setHasMarginBeforeQuirk(bool b) { m_hasMarginBeforeQuirk = b; }
    void setHasMarginAfterQuirk(bool b) { m_hasMarginAfterQuirk = b; }
    void setDeterminedMarginBeforeQuirk(bool b) { m_determinedMarginBeforeQuirk = b; }
    void setPositiveMargin(LayoutUnit p) { ASSERT(!m_discardMargin); m_positiveMargin = p; }
    void setNegativeMargin(LayoutUnit n) { ASSERT(!m_discardMargin); m_negativeMargin = n; }
    void setPositiveMarginIfLarger(LayoutUnit p)
    {
        ASSERT(!m_discardMargin);
        if (p > m_positiveMargin)
            m_positiveMargin = p;
    }
    void setNegativeMarginIfLarger(LayoutUnit n)
    {
        ASSERT(!m_discardMargin);
        if (n > m_negativeMargin)
            m_negativeMargin = n;
    }

    void setMargin(LayoutUnit p, LayoutUnit n) { ASSERT(!m_discardMargin); m_positiveMargin = p; m_negativeMargin = n; }
    void setCanCollapseMarginAfterWithChildren(bool collapse) { m_canCollapseMarginAfterWithChildren = collapse; }
    void setCanCollapseMarginAfterWithLastChild(bool collapse) { m_canCollapseMarginAfterWithLastChild = collapse; }
    void setDiscardMargin(bool value) { m_discardMargin = value; }

    bool atBeforeSideOfBlock() const { return m_atBeforeSideOfBlock; }
    bool canCollapseWithMarginBefore() const { return m_atBeforeSideOfBlock && m_canCollapseMarginBeforeWithChildren; }
    bool canCollapseWithMarginAfter() const { return m_atAfterSideOfBlock && m_canCollapseMarginAfterWithChildren; }
    bool canCollapseMarginBeforeWithChildren() const { return m_canCollapseMarginBeforeWithChildren; }
    bool canCollapseMarginAfterWithChildren() const { return m_canCollapseMarginAfterWithChildren; }
    bool canCollapseMarginAfterWithLastChild() const { return m_canCollapseMarginAfterWithLastChild; }
    bool quirkContainer() const { return m_quirkContainer; }
    bool determinedMarginBeforeQuirk() const { return m_determinedMarginBeforeQuirk; }
    bool hasMarginBeforeQuirk() const { return m_hasMarginBeforeQuirk; }
    bool hasMarginAfterQuirk() const { return m_hasMarginAfterQuirk; }
    LayoutUnit positiveMargin() const { return m_positiveMargin; }
    LayoutUnit negativeMargin() const { return m_negativeMargin; }
    bool discardMargin() const { return m_discardMargin; }
    LayoutUnit margin() const { return m_positiveMargin - m_negativeMargin; }
};
static bool inNormalFlow(RenderBox* child)
{
    RenderBlock* curr = child->containingBlock();
    RenderView* renderView = child->view();
    while (curr && curr != renderView) {
        if (curr->hasColumns() || curr->isRenderFlowThread())
            return true;
        if (curr->isFloatingOrOutOfFlowPositioned())
            return false;
        curr = curr->containingBlock();
    }
    return true;
}

RenderBlockFlow::RenderBlockFlow(ContainerNode* node)
    : RenderBlock(node)
{
    COMPILE_ASSERT(sizeof(MarginInfo) == sizeof(SameSizeAsMarginInfo), MarginInfo_should_stay_small);
}

RenderBlockFlow::~RenderBlockFlow()
{
}

RenderBlockFlow* RenderBlockFlow::createAnonymous(Document* document)
{
    RenderBlockFlow* renderer = new RenderBlockFlow(0);
    renderer->setDocumentForAnonymous(document);
    return renderer;
}

RenderBlockFlow* RenderBlockFlow::createAnonymousBlockFlow() const
{
    return toRenderBlockFlow(createAnonymousWithParentRendererAndDisplay(this, BLOCK));
}

RenderObject* RenderBlockFlow::layoutSpecialExcludedChild(bool relayoutChildren, SubtreeLayoutScope& layoutScope)
{
    RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread();
    if (!flowThread)
        return 0;
    setLogicalTopForChild(flowThread, borderBefore() + paddingBefore());
    flowThread->layoutColumns(relayoutChildren, layoutScope);
    determineLogicalLeftPositionForChild(flowThread);
    return flowThread;
}

bool RenderBlockFlow::updateLogicalWidthAndColumnWidth()
{
    bool relayoutChildren = RenderBlock::updateLogicalWidthAndColumnWidth();
    if (RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
        if (flowThread->computeColumnCountAndWidth())
            return true;
    }
    return relayoutChildren;
}

void RenderBlockFlow::checkForPaginationLogicalHeightChange(LayoutUnit& pageLogicalHeight, bool& pageLogicalHeightChanged, bool& hasSpecifiedPageLogicalHeight)
{
    if (RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
        // We don't actually update any of the variables. We just subclassed to adjust our column height.
        updateLogicalHeight();
        flowThread->setColumnHeightAvailable(std::max<LayoutUnit>(contentLogicalHeight(), 0));
        setLogicalHeight(0);
    } else if (hasColumns()) {
        ColumnInfo* colInfo = columnInfo();

        if (!pageLogicalHeight) {
            LayoutUnit oldLogicalHeight = logicalHeight();
            setLogicalHeight(0);
            // We need to go ahead and set our explicit page height if one exists, so that we can
            // avoid doing two layout passes.
            updateLogicalHeight();
            LayoutUnit columnHeight = contentLogicalHeight();
            if (columnHeight > 0) {
                pageLogicalHeight = columnHeight;
                hasSpecifiedPageLogicalHeight = true;
            }
            setLogicalHeight(oldLogicalHeight);
        }
        if (colInfo->columnHeight() != pageLogicalHeight && everHadLayout()) {
            colInfo->setColumnHeight(pageLogicalHeight);
            pageLogicalHeightChanged = true;
        }

        if (!hasSpecifiedPageLogicalHeight && !pageLogicalHeight)
            colInfo->clearForcedBreaks();
    } else if (isRenderFlowThread()) {
        RenderFlowThread* flowThread = toRenderFlowThread(this);

        // FIXME: This is a hack to always make sure we have a page logical height, if said height
        // is known. The page logical height thing in LayoutState is meaningless for flow
        // thread-based pagination (page height isn't necessarily uniform throughout the flow
        // thread), but as long as it is used universally as a means to determine whether page
        // height is known or not, we need this. Page height is unknown when column balancing is
        // enabled and flow thread height is still unknown (i.e. during the first layout pass). When
        // it's unknown, we need to prevent the pagination code from assuming page breaks everywhere
        // and thereby eating every top margin. It should be trivial to clean up and get rid of this
        // hack once the old multicol implementation is gone.
        pageLogicalHeight = flowThread->isPageLogicalHeightKnown() ? LayoutUnit(1) : LayoutUnit(0);

        pageLogicalHeightChanged = flowThread->pageLogicalSizeChanged();
    }
}

bool RenderBlockFlow::shouldRelayoutForPagination(LayoutUnit& pageLogicalHeight, LayoutUnit layoutOverflowLogicalBottom) const
{
    // FIXME: We don't balance properly at all in the presence of forced page breaks. We need to understand what
    // the distance between forced page breaks is so that we can avoid making the minimum column height too tall.
    ColumnInfo* colInfo = columnInfo();
    LayoutUnit columnHeight = pageLogicalHeight;
    const int minColumnCount = colInfo->forcedBreaks() + 1;
    const int desiredColumnCount = colInfo->desiredColumnCount();
    if (minColumnCount >= desiredColumnCount) {
        // The forced page breaks are in control of the balancing. Just set the column height to the
        // maximum page break distance.
        if (!pageLogicalHeight) {
            LayoutUnit distanceBetweenBreaks = max<LayoutUnit>(colInfo->maximumDistanceBetweenForcedBreaks(),
                view()->layoutState()->pageLogicalOffset(*this, borderBefore() + paddingBefore() + layoutOverflowLogicalBottom) - colInfo->forcedBreakOffset());
            columnHeight = max(colInfo->minimumColumnHeight(), distanceBetweenBreaks);
        }
    } else if (layoutOverflowLogicalBottom > boundedMultiply(pageLogicalHeight, desiredColumnCount)) {
        // Now that we know the intrinsic height of the columns, we have to rebalance them.
        columnHeight = max<LayoutUnit>(colInfo->minimumColumnHeight(), ceilf(layoutOverflowLogicalBottom.toFloat() / desiredColumnCount));
    }

    if (columnHeight && columnHeight != pageLogicalHeight) {
        pageLogicalHeight = columnHeight;
        return true;
    }

    return false;
}

void RenderBlockFlow::setColumnCountAndHeight(unsigned count, LayoutUnit pageLogicalHeight)
{
    ColumnInfo* colInfo = columnInfo();
    if (pageLogicalHeight)
        colInfo->setColumnCountAndHeight(count, pageLogicalHeight);

    if (columnCount(colInfo)) {
        setLogicalHeight(borderBefore() + paddingBefore() + colInfo->columnHeight() + borderAfter() + paddingAfter() + scrollbarLogicalHeight());
        m_overflow.clear();
    }
}

bool RenderBlockFlow::isSelfCollapsingBlock() const
{
    m_hasOnlySelfCollapsingChildren = RenderBlock::isSelfCollapsingBlock();
    return m_hasOnlySelfCollapsingChildren;
}

void RenderBlockFlow::layoutBlock(bool relayoutChildren)
{
    ASSERT(needsLayout());
    ASSERT(isInlineBlockOrInlineTable() || !isInline());

    // If we are self-collapsing with self-collapsing descendants this will get set to save us burrowing through our
    // descendants every time in |isSelfCollapsingBlock|. We reset it here so that |isSelfCollapsingBlock| attempts to burrow
    // at least once and so that it always gives a reliable result reflecting the latest layout.
    m_hasOnlySelfCollapsingChildren = false;

    if (!relayoutChildren && simplifiedLayout())
        return;

    SubtreeLayoutScope layoutScope(this);

    // Multiple passes might be required for column and pagination based layout
    // In the case of the old column code the number of passes will only be two
    // however, in the newer column code the number of passes could equal the
    // number of columns.
    bool done = false;
    LayoutUnit pageLogicalHeight = 0;
    LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
    while (!done)
        done = layoutBlockFlow(relayoutChildren, pageLogicalHeight, layoutScope);

    fitBorderToLinesIfNeeded();

    RenderView* renderView = view();
    if (renderView->layoutState()->pageLogicalHeight())
        setPageLogicalOffset(renderView->layoutState()->pageLogicalOffset(*this, logicalTop()));

    updateLayerTransform();

    // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
    // we overflow or not.
    updateScrollInfoAfterLayout();

    // Repaint with our new bounds if they are different from our old bounds.
    bool didFullRepaint = repainter.repaintAfterLayout();
    if (!didFullRepaint && m_repaintLogicalTop != m_repaintLogicalBottom && (style()->visibility() == VISIBLE || enclosingLayer()->hasVisibleContent())) {
        if (RuntimeEnabledFeatures::repaintAfterLayoutEnabled())
            setShouldRepaintOverflow(true);
        else
            repaintOverflow();
    }
    clearNeedsLayout();
}

inline bool RenderBlockFlow::layoutBlockFlow(bool relayoutChildren, LayoutUnit &pageLogicalHeight, SubtreeLayoutScope& layoutScope)
{
    LayoutUnit oldLeft = logicalLeft();
    if (updateLogicalWidthAndColumnWidth())
        relayoutChildren = true;

    rebuildFloatsFromIntruding();

    bool pageLogicalHeightChanged = false;
    bool hasSpecifiedPageLogicalHeight = false;
    checkForPaginationLogicalHeightChange(pageLogicalHeight, pageLogicalHeightChanged, hasSpecifiedPageLogicalHeight);

    LayoutStateMaintainer statePusher(*this, locationOffset(), pageLogicalHeight, pageLogicalHeightChanged, columnInfo());

    // We use four values, maxTopPos, maxTopNeg, maxBottomPos, and maxBottomNeg, to track
    // our current maximal positive and negative margins. These values are used when we
    // are collapsed with adjacent blocks, so for example, if you have block A and B
    // collapsing together, then you'd take the maximal positive margin from both A and B
    // and subtract it from the maximal negative margin from both A and B to get the
    // true collapsed margin. This algorithm is recursive, so when we finish layout()
    // our block knows its current maximal positive/negative values.
    //
    // Start out by setting our margin values to our current margins. Table cells have
    // no margins, so we don't fill in the values for table cells.
    if (!isTableCell()) {
        initMaxMarginValues();
        setHasMarginBeforeQuirk(style()->hasMarginBeforeQuirk());
        setHasMarginAfterQuirk(style()->hasMarginAfterQuirk());
        setPaginationStrut(0);
    }

    LayoutUnit beforeEdge = borderBefore() + paddingBefore();
    LayoutUnit afterEdge = borderAfter() + paddingAfter() + scrollbarLogicalHeight();
    LayoutUnit previousHeight = logicalHeight();
    setLogicalHeight(beforeEdge);

    m_repaintLogicalTop = 0;
    m_repaintLogicalBottom = 0;
    LayoutUnit maxFloatLogicalBottom = 0;
    if (!firstChild() && !isAnonymousBlock())
        setChildrenInline(true);

    FastTextAutosizer::LayoutScope fastTextAutosizerLayoutScope(this);

    if (childrenInline())
        layoutInlineChildren(relayoutChildren, m_repaintLogicalTop, m_repaintLogicalBottom, afterEdge);
    else
        layoutBlockChildren(relayoutChildren, maxFloatLogicalBottom, layoutScope, beforeEdge, afterEdge);

    // Expand our intrinsic height to encompass floats.
    if (lowestFloatLogicalBottom() > (logicalHeight() - afterEdge) && createsBlockFormattingContext())
        setLogicalHeight(lowestFloatLogicalBottom() + afterEdge);

    if (RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
        if (flowThread->recalculateColumnHeights()) {
            setChildNeedsLayout(MarkOnlyThis);
            return false;
        }
    } else if (hasColumns()) {
        OwnPtr<RenderOverflow> savedOverflow = m_overflow.release();
        if (childrenInline())
            addOverflowFromInlineChildren();
        else
            addOverflowFromBlockChildren();
        LayoutUnit layoutOverflowLogicalBottom = (isHorizontalWritingMode() ? layoutOverflowRect().maxY() : layoutOverflowRect().maxX()) - borderBefore() - paddingBefore();
        m_overflow = savedOverflow.release();

        if (!hasSpecifiedPageLogicalHeight && shouldRelayoutForPagination(pageLogicalHeight, layoutOverflowLogicalBottom)) {
            setEverHadLayout(true);
            return false;
        }

        setColumnCountAndHeight(ceilf(layoutOverflowLogicalBottom.toFloat() / pageLogicalHeight.toFloat()), pageLogicalHeight.toFloat());
    }

    if (shouldBreakAtLineToAvoidWidow()) {
        setEverHadLayout(true);
        return false;
    }

    // Calculate our new height.
    LayoutUnit oldHeight = logicalHeight();
    LayoutUnit oldClientAfterEdge = clientLogicalBottom();

    if (isRenderFlowThread())
        toRenderFlowThread(this)->applyBreakAfterContent(oldClientAfterEdge);

    updateLogicalHeight();
    LayoutUnit newHeight = logicalHeight();
    if (oldHeight != newHeight) {
        if (oldHeight > newHeight && maxFloatLogicalBottom > newHeight && !childrenInline()) {
            // One of our children's floats may have become an overhanging float for us. We need to look for it.
            for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
                if (child->isRenderBlockFlow() && !child->isFloatingOrOutOfFlowPositioned()) {
                    RenderBlockFlow* block = toRenderBlockFlow(child);
                    if (block->lowestFloatLogicalBottom() + block->logicalTop() > newHeight)
                        addOverhangingFloats(block, false);
                }
            }
        }
    }

    bool heightChanged = (previousHeight != newHeight);
    if (heightChanged)
        relayoutChildren = true;

    layoutPositionedObjects(relayoutChildren || isRoot(), oldLeft != logicalLeft() ? ForcedLayoutAfterContainingBlockMoved : DefaultLayout);

    computeRegionRangeForBlock(flowThreadContainingBlock());

    // Add overflow from children (unless we're multi-column, since in that case all our child overflow is clipped anyway).
    computeOverflow(oldClientAfterEdge);

    return true;
}

void RenderBlockFlow::determineLogicalLeftPositionForChild(RenderBox* child, ApplyLayoutDeltaMode applyDelta)
{
    LayoutUnit startPosition = borderStart() + paddingStart();
    if (style()->shouldPlaceBlockDirectionScrollbarOnLogicalLeft())
        startPosition -= verticalScrollbarWidth();
    LayoutUnit totalAvailableLogicalWidth = borderAndPaddingLogicalWidth() + availableLogicalWidth();

    // Add in our start margin.
    LayoutUnit childMarginStart = marginStartForChild(child);
    LayoutUnit newPosition = startPosition + childMarginStart;

    // Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need
    // to shift over as necessary to dodge any floats that might get in the way.
    if (child->avoidsFloats() && containsFloats() && !flowThreadContainingBlock())
        newPosition += computeStartPositionDeltaForChildAvoidingFloats(child, marginStartForChild(child));

    setLogicalLeftForChild(child, style()->isLeftToRightDirection() ? newPosition : totalAvailableLogicalWidth - newPosition - logicalWidthForChild(child), applyDelta);
}

void RenderBlockFlow::setLogicalLeftForChild(RenderBox* child, LayoutUnit logicalLeft, ApplyLayoutDeltaMode applyDelta)
{
    if (isHorizontalWritingMode()) {
        if (applyDelta == ApplyLayoutDelta && !RuntimeEnabledFeatures::repaintAfterLayoutEnabled())
            view()->addLayoutDelta(LayoutSize(child->x() - logicalLeft, 0));
        child->setX(logicalLeft);
    } else {
        if (applyDelta == ApplyLayoutDelta && !RuntimeEnabledFeatures::repaintAfterLayoutEnabled())
            view()->addLayoutDelta(LayoutSize(0, child->y() - logicalLeft));
        child->setY(logicalLeft);
    }
}

void RenderBlockFlow::setLogicalTopForChild(RenderBox* child, LayoutUnit logicalTop, ApplyLayoutDeltaMode applyDelta)
{
    if (isHorizontalWritingMode()) {
        if (applyDelta == ApplyLayoutDelta && !RuntimeEnabledFeatures::repaintAfterLayoutEnabled())
            view()->addLayoutDelta(LayoutSize(0, child->y() - logicalTop));
        child->setY(logicalTop);
    } else {
        if (applyDelta == ApplyLayoutDelta && !RuntimeEnabledFeatures::repaintAfterLayoutEnabled())
            view()->addLayoutDelta(LayoutSize(child->x() - logicalTop, 0));
        child->setX(logicalTop);
    }
}

void RenderBlockFlow::layoutBlockChild(RenderBox* child, MarginInfo& marginInfo, LayoutUnit& previousFloatLogicalBottom, LayoutUnit& maxFloatLogicalBottom)
{
    LayoutUnit oldPosMarginBefore = maxPositiveMarginBefore();
    LayoutUnit oldNegMarginBefore = maxNegativeMarginBefore();

    // The child is a normal flow object. Compute the margins we will use for collapsing now.
    child->computeAndSetBlockDirectionMargins(this);

    // Try to guess our correct logical top position. In most cases this guess will
    // be correct. Only if we're wrong (when we compute the real logical top position)
    // will we have to potentially relayout.
    LayoutUnit estimateWithoutPagination;
    LayoutUnit logicalTopEstimate = estimateLogicalTopPosition(child, marginInfo, estimateWithoutPagination);

    // Cache our old rect so that we can dirty the proper repaint rects if the child moves.
    LayoutRect oldRect = child->frameRect();
    LayoutUnit oldLogicalTop = logicalTopForChild(child);

#if !ASSERT_DISABLED
    LayoutSize oldLayoutDelta = RuntimeEnabledFeatures::repaintAfterLayoutEnabled() ? LayoutSize() : view()->layoutDelta();
#endif
    // Go ahead and position the child as though it didn't collapse with the top.
    setLogicalTopForChild(child, logicalTopEstimate, ApplyLayoutDelta);

    RenderBlock* childRenderBlock = child->isRenderBlock() ? toRenderBlock(child) : 0;
    RenderBlockFlow* childRenderBlockFlow = (childRenderBlock && child->isRenderBlockFlow()) ? toRenderBlockFlow(child) : 0;
    bool markDescendantsWithFloats = false;
    if (logicalTopEstimate != oldLogicalTop && !child->avoidsFloats() && childRenderBlock && childRenderBlock->containsFloats()) {
        markDescendantsWithFloats = true;
    } else if (UNLIKELY(logicalTopEstimate.mightBeSaturated())) {
        // logicalTopEstimate, returned by estimateLogicalTopPosition, might be saturated for
        // very large elements. If it does the comparison with oldLogicalTop might yield a
        // false negative as adding and removing margins, borders etc from a saturated number
        // might yield incorrect results. If this is the case always mark for layout.
        markDescendantsWithFloats = true;
    } else if (!child->avoidsFloats() || child->shrinkToAvoidFloats()) {
        // If an element might be affected by the presence of floats, then always mark it for
        // layout.
        LayoutUnit fb = max(previousFloatLogicalBottom, lowestFloatLogicalBottom());
        if (fb > logicalTopEstimate)
            markDescendantsWithFloats = true;
    }

    if (childRenderBlockFlow) {
        if (markDescendantsWithFloats)
            childRenderBlockFlow->markAllDescendantsWithFloatsForLayout();
        if (!child->isWritingModeRoot())
            previousFloatLogicalBottom = max(previousFloatLogicalBottom, oldLogicalTop + childRenderBlockFlow->lowestFloatLogicalBottom());
    }

    SubtreeLayoutScope layoutScope(child);
    if (!child->needsLayout())
        child->markForPaginationRelayoutIfNeeded(layoutScope);

    bool childHadLayout = child->everHadLayout();
    bool childNeededLayout = child->needsLayout();
    if (childNeededLayout)
        child->layout();

    // Cache if we are at the top of the block right now.
    bool atBeforeSideOfBlock = marginInfo.atBeforeSideOfBlock();
    bool childIsSelfCollapsing = child->isSelfCollapsingBlock();

    // Now determine the correct ypos based off examination of collapsing margin
    // values.
    LayoutUnit logicalTopBeforeClear = collapseMargins(child, marginInfo, childIsSelfCollapsing);

    // Now check for clear.
    LayoutUnit logicalTopAfterClear = clearFloatsIfNeeded(child, marginInfo, oldPosMarginBefore, oldNegMarginBefore, logicalTopBeforeClear, childIsSelfCollapsing);

    bool paginated = view()->layoutState()->isPaginated();
    if (paginated) {
        logicalTopAfterClear = adjustBlockChildForPagination(logicalTopAfterClear, estimateWithoutPagination, child,
            atBeforeSideOfBlock && logicalTopBeforeClear == logicalTopAfterClear);
    }

    setLogicalTopForChild(child, logicalTopAfterClear, ApplyLayoutDelta);

    // Now we have a final top position. See if it really does end up being different from our estimate.
    // clearFloatsIfNeeded can also mark the child as needing a layout even though we didn't move. This happens
    // when collapseMargins dynamically adds overhanging floats because of a child with negative margins.
    if (logicalTopAfterClear != logicalTopEstimate || child->needsLayout() || (paginated && childRenderBlock && childRenderBlock->shouldBreakAtLineToAvoidWidow())) {
        SubtreeLayoutScope layoutScope(child);
        if (child->shrinkToAvoidFloats()) {
            // The child's width depends on the line width.
            // When the child shifts to clear an item, its width can
            // change (because it has more available line width).
            // So go ahead and mark the item as dirty.
            layoutScope.setChildNeedsLayout(child);
        }

        if (childRenderBlock) {
            if (!child->avoidsFloats() && childRenderBlock->containsFloats())
                childRenderBlockFlow->markAllDescendantsWithFloatsForLayout();
            if (!child->needsLayout())
                child->markForPaginationRelayoutIfNeeded(layoutScope);
        }

        // Our guess was wrong. Make the child lay itself out again.
        child->layoutIfNeeded();
    }

    // If we previously encountered a self-collapsing sibling of this child that had clearance then
    // we set this bit to ensure we would not collapse the child's margins, and those of any subsequent
    // self-collapsing siblings, with our parent. If this child is not self-collapsing then it can
    // collapse its margins with the parent so reset the bit.
    if (!marginInfo.canCollapseMarginAfterWithLastChild() && !childIsSelfCollapsing)
        marginInfo.setCanCollapseMarginAfterWithLastChild(true);

    // We are no longer at the top of the block if we encounter a non-empty child.
    // This has to be done after checking for clear, so that margins can be reset if a clear occurred.
    if (marginInfo.atBeforeSideOfBlock() && !childIsSelfCollapsing)
        marginInfo.setAtBeforeSideOfBlock(false);

    // Now place the child in the correct left position
    determineLogicalLeftPositionForChild(child, ApplyLayoutDelta);

    LayoutSize childOffset = child->location() - oldRect.location();

    // Update our height now that the child has been placed in the correct position.
    setLogicalHeight(logicalHeight() + logicalHeightForChild(child));
    if (mustSeparateMarginAfterForChild(child)) {
        setLogicalHeight(logicalHeight() + marginAfterForChild(child));
        marginInfo.clearMargin();
    }
    // If the child has overhanging floats that intrude into following siblings (or possibly out
    // of this block), then the parent gets notified of the floats now.
    if (childRenderBlockFlow && childRenderBlockFlow->containsFloats())
        maxFloatLogicalBottom = max(maxFloatLogicalBottom, addOverhangingFloats(childRenderBlockFlow, !childNeededLayout));

    if (childOffset.width() || childOffset.height()) {
        if (!RuntimeEnabledFeatures::repaintAfterLayoutEnabled())
            view()->addLayoutDelta(childOffset);

        // If the child moved, we have to repaint it as well as any floating/positioned
        // descendants. An exception is if we need a layout. In this case, we know we're going to
        // repaint ourselves (and the child) anyway.
        if (RuntimeEnabledFeatures::repaintAfterLayoutEnabled() && childHadLayout && !selfNeedsLayout())
            child->repaintOverhangingFloats(true);
        else if (childHadLayout && !selfNeedsLayout() && child->checkForRepaintDuringLayout())
            child->repaintDuringLayoutIfMoved(oldRect);
    }

    if (!childHadLayout && child->checkForRepaint()) {
        if (!RuntimeEnabledFeatures::repaintAfterLayoutEnabled())
            child->repaint();
        child->repaintOverhangingFloats(true);
    }

    if (paginated) {
        // Check for an after page/column break.
        LayoutUnit newHeight = applyAfterBreak(child, logicalHeight(), marginInfo);
        if (newHeight != height())
            setLogicalHeight(newHeight);
    }

    if (!RuntimeEnabledFeatures::repaintAfterLayoutEnabled()) {
        ASSERT(view()->layoutDeltaMatches(oldLayoutDelta));
    }
}

LayoutUnit RenderBlockFlow::adjustBlockChildForPagination(LayoutUnit logicalTopAfterClear, LayoutUnit estimateWithoutPagination, RenderBox* child, bool atBeforeSideOfBlock)
{
    RenderBlock* childRenderBlock = child->isRenderBlock() ? toRenderBlock(child) : 0;

    if (estimateWithoutPagination != logicalTopAfterClear) {
        // Our guess prior to pagination movement was wrong. Before we attempt to paginate, let's try again at the new
        // position.
        setLogicalHeight(logicalTopAfterClear);
        setLogicalTopForChild(child, logicalTopAfterClear, ApplyLayoutDelta);

        if (child->shrinkToAvoidFloats()) {
            // The child's width depends on the line width.
            // When the child shifts to clear an item, its width can
            // change (because it has more available line width).
            // So go ahead and mark the item as dirty.
            child->setChildNeedsLayout(MarkOnlyThis);
        }

        SubtreeLayoutScope layoutScope(child);

        if (childRenderBlock) {
            if (!child->avoidsFloats() && childRenderBlock->containsFloats())
                toRenderBlockFlow(childRenderBlock)->markAllDescendantsWithFloatsForLayout();
            if (!child->needsLayout())
                child->markForPaginationRelayoutIfNeeded(layoutScope);
        }

        // Our guess was wrong. Make the child lay itself out again.
        child->layoutIfNeeded();
    }

    LayoutUnit oldTop = logicalTopAfterClear;

    // If the object has a page or column break value of "before", then we should shift to the top of the next page.
    LayoutUnit result = applyBeforeBreak(child, logicalTopAfterClear);

    if (pageLogicalHeightForOffset(result)) {
        LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(result, ExcludePageBoundary);
        LayoutUnit spaceShortage = child->logicalHeight() - remainingLogicalHeight;
        if (spaceShortage > 0) {
            // If the child crosses a column boundary, report a break, in case nothing inside it has already
            // done so. The column balancer needs to know how much it has to stretch the columns to make more
            // content fit. If no breaks are reported (but do occur), the balancer will have no clue. FIXME:
            // This should be improved, though, because here we just pretend that the child is
            // unsplittable. A splittable child, on the other hand, has break opportunities at every position
            // where there's no child content, border or padding. In other words, we risk stretching more
            // than necessary.
            setPageBreak(result, spaceShortage);
        }
    }

    // For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one.
    LayoutUnit logicalTopBeforeUnsplittableAdjustment = result;
    LayoutUnit logicalTopAfterUnsplittableAdjustment = adjustForUnsplittableChild(child, result);

    LayoutUnit paginationStrut = 0;
    LayoutUnit unsplittableAdjustmentDelta = logicalTopAfterUnsplittableAdjustment - logicalTopBeforeUnsplittableAdjustment;
    if (unsplittableAdjustmentDelta)
        paginationStrut = unsplittableAdjustmentDelta;
    else if (childRenderBlock && childRenderBlock->paginationStrut())
        paginationStrut = childRenderBlock->paginationStrut();

    if (paginationStrut) {
        // We are willing to propagate out to our parent block as long as we were at the top of the block prior
        // to collapsing our margins, and as long as we didn't clear or move as a result of other pagination.
        if (atBeforeSideOfBlock && oldTop == result && !isOutOfFlowPositioned() && !isTableCell()) {
            // FIXME: Should really check if we're exceeding the page height before propagating the strut, but we don't
            // have all the information to do so (the strut only has the remaining amount to push). Gecko gets this wrong too
            // and pushes to the next page anyway, so not too concerned about it.
            setPaginationStrut(result + paginationStrut);
            if (childRenderBlock)
                childRenderBlock->setPaginationStrut(0);
        } else {
            result += paginationStrut;
        }
    }

    // Similar to how we apply clearance. Go ahead and boost height() to be the place where we're going to position the child.
    setLogicalHeight(logicalHeight() + (result - oldTop));

    // Return the final adjusted logical top.
    return result;
}

void RenderBlockFlow::rebuildFloatsFromIntruding()
{
    if (m_floatingObjects)
        m_floatingObjects->setHorizontalWritingMode(isHorizontalWritingMode());

    HashSet<RenderBox*> oldIntrudingFloatSet;
    if (!childrenInline() && m_floatingObjects) {
        const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
        FloatingObjectSetIterator end = floatingObjectSet.end();
        for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
            FloatingObject* floatingObject = *it;
            if (!floatingObject->isDescendant())
                oldIntrudingFloatSet.add(floatingObject->renderer());
        }
    }

    // Inline blocks are covered by the isReplaced() check in the avoidFloats method.
    if (avoidsFloats() || isRoot() || isRenderView() || isFloatingOrOutOfFlowPositioned() || isTableCell()) {
        if (m_floatingObjects) {
            m_floatingObjects->clear();
        }
        if (!oldIntrudingFloatSet.isEmpty())
            markAllDescendantsWithFloatsForLayout();
        return;
    }

    RendererToFloatInfoMap floatMap;

    if (m_floatingObjects) {
        if (childrenInline())
            m_floatingObjects->moveAllToFloatInfoMap(floatMap);
        else
            m_floatingObjects->clear();
    }

    // We should not process floats if the parent node is not a RenderBlockFlow. Otherwise, we will add
    // floats in an invalid context. This will cause a crash arising from a bad cast on the parent.
    // See <rdar://problem/8049753>, where float property is applied on a text node in a SVG.
    if (!parent() || !parent()->isRenderBlockFlow())
        return;

    // Attempt to locate a previous sibling with overhanging floats. We skip any elements that are
    // out of flow (like floating/positioned elements), and we also skip over any objects that may have shifted
    // to avoid floats.
    RenderBlockFlow* parentBlockFlow = toRenderBlockFlow(parent());
    bool parentHasFloats = false;
    RenderObject* prev = previousSibling();
    while (prev && (prev->isFloatingOrOutOfFlowPositioned() || !prev->isBox() || !prev->isRenderBlock() || toRenderBlock(prev)->avoidsFloats())) {
        if (prev->isFloating())
            parentHasFloats = true;
        prev = prev->previousSibling();
    }

    // First add in floats from the parent. Self-collapsing blocks let their parent track any floats that intrude into
    // them (as opposed to floats they contain themselves) so check for those here too.
    LayoutUnit logicalTopOffset = logicalTop();
    if (parentHasFloats || (prev && toRenderBlockFlow(prev)->isSelfCollapsingBlock() && parentBlockFlow->lowestFloatLogicalBottom() > logicalTopOffset))
        addIntrudingFloats(parentBlockFlow, parentBlockFlow->logicalLeftOffsetForContent(), logicalTopOffset);

    LayoutUnit logicalLeftOffset = 0;
    if (prev) {
        logicalTopOffset -= toRenderBox(prev)->logicalTop();
    } else {
        prev = parentBlockFlow;
        logicalLeftOffset += parentBlockFlow->logicalLeftOffsetForContent();
    }

    // Add overhanging floats from the previous RenderBlockFlow, but only if it has a float that intrudes into our space.
    RenderBlockFlow* blockFlow = toRenderBlockFlow(prev);
    if (blockFlow->m_floatingObjects && blockFlow->lowestFloatLogicalBottom() > logicalTopOffset)
        addIntrudingFloats(blockFlow, logicalLeftOffset, logicalTopOffset);

    if (childrenInline()) {
        LayoutUnit changeLogicalTop = LayoutUnit::max();
        LayoutUnit changeLogicalBottom = LayoutUnit::min();
        if (m_floatingObjects) {
            const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
            FloatingObjectSetIterator end = floatingObjectSet.end();
            for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
                FloatingObject* floatingObject = *it;
                FloatingObject* oldFloatingObject = floatMap.get(floatingObject->renderer());
                LayoutUnit logicalBottom = logicalBottomForFloat(floatingObject);
                if (oldFloatingObject) {
                    LayoutUnit oldLogicalBottom = logicalBottomForFloat(oldFloatingObject);
                    if (logicalWidthForFloat(floatingObject) != logicalWidthForFloat(oldFloatingObject) || logicalLeftForFloat(floatingObject) != logicalLeftForFloat(oldFloatingObject)) {
                        changeLogicalTop = 0;
                        changeLogicalBottom = max(changeLogicalBottom, max(logicalBottom, oldLogicalBottom));
                    } else {
                        if (logicalBottom != oldLogicalBottom) {
                            changeLogicalTop = min(changeLogicalTop, min(logicalBottom, oldLogicalBottom));
                            changeLogicalBottom = max(changeLogicalBottom, max(logicalBottom, oldLogicalBottom));
                        }
                        LayoutUnit logicalTop = logicalTopForFloat(floatingObject);
                        LayoutUnit oldLogicalTop = logicalTopForFloat(oldFloatingObject);
                        if (logicalTop != oldLogicalTop) {
                            changeLogicalTop = min(changeLogicalTop, min(logicalTop, oldLogicalTop));
                            changeLogicalBottom = max(changeLogicalBottom, max(logicalTop, oldLogicalTop));
                        }
                    }

                    floatMap.remove(floatingObject->renderer());
                    if (oldFloatingObject->originatingLine() && !selfNeedsLayout()) {
                        ASSERT(oldFloatingObject->originatingLine()->renderer() == this);
                        oldFloatingObject->originatingLine()->markDirty();
                    }
                    delete oldFloatingObject;
                } else {
                    changeLogicalTop = 0;
                    changeLogicalBottom = max(changeLogicalBottom, logicalBottom);
                }
            }
        }

        RendererToFloatInfoMap::iterator end = floatMap.end();
        for (RendererToFloatInfoMap::iterator it = floatMap.begin(); it != end; ++it) {
            FloatingObject* floatingObject = (*it).value;
            if (!floatingObject->isDescendant()) {
                changeLogicalTop = 0;
                changeLogicalBottom = max(changeLogicalBottom, logicalBottomForFloat(floatingObject));
            }
        }
        deleteAllValues(floatMap);

        markLinesDirtyInBlockRange(changeLogicalTop, changeLogicalBottom);
    } else if (!oldIntrudingFloatSet.isEmpty()) {
        // If there are previously intruding floats that no longer intrude, then children with floats
        // should also get layout because they might need their floating object lists cleared.
        if (m_floatingObjects->set().size() < oldIntrudingFloatSet.size()) {
            markAllDescendantsWithFloatsForLayout();
        } else {
            const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
            FloatingObjectSetIterator end = floatingObjectSet.end();
            for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end && !oldIntrudingFloatSet.isEmpty(); ++it)
                oldIntrudingFloatSet.remove((*it)->renderer());
            if (!oldIntrudingFloatSet.isEmpty())
                markAllDescendantsWithFloatsForLayout();
        }
    }
}

void RenderBlockFlow::layoutBlockChildren(bool relayoutChildren, LayoutUnit& maxFloatLogicalBottom, SubtreeLayoutScope& layoutScope, LayoutUnit beforeEdge, LayoutUnit afterEdge)
{
    dirtyForLayoutFromPercentageHeightDescendants(layoutScope);

    // The margin struct caches all our current margin collapsing state. The compact struct caches state when we encounter compacts,
    MarginInfo marginInfo(this, beforeEdge, afterEdge);

    // Fieldsets need to find their legend and position it inside the border of the object.
    // The legend then gets skipped during normal layout. The same is true for ruby text.
    // It doesn't get included in the normal layout process but is instead skipped.
    RenderObject* childToExclude = layoutSpecialExcludedChild(relayoutChildren, layoutScope);

    LayoutUnit previousFloatLogicalBottom = 0;
    maxFloatLogicalBottom = 0;

    RenderBox* next = firstChildBox();
    RenderBox* lastNormalFlowChild = 0;

    while (next) {
        RenderBox* child = next;
        next = child->nextSiblingBox();

        LayoutRectRecorder recorder(*child);

        if (childToExclude == child)
            continue; // Skip this child, since it will be positioned by the specialized subclass (fieldsets and ruby runs).

        updateBlockChildDirtyBitsBeforeLayout(relayoutChildren, child);

        if (child->isOutOfFlowPositioned()) {
            child->containingBlock()->insertPositionedObject(child);
            adjustPositionedBlock(child, marginInfo);
            continue;
        }
        if (child->isFloating()) {
            insertFloatingObject(child);
            adjustFloatingBlock(marginInfo);
            continue;
        }

        // Lay out the child.
        layoutBlockChild(child, marginInfo, previousFloatLogicalBottom, maxFloatLogicalBottom);
        lastNormalFlowChild = child;
    }

    // Now do the handling of the bottom of the block, adding in our bottom border/padding and
    // determining the correct collapsed bottom margin information.
    handleAfterSideOfBlock(lastNormalFlowChild, beforeEdge, afterEdge, marginInfo);
}

// Our MarginInfo state used when laying out block children.
MarginInfo::MarginInfo(RenderBlockFlow* blockFlow, LayoutUnit beforeBorderPadding, LayoutUnit afterBorderPadding)
    : m_canCollapseMarginAfterWithLastChild(true)
    , m_atBeforeSideOfBlock(true)
    , m_atAfterSideOfBlock(false)
    , m_hasMarginBeforeQuirk(false)
    , m_hasMarginAfterQuirk(false)
    , m_determinedMarginBeforeQuirk(false)
    , m_discardMargin(false)
{
    RenderStyle* blockStyle = blockFlow->style();
    ASSERT(blockFlow->isRenderView() || blockFlow->parent());
    m_canCollapseWithChildren = !blockFlow->createsBlockFormattingContext() && !blockFlow->isRenderFlowThread() && !blockFlow->isRenderView();

    m_canCollapseMarginBeforeWithChildren = m_canCollapseWithChildren && !beforeBorderPadding && blockStyle->marginBeforeCollapse() != MSEPARATE;

    // If any height other than auto is specified in CSS, then we don't collapse our bottom
    // margins with our children's margins. To do otherwise would be to risk odd visual
    // effects when the children overflow out of the parent block and yet still collapse
    // with it. We also don't collapse if we have any bottom border/padding.
    m_canCollapseMarginAfterWithChildren = m_canCollapseWithChildren && !afterBorderPadding
        && (blockStyle->logicalHeight().isAuto() && !blockStyle->logicalHeight().value()) && blockStyle->marginAfterCollapse() != MSEPARATE;

    m_quirkContainer = blockFlow->isTableCell() || blockFlow->isBody();

    m_discardMargin = m_canCollapseMarginBeforeWithChildren && blockFlow->mustDiscardMarginBefore();

    m_positiveMargin = (m_canCollapseMarginBeforeWithChildren && !blockFlow->mustDiscardMarginBefore()) ? blockFlow->maxPositiveMarginBefore() : LayoutUnit();
    m_negativeMargin = (m_canCollapseMarginBeforeWithChildren && !blockFlow->mustDiscardMarginBefore()) ? blockFlow->maxNegativeMarginBefore() : LayoutUnit();
}

RenderBlockFlow::MarginValues RenderBlockFlow::marginValuesForChild(RenderBox* child) const
{
    LayoutUnit childBeforePositive = 0;
    LayoutUnit childBeforeNegative = 0;
    LayoutUnit childAfterPositive = 0;
    LayoutUnit childAfterNegative = 0;

    LayoutUnit beforeMargin = 0;
    LayoutUnit afterMargin = 0;

    RenderBlockFlow* childRenderBlockFlow = child->isRenderBlockFlow() ? toRenderBlockFlow(child) : 0;

    // If the child has the same directionality as we do, then we can just return its
    // margins in the same direction.
    if (!child->isWritingModeRoot()) {
        if (childRenderBlockFlow) {
            childBeforePositive = childRenderBlockFlow->maxPositiveMarginBefore();
            childBeforeNegative = childRenderBlockFlow->maxNegativeMarginBefore();
            childAfterPositive = childRenderBlockFlow->maxPositiveMarginAfter();
            childAfterNegative = childRenderBlockFlow->maxNegativeMarginAfter();
        } else {
            beforeMargin = child->marginBefore();
            afterMargin = child->marginAfter();
        }
    } else if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) {
        // The child has a different directionality. If the child is parallel, then it's just
        // flipped relative to us. We can use the margins for the opposite edges.
        if (childRenderBlockFlow) {
            childBeforePositive = childRenderBlockFlow->maxPositiveMarginAfter();
            childBeforeNegative = childRenderBlockFlow->maxNegativeMarginAfter();
            childAfterPositive = childRenderBlockFlow->maxPositiveMarginBefore();
            childAfterNegative = childRenderBlockFlow->maxNegativeMarginBefore();
        } else {
            beforeMargin = child->marginAfter();
            afterMargin = child->marginBefore();
        }
    } else {
        // The child is perpendicular to us, which means its margins don't collapse but are on the
        // "logical left/right" sides of the child box. We can just return the raw margin in this case.
        beforeMargin = marginBeforeForChild(child);
        afterMargin = marginAfterForChild(child);
    }

    // Resolve uncollapsing margins into their positive/negative buckets.
    if (beforeMargin) {
        if (beforeMargin > 0)
            childBeforePositive = beforeMargin;
        else
            childBeforeNegative = -beforeMargin;
    }
    if (afterMargin) {
        if (afterMargin > 0)
            childAfterPositive = afterMargin;
        else
            childAfterNegative = -afterMargin;
    }

    return RenderBlockFlow::MarginValues(childBeforePositive, childBeforeNegative, childAfterPositive, childAfterNegative);
}

LayoutUnit RenderBlockFlow::collapseMargins(RenderBox* child, MarginInfo& marginInfo, bool childIsSelfCollapsing)
{
    bool childDiscardMarginBefore = mustDiscardMarginBeforeForChild(child);
    bool childDiscardMarginAfter = mustDiscardMarginAfterForChild(child);

    // The child discards the before margin when the the after margin has discard in the case of a self collapsing block.
    childDiscardMarginBefore = childDiscardMarginBefore || (childDiscardMarginAfter && childIsSelfCollapsing);

    // Get the four margin values for the child and cache them.
    const RenderBlockFlow::MarginValues childMargins = marginValuesForChild(child);

    // Get our max pos and neg top margins.
    LayoutUnit posTop = childMargins.positiveMarginBefore();
    LayoutUnit negTop = childMargins.negativeMarginBefore();

    // For self-collapsing blocks, collapse our bottom margins into our
    // top to get new posTop and negTop values.
    if (childIsSelfCollapsing) {
        posTop = max(posTop, childMargins.positiveMarginAfter());
        negTop = max(negTop, childMargins.negativeMarginAfter());
    }

    // See if the top margin is quirky. We only care if this child has
    // margins that will collapse with us.
    bool topQuirk = hasMarginBeforeQuirk(child);

    if (marginInfo.canCollapseWithMarginBefore()) {
        if (!childDiscardMarginBefore && !marginInfo.discardMargin()) {
            // This child is collapsing with the top of the
            // block. If it has larger margin values, then we need to update
            // our own maximal values.
            if (!document().inQuirksMode() || !marginInfo.quirkContainer() || !topQuirk)
                setMaxMarginBeforeValues(max(posTop, maxPositiveMarginBefore()), max(negTop, maxNegativeMarginBefore()));

            // The minute any of the margins involved isn't a quirk, don't
            // collapse it away, even if the margin is smaller (www.webreference.com
            // has an example of this, a <dt> with 0.8em author-specified inside
            // a <dl> inside a <td>.
            if (!marginInfo.determinedMarginBeforeQuirk() && !topQuirk && (posTop - negTop)) {
                setHasMarginBeforeQuirk(false);
                marginInfo.setDeterminedMarginBeforeQuirk(true);
            }

            if (!marginInfo.determinedMarginBeforeQuirk() && topQuirk && !marginBefore()) {
                // We have no top margin and our top child has a quirky margin.
                // We will pick up this quirky margin and pass it through.
                // This deals with the <td><div><p> case.
                // Don't do this for a block that split two inlines though. You do
                // still apply margins in this case.
                setHasMarginBeforeQuirk(true);
            }
        } else {
            // The before margin of the container will also discard all the margins it is collapsing with.
            setMustDiscardMarginBefore();
        }
    }

    // Once we find a child with discardMarginBefore all the margins collapsing with us must also discard.
    if (childDiscardMarginBefore) {
        marginInfo.setDiscardMargin(true);
        marginInfo.clearMargin();
    }

    if (marginInfo.quirkContainer() && marginInfo.atBeforeSideOfBlock() && (posTop - negTop))
        marginInfo.setHasMarginBeforeQuirk(topQuirk);

    LayoutUnit beforeCollapseLogicalTop = logicalHeight();
    LayoutUnit logicalTop = beforeCollapseLogicalTop;

    LayoutUnit clearanceForSelfCollapsingBlock;
    RenderObject* prev = child->previousSibling();
    RenderBlockFlow* previousBlockFlow =  prev && prev->isRenderBlockFlow() && !prev->isFloatingOrOutOfFlowPositioned() ? toRenderBlockFlow(prev) : 0;
    // If the child's previous sibling is a self-collapsing block that cleared a float then its top border edge has been set at the bottom border edge
    // of the float. Since we want to collapse the child's top margin with the self-collapsing block's top and bottom margins we need to adjust our parent's height to match the
    // margin top of the self-collapsing block. If the resulting collapsed margin leaves the child still intruding into the float then we will want to clear it.
    if (!marginInfo.canCollapseWithMarginBefore() && previousBlockFlow && previousBlockFlow->isSelfCollapsingBlock()) {
        clearanceForSelfCollapsingBlock = previousBlockFlow->marginOffsetForSelfCollapsingBlock();
        setLogicalHeight(logicalHeight() - clearanceForSelfCollapsingBlock);
    }

    if (childIsSelfCollapsing) {
        // For a self collapsing block both the before and after margins get discarded. The block doesn't contribute anything to the height of the block.
        // Also, the child's top position equals the logical height of the container.
        if (!childDiscardMarginBefore && !marginInfo.discardMargin()) {
            // This child has no height. We need to compute our
            // position before we collapse the child's margins together,
            // so that we can get an accurate position for the zero-height block.
            LayoutUnit collapsedBeforePos = max(marginInfo.positiveMargin(), childMargins.positiveMarginBefore());
            LayoutUnit collapsedBeforeNeg = max(marginInfo.negativeMargin(), childMargins.negativeMarginBefore());
            marginInfo.setMargin(collapsedBeforePos, collapsedBeforeNeg);

            // Now collapse the child's margins together, which means examining our
            // bottom margin values as well.
            marginInfo.setPositiveMarginIfLarger(childMargins.positiveMarginAfter());
            marginInfo.setNegativeMarginIfLarger(childMargins.negativeMarginAfter());

            if (!marginInfo.canCollapseWithMarginBefore()) {
                // We need to make sure that the position of the self-collapsing block
                // is correct, since it could have overflowing content
                // that needs to be positioned correctly (e.g., a block that
                // had a specified height of 0 but that actually had subcontent).
                logicalTop = logicalHeight() + collapsedBeforePos - collapsedBeforeNeg;
            }
        }
    } else {
        if (mustSeparateMarginBeforeForChild(child)) {
            ASSERT(!marginInfo.discardMargin() || (marginInfo.discardMargin() && !marginInfo.margin()));
            // If we are at the before side of the block and we collapse, ignore the computed margin
            // and just add the child margin to the container height. This will correctly position
            // the child inside the container.
            LayoutUnit separateMargin = !marginInfo.canCollapseWithMarginBefore() ? marginInfo.margin() : LayoutUnit(0);
            setLogicalHeight(logicalHeight() + separateMargin + marginBeforeForChild(child));
            logicalTop = logicalHeight();
        } else if (!marginInfo.discardMargin() && (!marginInfo.atBeforeSideOfBlock()
            || (!marginInfo.canCollapseMarginBeforeWithChildren()
            && (!document().inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.hasMarginBeforeQuirk())))) {
            // We're collapsing with a previous sibling's margins and not
            // with the top of the block.
            setLogicalHeight(logicalHeight() + max(marginInfo.positiveMargin(), posTop) - max(marginInfo.negativeMargin(), negTop));
            logicalTop = logicalHeight();
        }

        marginInfo.setDiscardMargin(childDiscardMarginAfter);

        if (!marginInfo.discardMargin()) {
            marginInfo.setPositiveMargin(childMargins.positiveMarginAfter());
            marginInfo.setNegativeMargin(childMargins.negativeMarginAfter());
        } else {
            marginInfo.clearMargin();
        }

        if (marginInfo.margin())
            marginInfo.setHasMarginAfterQuirk(hasMarginAfterQuirk(child));
    }

    // If margins would pull us past the top of the next page, then we need to pull back and pretend like the margins
    // collapsed into the page edge.
    LayoutState* layoutState = view()->layoutState();
    if (layoutState->isPaginated() && layoutState->pageLogicalHeight() && logicalTop > beforeCollapseLogicalTop) {
        LayoutUnit oldLogicalTop = logicalTop;
        logicalTop = min(logicalTop, nextPageLogicalTop(beforeCollapseLogicalTop));
        setLogicalHeight(logicalHeight() + (logicalTop - oldLogicalTop));
    }

    if (previousBlockFlow) {
        // If |child| is a self-collapsing block it may have collapsed into a previous sibling and although it hasn't reduced the height of the parent yet
        // any floats from the parent will now overhang.
        LayoutUnit oldLogicalHeight = logicalHeight();
        setLogicalHeight(logicalTop);
        if (previousBlockFlow->containsFloats() && !previousBlockFlow->avoidsFloats() && (previousBlockFlow->logicalTop() + previousBlockFlow->lowestFloatLogicalBottom()) > logicalTop)
            addOverhangingFloats(previousBlockFlow, false);
        setLogicalHeight(oldLogicalHeight);

        // If |child|'s previous sibling is a self-collapsing block that cleared a float and margin collapsing resulted in |child| moving up
        // into the margin area of the self-collapsing block then the float it clears is now intruding into |child|. Layout again so that we can look for
        // floats in the parent that overhang |child|'s new logical top.
        bool logicalTopIntrudesIntoFloat = clearanceForSelfCollapsingBlock > 0 && logicalTop < beforeCollapseLogicalTop;
        if (logicalTopIntrudesIntoFloat && containsFloats() && !child->avoidsFloats() && lowestFloatLogicalBottom() > logicalTop)
            child->setNeedsLayout();
    }

    return logicalTop;
}

void RenderBlockFlow::adjustPositionedBlock(RenderBox* child, const MarginInfo& marginInfo)
{
    bool isHorizontal = isHorizontalWritingMode();
    bool hasStaticBlockPosition = child->style()->hasStaticBlockPosition(isHorizontal);

    LayoutUnit logicalTop = logicalHeight();
    updateStaticInlinePositionForChild(child, logicalTop);

    if (!marginInfo.canCollapseWithMarginBefore()) {
        // Positioned blocks don't collapse margins, so add the margin provided by
        // the container now. The child's own margin is added later when calculating its logical top.
        LayoutUnit collapsedBeforePos = marginInfo.positiveMargin();
        LayoutUnit collapsedBeforeNeg = marginInfo.negativeMargin();
        logicalTop += collapsedBeforePos - collapsedBeforeNeg;
    }

    RenderLayer* childLayer = child->layer();
    if (childLayer->staticBlockPosition() != logicalTop) {
        childLayer->setStaticBlockPosition(logicalTop);
        if (hasStaticBlockPosition)
            child->setChildNeedsLayout(MarkOnlyThis);
    }
}

LayoutUnit RenderBlockFlow::computeStartPositionDeltaForChildAvoidingFloats(const RenderBox* child, LayoutUnit childMarginStart)
{
    LayoutUnit startPosition = startOffsetForContent();

    // Add in our start margin.
    LayoutUnit oldPosition = startPosition + childMarginStart;
    LayoutUnit newPosition = oldPosition;

    LayoutUnit blockOffset = logicalTopForChild(child);
    LayoutUnit startOff = startOffsetForLine(blockOffset, false, logicalHeightForChild(child));

    if (style()->textAlign() != WEBKIT_CENTER && !child->style()->marginStartUsing(style()).isAuto()) {
        if (childMarginStart < 0)
            startOff += childMarginStart;
        newPosition = max(newPosition, startOff); // Let the float sit in the child's margin if it can fit.
    } else if (startOff != startPosition) {
        newPosition = startOff + childMarginStart;
    }

    return newPosition - oldPosition;
}

LayoutUnit RenderBlockFlow::clearFloatsIfNeeded(RenderBox* child, MarginInfo& marginInfo, LayoutUnit oldTopPosMargin, LayoutUnit oldTopNegMargin, LayoutUnit yPos, bool childIsSelfCollapsing)
{
    LayoutUnit heightIncrease = getClearDelta(child, yPos);
    if (!heightIncrease)
        return yPos;

    if (childIsSelfCollapsing) {
        bool childDiscardMargin = mustDiscardMarginBeforeForChild(child) || mustDiscardMarginAfterForChild(child);

        // For self-collapsing blocks that clear, they can still collapse their
        // margins with following siblings. Reset the current margins to represent
        // the self-collapsing block's margins only.
        // If DISCARD is specified for -webkit-margin-collapse, reset the margin values.
        RenderBlockFlow::MarginValues childMargins = marginValuesForChild(child);
        if (!childDiscardMargin) {
            marginInfo.setPositiveMargin(max(childMargins.positiveMarginBefore(), childMargins.positiveMarginAfter()));
            marginInfo.setNegativeMargin(max(childMargins.negativeMarginBefore(), childMargins.negativeMarginAfter()));
        } else {
            marginInfo.clearMargin();
        }
        marginInfo.setDiscardMargin(childDiscardMargin);

        // CSS2.1 states:
        // "If the top and bottom margins of an element with clearance are adjoining, its margins collapse with
        // the adjoining margins of following siblings but that resulting margin does not collapse with the bottom margin of the parent block."
        // So the parent's bottom margin cannot collapse through this block or any subsequent self-collapsing blocks. Set a bit to ensure
        // this happens; it will get reset if we encounter an in-flow sibling that is not self-collapsing.
        marginInfo.setCanCollapseMarginAfterWithLastChild(false);

        // For now set the border-top of |child| flush with the bottom border-edge of the float so it can layout any floating or positioned children of
        // its own at the correct vertical position. If subsequent siblings attempt to collapse with |child|'s margins in |collapseMargins| we will
        // adjust the height of the parent to |child|'s margin top (which if it is positive sits up 'inside' the float it's clearing) so that all three
        // margins can collapse at the correct vertical position.
        // Per CSS2.1 we need to ensure that any negative margin-top clears |child| beyond the bottom border-edge of the float so that the top border edge of the child
        // (i.e. its clearance)  is at a position that satisfies the equation: "the amount of clearance is set so that clearance + margin-top = [height of float],
        // i.e., clearance = [height of float] - margin-top".
        setLogicalHeight(child->logicalTop() + childMargins.negativeMarginBefore());
    } else {
        // Increase our height by the amount we had to clear.
        setLogicalHeight(logicalHeight() + heightIncrease);
    }

    if (marginInfo.canCollapseWithMarginBefore()) {
        // We can no longer collapse with the top of the block since a clear
        // occurred. The empty blocks collapse into the cleared block.
        setMaxMarginBeforeValues(oldTopPosMargin, oldTopNegMargin);
        marginInfo.setAtBeforeSideOfBlock(false);

        // In case the child discarded the before margin of the block we need to reset the mustDiscardMarginBefore flag to the initial value.
        setMustDiscardMarginBefore(style()->marginBeforeCollapse() == MDISCARD);
    }

    return yPos + heightIncrease;
}

void RenderBlockFlow::setCollapsedBottomMargin(const MarginInfo& marginInfo)
{
    if (marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()) {
        // Update the after side margin of the container to discard if the after margin of the last child also discards and we collapse with it.
        // Don't update the max margin values because we won't need them anyway.
        if (marginInfo.discardMargin()) {
            setMustDiscardMarginAfter();
            return;
        }

        // Update our max pos/neg bottom margins, since we collapsed our bottom margins
        // with our children.
        setMaxMarginAfterValues(max(maxPositiveMarginAfter(), marginInfo.positiveMargin()), max(maxNegativeMarginAfter(), marginInfo.negativeMargin()));

        if (!marginInfo.hasMarginAfterQuirk())
            setHasMarginAfterQuirk(false);

        if (marginInfo.hasMarginAfterQuirk() && !marginAfter()) {
            // We have no bottom margin and our last child has a quirky margin.
            // We will pick up this quirky margin and pass it through.
            // This deals with the <td><div><p> case.
            setHasMarginAfterQuirk(true);
        }
    }
}

void RenderBlockFlow::marginBeforeEstimateForChild(RenderBox* child, LayoutUnit& positiveMarginBefore, LayoutUnit& negativeMarginBefore, bool& discardMarginBefore) const
{
    // Give up if in quirks mode and we're a body/table cell and the top margin of the child box is quirky.
    // Give up if the child specified -webkit-margin-collapse: separate that prevents collapsing.
    // FIXME: Use writing mode independent accessor for marginBeforeCollapse.
    if ((document().inQuirksMode() && hasMarginBeforeQuirk(child) && (isTableCell() || isBody())) || child->style()->marginBeforeCollapse() == MSEPARATE)
        return;

    // The margins are discarded by a child that specified -webkit-margin-collapse: discard.
    // FIXME: Use writing mode independent accessor for marginBeforeCollapse.
    if (child->style()->marginBeforeCollapse() == MDISCARD) {
        positiveMarginBefore = 0;
        negativeMarginBefore = 0;
        discardMarginBefore = true;
        return;
    }

    LayoutUnit beforeChildMargin = marginBeforeForChild(child);
    positiveMarginBefore = max(positiveMarginBefore, beforeChildMargin);
    negativeMarginBefore = max(negativeMarginBefore, -beforeChildMargin);

    if (!child->isRenderBlockFlow())
        return;

    RenderBlockFlow* childBlockFlow = toRenderBlockFlow(child);
    if (childBlockFlow->childrenInline() || childBlockFlow->isWritingModeRoot())
        return;

    MarginInfo childMarginInfo(childBlockFlow, childBlockFlow->borderBefore() + childBlockFlow->paddingBefore(), childBlockFlow->borderAfter() + childBlockFlow->paddingAfter());
    if (!childMarginInfo.canCollapseMarginBeforeWithChildren())
        return;

    RenderBox* grandchildBox = childBlockFlow->firstChildBox();
    for ( ; grandchildBox; grandchildBox = grandchildBox->nextSiblingBox()) {
        if (!grandchildBox->isFloatingOrOutOfFlowPositioned())
            break;
    }

    // Give up if there is clearance on the box, since it probably won't collapse into us.
    if (!grandchildBox || grandchildBox->style()->clear() != CNONE)
        return;

    // Make sure to update the block margins now for the grandchild box so that we're looking at current values.
    if (grandchildBox->needsLayout()) {
        grandchildBox->computeAndSetBlockDirectionMargins(this);
        if (grandchildBox->isRenderBlock()) {
            RenderBlock* grandchildBlock = toRenderBlock(grandchildBox);
            grandchildBlock->setHasMarginBeforeQuirk(grandchildBox->style()->hasMarginBeforeQuirk());
            grandchildBlock->setHasMarginAfterQuirk(grandchildBox->style()->hasMarginAfterQuirk());
        }
    }

    // Collapse the margin of the grandchild box with our own to produce an estimate.
    childBlockFlow->marginBeforeEstimateForChild(grandchildBox, positiveMarginBefore, negativeMarginBefore, discardMarginBefore);
}

LayoutUnit RenderBlockFlow::estimateLogicalTopPosition(RenderBox* child, const MarginInfo& marginInfo, LayoutUnit& estimateWithoutPagination)
{
    // FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological
    // relayout if there are intruding floats.
    LayoutUnit logicalTopEstimate = logicalHeight();
    if (!marginInfo.canCollapseWithMarginBefore()) {
        LayoutUnit positiveMarginBefore = 0;
        LayoutUnit negativeMarginBefore = 0;
        bool discardMarginBefore = false;
        if (child->selfNeedsLayout()) {
            // Try to do a basic estimation of how the collapse is going to go.
            marginBeforeEstimateForChild(child, positiveMarginBefore, negativeMarginBefore, discardMarginBefore);
        } else {
            // Use the cached collapsed margin values from a previous layout. Most of the time they
            // will be right.
            RenderBlockFlow::MarginValues marginValues = marginValuesForChild(child);
            positiveMarginBefore = max(positiveMarginBefore, marginValues.positiveMarginBefore());
            negativeMarginBefore = max(negativeMarginBefore, marginValues.negativeMarginBefore());
            discardMarginBefore = mustDiscardMarginBeforeForChild(child);
        }

        // Collapse the result with our current margins.
        if (!discardMarginBefore)
            logicalTopEstimate += max(marginInfo.positiveMargin(), positiveMarginBefore) - max(marginInfo.negativeMargin(), negativeMarginBefore);
    }

    // Adjust logicalTopEstimate down to the next page if the margins are so large that we don't fit on the current
    // page.
    LayoutState* layoutState = view()->layoutState();
    if (layoutState->isPaginated() && layoutState->pageLogicalHeight() && logicalTopEstimate > logicalHeight())
        logicalTopEstimate = min(logicalTopEstimate, nextPageLogicalTop(logicalHeight()));

    logicalTopEstimate += getClearDelta(child, logicalTopEstimate);

    estimateWithoutPagination = logicalTopEstimate;

    if (layoutState->isPaginated()) {
        // If the object has a page or column break value of "before", then we should shift to the top of the next page.
        logicalTopEstimate = applyBeforeBreak(child, logicalTopEstimate);

        // For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one.
        logicalTopEstimate = adjustForUnsplittableChild(child, logicalTopEstimate);

        if (!child->selfNeedsLayout() && child->isRenderBlock())
            logicalTopEstimate += toRenderBlock(child)->paginationStrut();
    }

    return logicalTopEstimate;
}

LayoutUnit RenderBlockFlow::marginOffsetForSelfCollapsingBlock()
{
    ASSERT(isSelfCollapsingBlock());
    RenderBlockFlow* parentBlock = toRenderBlockFlow(parent());
    if (parentBlock && style()->clear() && parentBlock->getClearDelta(this, logicalHeight()))
        return marginValuesForChild(this).positiveMarginBefore();
    return LayoutUnit();
}

void RenderBlockFlow::adjustFloatingBlock(const MarginInfo& marginInfo)
{
    // The float should be positioned taking into account the bottom margin
    // of the previous flow. We add that margin into the height, get the
    // float positioned properly, and then subtract the margin out of the
    // height again. In the case of self-collapsing blocks, we always just
    // use the top margins, since the self-collapsing block collapsed its
    // own bottom margin into its top margin.
    //
    // Note also that the previous flow may collapse its margin into the top of
    // our block. If this is the case, then we do not add the margin in to our
    // height when computing the position of the float. This condition can be tested
    // for by simply calling canCollapseWithMarginBefore. See
    // http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for
    // an example of this scenario.
    LayoutUnit marginOffset = marginInfo.canCollapseWithMarginBefore() ? LayoutUnit() : marginInfo.margin();
    setLogicalHeight(logicalHeight() + marginOffset);
    positionNewFloats();
    setLogicalHeight(logicalHeight() - marginOffset);
}

void RenderBlockFlow::handleAfterSideOfBlock(RenderBox* lastChild, LayoutUnit beforeSide, LayoutUnit afterSide, MarginInfo& marginInfo)
{
    marginInfo.setAtAfterSideOfBlock(true);

    // If our last child was a self-collapsing block with clearance then our logical height is flush with the
    // bottom edge of the float that the child clears. The correct vertical position for the margin-collapsing we want
    // to perform now is at the child's margin-top - so adjust our height to that position.
    if (lastChild && lastChild->isRenderBlockFlow() && lastChild->isSelfCollapsingBlock())
        setLogicalHeight(logicalHeight() - toRenderBlockFlow(lastChild)->marginOffsetForSelfCollapsingBlock());

    if (marginInfo.canCollapseMarginAfterWithChildren() && !marginInfo.canCollapseMarginAfterWithLastChild())
        marginInfo.setCanCollapseMarginAfterWithChildren(false);

    // If we can't collapse with children then go ahead and add in the bottom margin.
    if (!marginInfo.discardMargin() && (!marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()
        && (!document().inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.hasMarginAfterQuirk())))
        setLogicalHeight(logicalHeight() + marginInfo.margin());

    // Now add in our bottom border/padding.
    setLogicalHeight(logicalHeight() + afterSide);

    // Negative margins can cause our height to shrink below our minimal height (border/padding).
    // If this happens, ensure that the computed height is increased to the minimal height.
    setLogicalHeight(max(logicalHeight(), beforeSide + afterSide));

    // Update our bottom collapsed margin info.
    setCollapsedBottomMargin(marginInfo);
}

void RenderBlockFlow::setMustDiscardMarginBefore(bool value)
{
    if (style()->marginBeforeCollapse() == MDISCARD) {
        ASSERT(value);
        return;
    }

    if (!m_rareData && !value)
        return;

    if (!m_rareData)
        m_rareData = adoptPtr(new RenderBlockFlowRareData(this));

    m_rareData->m_discardMarginBefore = value;
}

void RenderBlockFlow::setMustDiscardMarginAfter(bool value)
{
    if (style()->marginAfterCollapse() == MDISCARD) {
        ASSERT(value);
        return;
    }

    if (!m_rareData && !value)
        return;

    if (!m_rareData)
        m_rareData = adoptPtr(new RenderBlockFlowRareData(this));

    m_rareData->m_discardMarginAfter = value;
}

bool RenderBlockFlow::mustDiscardMarginBefore() const
{
    return style()->marginBeforeCollapse() == MDISCARD || (m_rareData && m_rareData->m_discardMarginBefore);
}

bool RenderBlockFlow::mustDiscardMarginAfter() const
{
    return style()->marginAfterCollapse() == MDISCARD || (m_rareData && m_rareData->m_discardMarginAfter);
}

bool RenderBlockFlow::mustDiscardMarginBeforeForChild(const RenderBox* child) const
{
    ASSERT(!child->selfNeedsLayout());
    if (!child->isWritingModeRoot())
        return child->isRenderBlockFlow() ? toRenderBlockFlow(child)->mustDiscardMarginBefore() : (child->style()->marginBeforeCollapse() == MDISCARD);
    if (child->isHorizontalWritingMode() == isHorizontalWritingMode())
        return child->isRenderBlockFlow() ? toRenderBlockFlow(child)->mustDiscardMarginAfter() : (child->style()->marginAfterCollapse() == MDISCARD);

    // FIXME: We return false here because the implementation is not geometrically complete. We have values only for before/after, not start/end.
    // In case the boxes are perpendicular we assume the property is not specified.
    return false;
}

bool RenderBlockFlow::mustDiscardMarginAfterForChild(const RenderBox* child) const
{
    ASSERT(!child->selfNeedsLayout());
    if (!child->isWritingModeRoot())
        return child->isRenderBlockFlow() ? toRenderBlockFlow(child)->mustDiscardMarginAfter() : (child->style()->marginAfterCollapse() == MDISCARD);
    if (child->isHorizontalWritingMode() == isHorizontalWritingMode())
        return child->isRenderBlockFlow() ? toRenderBlockFlow(child)->mustDiscardMarginBefore() : (child->style()->marginBeforeCollapse() == MDISCARD);

    // FIXME: See |mustDiscardMarginBeforeForChild| above.
    return false;
}

void RenderBlockFlow::setMaxMarginBeforeValues(LayoutUnit pos, LayoutUnit neg)
{
    if (!m_rareData) {
        if (pos == RenderBlockFlowRareData::positiveMarginBeforeDefault(this) && neg == RenderBlockFlowRareData::negativeMarginBeforeDefault(this))
            return;
        m_rareData = adoptPtr(new RenderBlockFlowRareData(this));
    }
    m_rareData->m_margins.setPositiveMarginBefore(pos);
    m_rareData->m_margins.setNegativeMarginBefore(neg);
}

void RenderBlockFlow::setMaxMarginAfterValues(LayoutUnit pos, LayoutUnit neg)
{
    if (!m_rareData) {
        if (pos == RenderBlockFlowRareData::positiveMarginAfterDefault(this) && neg == RenderBlockFlowRareData::negativeMarginAfterDefault(this))
            return;
        m_rareData = adoptPtr(new RenderBlockFlowRareData(this));
    }
    m_rareData->m_margins.setPositiveMarginAfter(pos);
    m_rareData->m_margins.setNegativeMarginAfter(neg);
}

bool RenderBlockFlow::mustSeparateMarginBeforeForChild(const RenderBox* child) const
{
    ASSERT(!child->selfNeedsLayout());
    const RenderStyle* childStyle = child->style();
    if (!child->isWritingModeRoot())
        return childStyle->marginBeforeCollapse() == MSEPARATE;
    if (child->isHorizontalWritingMode() == isHorizontalWritingMode())
        return childStyle->marginAfterCollapse() == MSEPARATE;

    // FIXME: See |mustDiscardMarginBeforeForChild| above.
    return false;
}

bool RenderBlockFlow::mustSeparateMarginAfterForChild(const RenderBox* child) const
{
    ASSERT(!child->selfNeedsLayout());
    const RenderStyle* childStyle = child->style();
    if (!child->isWritingModeRoot())
        return childStyle->marginAfterCollapse() == MSEPARATE;
    if (child->isHorizontalWritingMode() == isHorizontalWritingMode())
        return childStyle->marginBeforeCollapse() == MSEPARATE;

    // FIXME: See |mustDiscardMarginBeforeForChild| above.
    return false;
}

LayoutUnit RenderBlockFlow::applyBeforeBreak(RenderBox* child, LayoutUnit logicalOffset)
{
    // FIXME: Add page break checking here when we support printing.
    RenderFlowThread* flowThread = flowThreadContainingBlock();
    bool isInsideMulticolFlowThread = flowThread;
    bool checkColumnBreaks = isInsideMulticolFlowThread || view()->layoutState()->isPaginatingColumns();
    bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->pageLogicalHeight(); // FIXME: Once columns can print we have to check this.
    bool checkBeforeAlways = (checkColumnBreaks && child->style()->columnBreakBefore() == PBALWAYS)
        || (checkPageBreaks && child->style()->pageBreakBefore() == PBALWAYS);
    if (checkBeforeAlways && inNormalFlow(child)) {
        if (checkColumnBreaks) {
            if (isInsideMulticolFlowThread) {
                LayoutUnit offsetBreakAdjustment = 0;
                if (flowThread->addForcedRegionBreak(offsetFromLogicalTopOfFirstPage() + logicalOffset, child, true, &offsetBreakAdjustment))
                    return logicalOffset + offsetBreakAdjustment;
            } else {
                view()->layoutState()->addForcedColumnBreak(*child, logicalOffset);
            }
        }
        return nextPageLogicalTop(logicalOffset, IncludePageBoundary);
    }
    return logicalOffset;
}

LayoutUnit RenderBlockFlow::applyAfterBreak(RenderBox* child, LayoutUnit logicalOffset, MarginInfo& marginInfo)
{
    // FIXME: Add page break checking here when we support printing.
    RenderFlowThread* flowThread = flowThreadContainingBlock();
    bool isInsideMulticolFlowThread = flowThread;
    bool checkColumnBreaks = isInsideMulticolFlowThread || view()->layoutState()->isPaginatingColumns();
    bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->pageLogicalHeight(); // FIXME: Once columns can print we have to check this.
    bool checkAfterAlways = (checkColumnBreaks && child->style()->columnBreakAfter() == PBALWAYS)
        || (checkPageBreaks && child->style()->pageBreakAfter() == PBALWAYS);
    if (checkAfterAlways && inNormalFlow(child)) {
        LayoutUnit marginOffset = marginInfo.canCollapseWithMarginBefore() ? LayoutUnit() : marginInfo.margin();

        // So our margin doesn't participate in the next collapsing steps.
        marginInfo.clearMargin();

        if (checkColumnBreaks) {
            if (isInsideMulticolFlowThread) {
                LayoutUnit offsetBreakAdjustment = 0;
                if (flowThread->addForcedRegionBreak(offsetFromLogicalTopOfFirstPage() + logicalOffset + marginOffset, child, false, &offsetBreakAdjustment))
                    return logicalOffset + marginOffset + offsetBreakAdjustment;
            } else {
                view()->layoutState()->addForcedColumnBreak(*child, logicalOffset);
            }
        }
        return nextPageLogicalTop(logicalOffset, IncludePageBoundary);
    }
    return logicalOffset;
}

void RenderBlockFlow::addOverflowFromFloats()
{
    if (!m_floatingObjects)
        return;

    const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
    FloatingObjectSetIterator end = floatingObjectSet.end();
    for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
        FloatingObject* floatingObject = *it;
        if (floatingObject->isDescendant())
            addOverflowFromChild(floatingObject->renderer(), IntSize(xPositionForFloatIncludingMargin(floatingObject), yPositionForFloatIncludingMargin(floatingObject)));
    }
}

void RenderBlockFlow::computeOverflow(LayoutUnit oldClientAfterEdge, bool recomputeFloats)
{
    RenderBlock::computeOverflow(oldClientAfterEdge, recomputeFloats);
    if (!hasColumns() && (recomputeFloats || createsBlockFormattingContext() || hasSelfPaintingLayer()))
        addOverflowFromFloats();
}

RootInlineBox* RenderBlockFlow::createAndAppendRootInlineBox()
{
    RootInlineBox* rootBox = createRootInlineBox();
    m_lineBoxes.appendLineBox(rootBox);

    if (UNLIKELY(AXObjectCache::accessibilityEnabled()) && m_lineBoxes.firstLineBox() == rootBox) {
        if (AXObjectCache* cache = document().existingAXObjectCache())
            cache->recomputeIsIgnored(this);
    }

    return rootBox;
}

void RenderBlockFlow::deleteLineBoxTree()
{
    if (containsFloats())
        m_floatingObjects->clearLineBoxTreePointers();
    RenderBlock::deleteLineBoxTree();
}

void RenderBlockFlow::markAllDescendantsWithFloatsForLayout(RenderBox* floatToRemove, bool inLayout)
{
    if (!everHadLayout() && !containsFloats())
        return;

    MarkingBehavior markParents = inLayout ? MarkOnlyThis : MarkContainingBlockChain;
    setChildNeedsLayout(markParents);

    if (floatToRemove)
        removeFloatingObject(floatToRemove);

    // Iterate over our children and mark them as needed.
    if (!childrenInline()) {
        for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
            if ((!floatToRemove && child->isFloatingOrOutOfFlowPositioned()) || !child->isRenderBlock())
                continue;
            if (!child->isRenderBlockFlow()) {
                RenderBlock* childBlock = toRenderBlock(child);
                if (childBlock->shrinkToAvoidFloats() && childBlock->everHadLayout())
                    childBlock->setChildNeedsLayout(markParents);
                continue;
            }
            RenderBlockFlow* childBlockFlow = toRenderBlockFlow(child);
            if ((floatToRemove ? childBlockFlow->containsFloat(floatToRemove) : childBlockFlow->containsFloats()) || childBlockFlow->shrinkToAvoidFloats())
                childBlockFlow->markAllDescendantsWithFloatsForLayout(floatToRemove, inLayout);
        }
    }
}

void RenderBlockFlow::markSiblingsWithFloatsForLayout(RenderBox* floatToRemove)
{
    if (!m_floatingObjects)
        return;

    const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
    FloatingObjectSetIterator end = floatingObjectSet.end();

    for (RenderObject* next = nextSibling(); next; next = next->nextSibling()) {
        if (!next->isRenderBlockFlow() || next->isFloatingOrOutOfFlowPositioned() || toRenderBlock(next)->avoidsFloats())
            continue;

        RenderBlockFlow* nextBlock = toRenderBlockFlow(next);
        for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
            RenderBox* floatingBox = (*it)->renderer();
            if (floatToRemove && floatingBox != floatToRemove)
                continue;
            if (nextBlock->containsFloat(floatingBox))
                nextBlock->markAllDescendantsWithFloatsForLayout(floatingBox);
        }
    }
}

LayoutUnit RenderBlockFlow::getClearDelta(RenderBox* child, LayoutUnit logicalTop)
{
    // There is no need to compute clearance if we have no floats.
    if (!containsFloats())
        return 0;

    // At least one float is present. We need to perform the clearance computation.
    bool clearSet = child->style()->clear() != CNONE;
    LayoutUnit logicalBottom = 0;
    switch (child->style()->clear()) {
    case CNONE:
        break;
    case CLEFT:
        logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatLeft);
        break;
    case CRIGHT:
        logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatRight);
        break;
    case CBOTH:
        logicalBottom = lowestFloatLogicalBottom();
        break;
    }

    // We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default).
    LayoutUnit result = clearSet ? max<LayoutUnit>(0, logicalBottom - logicalTop) : LayoutUnit();
    if (!result && child->avoidsFloats()) {
        LayoutUnit newLogicalTop = logicalTop;
        while (true) {
            LayoutUnit availableLogicalWidthAtNewLogicalTopOffset = availableLogicalWidthForLine(newLogicalTop, false, logicalHeightForChild(child));
            if (availableLogicalWidthAtNewLogicalTopOffset == availableLogicalWidthForContent())
                return newLogicalTop - logicalTop;

            LayoutRect borderBox = child->borderBoxRect();
            LayoutUnit childLogicalWidthAtOldLogicalTopOffset = isHorizontalWritingMode() ? borderBox.width() : borderBox.height();

            // FIXME: None of this is right for perpendicular writing-mode children.
            LayoutUnit childOldLogicalWidth = child->logicalWidth();
            LayoutUnit childOldMarginLeft = child->marginLeft();
            LayoutUnit childOldMarginRight = child->marginRight();
            LayoutUnit childOldLogicalTop = child->logicalTop();

            child->setLogicalTop(newLogicalTop);
            child->updateLogicalWidth();
            borderBox = child->borderBoxRect();
            LayoutUnit childLogicalWidthAtNewLogicalTopOffset = isHorizontalWritingMode() ? borderBox.width() : borderBox.height();

            child->setLogicalTop(childOldLogicalTop);
            child->setLogicalWidth(childOldLogicalWidth);
            child->setMarginLeft(childOldMarginLeft);
            child->setMarginRight(childOldMarginRight);

            if (childLogicalWidthAtNewLogicalTopOffset <= availableLogicalWidthAtNewLogicalTopOffset) {
                // Even though we may not be moving, if the logical width did shrink because of the presence of new floats, then
                // we need to force a relayout as though we shifted. This happens because of the dynamic addition of overhanging floats
                // from previous siblings when negative margins exist on a child (see the addOverhangingFloats call at the end of collapseMargins).
                if (childLogicalWidthAtOldLogicalTopOffset != childLogicalWidthAtNewLogicalTopOffset)
                    child->setChildNeedsLayout(MarkOnlyThis);
                return newLogicalTop - logicalTop;
            }

            newLogicalTop = nextFloatLogicalBottomBelow(newLogicalTop);
            ASSERT(newLogicalTop >= logicalTop);
            if (newLogicalTop < logicalTop)
                break;
        }
        ASSERT_NOT_REACHED();
    }
    return result;
}

void RenderBlockFlow::createFloatingObjects()
{
    m_floatingObjects = adoptPtr(new FloatingObjects(this, isHorizontalWritingMode()));
}

void RenderBlockFlow::styleWillChange(StyleDifference diff, const RenderStyle& newStyle)
{
    RenderStyle* oldStyle = style();
    s_canPropagateFloatIntoSibling = oldStyle ? !isFloatingOrOutOfFlowPositioned() && !avoidsFloats() : false;
    if (oldStyle && parent() && diff == StyleDifferenceLayout && oldStyle->position() != newStyle.position()
        && containsFloats() && !isFloating() && !isOutOfFlowPositioned() && newStyle.hasOutOfFlowPosition())
            markAllDescendantsWithFloatsForLayout();

    RenderBlock::styleWillChange(diff, newStyle);
}

void RenderBlockFlow::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
    RenderBlock::styleDidChange(diff, oldStyle);

    // After our style changed, if we lose our ability to propagate floats into next sibling
    // blocks, then we need to find the top most parent containing that overhanging float and
    // then mark its descendants with floats for layout and clear all floats from its next
    // sibling blocks that exist in our floating objects list. See bug 56299 and 62875.
    bool canPropagateFloatIntoSibling = !isFloatingOrOutOfFlowPositioned() && !avoidsFloats();
    if (diff == StyleDifferenceLayout && s_canPropagateFloatIntoSibling && !canPropagateFloatIntoSibling && hasOverhangingFloats()) {
        RenderBlockFlow* parentBlockFlow = this;
        const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
        FloatingObjectSetIterator end = floatingObjectSet.end();

        for (RenderObject* curr = parent(); curr && !curr->isRenderView(); curr = curr->parent()) {
            if (curr->isRenderBlockFlow()) {
                RenderBlockFlow* currBlock = toRenderBlockFlow(curr);

                if (currBlock->hasOverhangingFloats()) {
                    for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
                        RenderBox* renderer = (*it)->renderer();
                        if (currBlock->hasOverhangingFloat(renderer)) {
                            parentBlockFlow = currBlock;
                            break;
                        }
                    }
                }
            }
        }

        parentBlockFlow->markAllDescendantsWithFloatsForLayout();
        parentBlockFlow->markSiblingsWithFloatsForLayout();
    }

    createMultiColumnFlowThreadIfNeeded();
}

void RenderBlockFlow::updateStaticInlinePositionForChild(RenderBox* child, LayoutUnit logicalTop)
{
    if (child->style()->isOriginalDisplayInlineType())
        setStaticInlinePositionForChild(child, logicalTop, startAlignedOffsetForLine(logicalTop, false));
    else
        setStaticInlinePositionForChild(child, logicalTop, startOffsetForContent());
}

void RenderBlockFlow::setStaticInlinePositionForChild(RenderBox* child, LayoutUnit blockOffset, LayoutUnit inlinePosition)
{
    child->layer()->setStaticInlinePosition(inlinePosition);
}

void RenderBlockFlow::addChild(RenderObject* newChild, RenderObject* beforeChild)
{
    if (RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread())
        return flowThread->addChild(newChild, beforeChild);
    RenderBlock::addChild(newChild, beforeChild);
}

void RenderBlockFlow::moveAllChildrenIncludingFloatsTo(RenderBlock* toBlock, bool fullRemoveInsert)
{
    RenderBlockFlow* toBlockFlow = toRenderBlockFlow(toBlock);
    moveAllChildrenTo(toBlockFlow, fullRemoveInsert);

    // When a portion of the render tree is being detached, anonymous blocks
    // will be combined as their children are deleted. In this process, the
    // anonymous block later in the tree is merged into the one preceeding it.
    // It can happen that the later block (this) contains floats that the
    // previous block (toBlockFlow) did not contain, and thus are not in the
    // floating objects list for toBlockFlow. This can result in toBlockFlow containing
    // floats that are not in it's floating objects list, but are in the
    // floating objects lists of siblings and parents. This can cause problems
    // when the float itself is deleted, since the deletion code assumes that
    // if a float is not in it's containing block's floating objects list, it
    // isn't in any floating objects list. In order to preserve this condition
    // (removing it has serious performance implications), we need to copy the
    // floating objects from the old block (this) to the new block (toBlockFlow).
    // The float's metrics will likely all be wrong, but since toBlockFlow is
    // already marked for layout, this will get fixed before anything gets
    // displayed.
    // See bug https://code.google.com/p/chromium/issues/detail?id=230907
    if (m_floatingObjects) {
        if (!toBlockFlow->m_floatingObjects)
            toBlockFlow->createFloatingObjects();

        const FloatingObjectSet& fromFloatingObjectSet = m_floatingObjects->set();
        FloatingObjectSetIterator end = fromFloatingObjectSet.end();

        for (FloatingObjectSetIterator it = fromFloatingObjectSet.begin(); it != end; ++it) {
            FloatingObject* floatingObject = *it;

            // Don't insert the object again if it's already in the list
            if (toBlockFlow->containsFloat(floatingObject->renderer()))
                continue;

            toBlockFlow->m_floatingObjects->add(floatingObject->unsafeClone());
        }
    }

}

void RenderBlockFlow::repaintOverhangingFloats(bool paintAllDescendants)
{
    // Repaint any overhanging floats (if we know we're the one to paint them).
    // Otherwise, bail out.
    if (!hasOverhangingFloats())
        return;

    // FIXME: Avoid disabling LayoutState. At the very least, don't disable it for floats originating
    // in this block. Better yet would be to push extra state for the containers of other floats.
    LayoutStateDisabler layoutStateDisabler(*this);
    const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
    FloatingObjectSetIterator end = floatingObjectSet.end();
    for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
        FloatingObject* floatingObject = *it;
        // Only repaint the object if it is overhanging, is not in its own layer, and
        // is our responsibility to paint (m_shouldPaint is set). When paintAllDescendants is true, the latter
        // condition is replaced with being a descendant of us.
        if (logicalBottomForFloat(floatingObject) > logicalHeight()
            && !floatingObject->renderer()->hasSelfPaintingLayer()
            && (floatingObject->shouldPaint() || (paintAllDescendants && floatingObject->renderer()->isDescendantOf(this)))) {

            RenderBox* floatingRenderer = floatingObject->renderer();
            LayoutRectRecorder recorder(*floatingRenderer);
            if (RuntimeEnabledFeatures::repaintAfterLayoutEnabled())
                floatingRenderer->setShouldDoFullRepaintAfterLayout(true);
            else
                floatingRenderer->repaint();

            floatingRenderer->repaintOverhangingFloats(false);
        }
    }
}

void RenderBlockFlow::repaintOverflow()
{
    // FIXME: We could tighten up the left and right invalidation points if we let layoutInlineChildren fill them in based off the particular lines
    // it had to lay out. We wouldn't need the hasOverflowClip() hack in that case either.
    LayoutUnit repaintLogicalLeft = logicalLeftVisualOverflow();
    LayoutUnit repaintLogicalRight = logicalRightVisualOverflow();
    if (hasOverflowClip()) {
        // If we have clipped overflow, we should use layout overflow as well, since visual overflow from lines didn't propagate to our block's overflow.
        // Note the old code did this as well but even for overflow:visible. The addition of hasOverflowClip() at least tightens up the hack a bit.
        // layoutInlineChildren should be patched to compute the entire repaint rect.
        repaintLogicalLeft = min(repaintLogicalLeft, logicalLeftLayoutOverflow());
        repaintLogicalRight = max(repaintLogicalRight, logicalRightLayoutOverflow());
    }

    LayoutRect repaintRect;
    if (isHorizontalWritingMode())
        repaintRect = LayoutRect(repaintLogicalLeft, m_repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft, m_repaintLogicalBottom - m_repaintLogicalTop);
    else
        repaintRect = LayoutRect(m_repaintLogicalTop, repaintLogicalLeft, m_repaintLogicalBottom - m_repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft);

    // The repaint rect may be split across columns, in which case adjustRectForColumns() will return the union.
    adjustRectForColumns(repaintRect);

    if (hasOverflowClip()) {
        // Adjust repaint rect for scroll offset
        repaintRect.move(-scrolledContentOffset());

        // Don't allow this rect to spill out of our overflow box.
        repaintRect.intersect(LayoutRect(LayoutPoint(), size()));
    }

    // Make sure the rect is still non-empty after intersecting for overflow above
    if (!repaintRect.isEmpty()) {
        // Hits in media/event-attributes.html
        DisableCompositingQueryAsserts disabler;

        repaintRectangle(repaintRect); // We need to do a partial repaint of our content.
        if (hasReflection())
            repaintRectangle(reflectedRect(repaintRect));
    }

    m_repaintLogicalTop = 0;
    m_repaintLogicalBottom = 0;
}

void RenderBlockFlow::paintFloats(PaintInfo& paintInfo, const LayoutPoint& paintOffset, bool preservePhase)
{
    if (!m_floatingObjects)
        return;

    const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
    FloatingObjectSetIterator end = floatingObjectSet.end();
    for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
        FloatingObject* floatingObject = *it;
        // Only paint the object if our m_shouldPaint flag is set.
        if (floatingObject->shouldPaint() && !floatingObject->renderer()->hasSelfPaintingLayer()) {
            PaintInfo currentPaintInfo(paintInfo);
            currentPaintInfo.phase = preservePhase ? paintInfo.phase : PaintPhaseBlockBackground;
            // FIXME: LayoutPoint version of xPositionForFloatIncludingMargin would make this much cleaner.
            LayoutPoint childPoint = flipFloatForWritingModeForChild(floatingObject, LayoutPoint(paintOffset.x() + xPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer()->x(), paintOffset.y() + yPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer()->y()));
            floatingObject->renderer()->paint(currentPaintInfo, childPoint);
            if (!preservePhase) {
                currentPaintInfo.phase = PaintPhaseChildBlockBackgrounds;
                floatingObject->renderer()->paint(currentPaintInfo, childPoint);
                currentPaintInfo.phase = PaintPhaseFloat;
                floatingObject->renderer()->paint(currentPaintInfo, childPoint);
                currentPaintInfo.phase = PaintPhaseForeground;
                floatingObject->renderer()->paint(currentPaintInfo, childPoint);
                currentPaintInfo.phase = PaintPhaseOutline;
                floatingObject->renderer()->paint(currentPaintInfo, childPoint);
            }
        }
    }
}

void RenderBlockFlow::clipOutFloatingObjects(RenderBlock* rootBlock, const PaintInfo* paintInfo, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock)
{
    if (m_floatingObjects) {
        const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
        FloatingObjectSetIterator end = floatingObjectSet.end();
        for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
            FloatingObject* floatingObject = *it;
            LayoutRect floatBox(offsetFromRootBlock.width() + xPositionForFloatIncludingMargin(floatingObject),
                offsetFromRootBlock.height() + yPositionForFloatIncludingMargin(floatingObject),
                floatingObject->renderer()->width(), floatingObject->renderer()->height());
            rootBlock->flipForWritingMode(floatBox);
            floatBox.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y());
            paintInfo->context->clipOut(pixelSnappedIntRect(floatBox));
        }
    }
}

void RenderBlockFlow::clearFloats(EClear clear)
{
    positionNewFloats();
    // set y position
    LayoutUnit newY = 0;
    switch (clear) {
    case CLEFT:
        newY = lowestFloatLogicalBottom(FloatingObject::FloatLeft);
        break;
    case CRIGHT:
        newY = lowestFloatLogicalBottom(FloatingObject::FloatRight);
        break;
    case CBOTH:
        newY = lowestFloatLogicalBottom();
    default:
        break;
    }
    if (height() < newY)
        setLogicalHeight(newY);
}

bool RenderBlockFlow::containsFloat(RenderBox* renderer) const
{
    return m_floatingObjects && m_floatingObjects->set().contains<FloatingObjectHashTranslator>(renderer);
}

void RenderBlockFlow::removeFloatingObjects()
{
    if (!m_floatingObjects)
        return;

    markSiblingsWithFloatsForLayout();

    m_floatingObjects->clear();
}

LayoutPoint RenderBlockFlow::flipFloatForWritingModeForChild(const FloatingObject* child, const LayoutPoint& point) const
{
    if (!style()->isFlippedBlocksWritingMode())
        return point;

    // This is similar to RenderBox::flipForWritingModeForChild. We have to subtract out our left/top offsets twice, since
    // it's going to get added back in. We hide this complication here so that the calling code looks normal for the unflipped
    // case.
    if (isHorizontalWritingMode())
        return LayoutPoint(point.x(), point.y() + height() - child->renderer()->height() - 2 * yPositionForFloatIncludingMargin(child));
    return LayoutPoint(point.x() + width() - child->renderer()->width() - 2 * xPositionForFloatIncludingMargin(child), point.y());
}

LayoutUnit RenderBlockFlow::logicalLeftOffsetForPositioningFloat(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const
{
    LayoutUnit offset = fixedOffset;
    if (m_floatingObjects && m_floatingObjects->hasLeftObjects())
        offset = m_floatingObjects->logicalLeftOffsetForPositioningFloat(fixedOffset, logicalTop, heightRemaining);
    return adjustLogicalLeftOffsetForLine(offset, applyTextIndent);
}

LayoutUnit RenderBlockFlow::logicalRightOffsetForPositioningFloat(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const
{
    LayoutUnit offset = fixedOffset;
    if (m_floatingObjects && m_floatingObjects->hasRightObjects())
        offset = m_floatingObjects->logicalRightOffsetForPositioningFloat(fixedOffset, logicalTop, heightRemaining);
    return adjustLogicalRightOffsetForLine(offset, applyTextIndent);
}

LayoutUnit RenderBlockFlow::adjustLogicalLeftOffsetForLine(LayoutUnit offsetFromFloats, bool applyTextIndent) const
{
    LayoutUnit left = offsetFromFloats;

    if (applyTextIndent && style()->isLeftToRightDirection())
        left += textIndentOffset();

    return left;
}

LayoutUnit RenderBlockFlow::adjustLogicalRightOffsetForLine(LayoutUnit offsetFromFloats, bool applyTextIndent) const
{
    LayoutUnit right = offsetFromFloats;

    if (applyTextIndent && !style()->isLeftToRightDirection())
        right -= textIndentOffset();

    return right;
}

LayoutPoint RenderBlockFlow::computeLogicalLocationForFloat(const FloatingObject* floatingObject, LayoutUnit logicalTopOffset) const
{
    RenderBox* childBox = floatingObject->renderer();
    LayoutUnit logicalLeftOffset = logicalLeftOffsetForContent(); // Constant part of left offset.
    LayoutUnit logicalRightOffset; // Constant part of right offset.
    logicalRightOffset = logicalRightOffsetForContent();

    LayoutUnit floatLogicalWidth = min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset); // The width we look for.

    LayoutUnit floatLogicalLeft;

    bool insideFlowThread = flowThreadContainingBlock();

    if (childBox->style()->floating() == LeftFloat) {
        LayoutUnit heightRemainingLeft = 1;
        LayoutUnit heightRemainingRight = 1;
        floatLogicalLeft = logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft);
        while (logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight) - floatLogicalLeft < floatLogicalWidth) {
            logicalTopOffset += min(heightRemainingLeft, heightRemainingRight);
            floatLogicalLeft = logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft);
            if (insideFlowThread) {
                // Have to re-evaluate all of our offsets, since they may have changed.
                logicalRightOffset = logicalRightOffsetForContent(); // Constant part of right offset.
                logicalLeftOffset = logicalLeftOffsetForContent(); // Constant part of left offset.
                floatLogicalWidth = min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset);
            }
        }
        floatLogicalLeft = max(logicalLeftOffset - borderAndPaddingLogicalLeft(), floatLogicalLeft);
    } else {
        LayoutUnit heightRemainingLeft = 1;
        LayoutUnit heightRemainingRight = 1;
        floatLogicalLeft = logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight);
        while (floatLogicalLeft - logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft) < floatLogicalWidth) {
            logicalTopOffset += min(heightRemainingLeft, heightRemainingRight);
            floatLogicalLeft = logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight);
            if (insideFlowThread) {
                // Have to re-evaluate all of our offsets, since they may have changed.
                logicalRightOffset = logicalRightOffsetForContent(); // Constant part of right offset.
                logicalLeftOffset = logicalLeftOffsetForContent(); // Constant part of left offset.
                floatLogicalWidth = min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset);
            }
        }
        // Use the original width of the float here, since the local variable
        // |floatLogicalWidth| was capped to the available line width. See
        // fast/block/float/clamped-right-float.html.
        floatLogicalLeft -= logicalWidthForFloat(floatingObject);
    }

    return LayoutPoint(floatLogicalLeft, logicalTopOffset);
}

FloatingObject* RenderBlockFlow::insertFloatingObject(RenderBox* floatBox)
{
    ASSERT(floatBox->isFloating());

    // Create the list of special objects if we don't aleady have one
    if (!m_floatingObjects) {
        createFloatingObjects();
    } else {
        // Don't insert the object again if it's already in the list
        const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
        FloatingObjectSetIterator it = floatingObjectSet.find<FloatingObjectHashTranslator>(floatBox);
        if (it != floatingObjectSet.end())
            return *it;
    }

    // Create the special object entry & append it to the list

    OwnPtr<FloatingObject> newObj = FloatingObject::create(floatBox);

    // Our location is irrelevant if we're unsplittable or no pagination is in effect.
    // Just go ahead and lay out the float.
    bool isChildRenderBlock = floatBox->isRenderBlock();
    if (isChildRenderBlock && !floatBox->needsLayout() && view()->layoutState()->pageLogicalHeightChanged())
        floatBox->setChildNeedsLayout(MarkOnlyThis);

    bool needsBlockDirectionLocationSetBeforeLayout = isChildRenderBlock && view()->layoutState()->needsBlockDirectionLocationSetBeforeLayout();
    if (!needsBlockDirectionLocationSetBeforeLayout || isWritingModeRoot()) { // We are unsplittable if we're a block flow root.
        floatBox->layoutIfNeeded();
    } else {
        floatBox->updateLogicalWidth();
        floatBox->computeAndSetBlockDirectionMargins(this);
    }

    setLogicalWidthForFloat(newObj.get(), logicalWidthForChild(floatBox) + marginStartForChild(floatBox) + marginEndForChild(floatBox));

    return m_floatingObjects->add(newObj.release());
}

void RenderBlockFlow::removeFloatingObject(RenderBox* floatBox)
{
    if (m_floatingObjects) {
        const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
        FloatingObjectSetIterator it = floatingObjectSet.find<FloatingObjectHashTranslator>(floatBox);
        if (it != floatingObjectSet.end()) {
            FloatingObject* floatingObject = *it;
            if (childrenInline()) {
                LayoutUnit logicalTop = logicalTopForFloat(floatingObject);
                LayoutUnit logicalBottom = logicalBottomForFloat(floatingObject);

                // Fix for https://bugs.webkit.org/show_bug.cgi?id=54995.
                if (logicalBottom < 0 || logicalBottom < logicalTop || logicalTop == LayoutUnit::max()) {
                    logicalBottom = LayoutUnit::max();
                } else {
                    // Special-case zero- and less-than-zero-height floats: those don't touch
                    // the line that they're on, but it still needs to be dirtied. This is
                    // accomplished by pretending they have a height of 1.
                    logicalBottom = max(logicalBottom, logicalTop + 1);
                }
                if (floatingObject->originatingLine()) {
                    if (!selfNeedsLayout()) {
                        ASSERT(floatingObject->originatingLine()->renderer() == this);
                        floatingObject->originatingLine()->markDirty();
                    }
#if !ASSERT_DISABLED
                    floatingObject->setOriginatingLine(0);
#endif
                }
                markLinesDirtyInBlockRange(0, logicalBottom);
            }
            m_floatingObjects->remove(floatingObject);
        }
    }
}

void RenderBlockFlow::removeFloatingObjectsBelow(FloatingObject* lastFloat, int logicalOffset)
{
    if (!containsFloats())
        return;

    const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
    FloatingObject* curr = floatingObjectSet.last();
    while (curr != lastFloat && (!curr->isPlaced() || logicalTopForFloat(curr) >= logicalOffset)) {
        m_floatingObjects->remove(curr);
        if (floatingObjectSet.isEmpty())
            break;
        curr = floatingObjectSet.last();
    }
}

bool RenderBlockFlow::positionNewFloats()
{
    if (!m_floatingObjects)
        return false;

    const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
    if (floatingObjectSet.isEmpty())
        return false;

    // If all floats have already been positioned, then we have no work to do.
    if (floatingObjectSet.last()->isPlaced())
        return false;

    // Move backwards through our floating object list until we find a float that has
    // already been positioned. Then we'll be able to move forward, positioning all of
    // the new floats that need it.
    FloatingObjectSetIterator it = floatingObjectSet.end();
    --it; // Go to last item.
    FloatingObjectSetIterator begin = floatingObjectSet.begin();
    FloatingObject* lastPlacedFloatingObject = 0;
    while (it != begin) {
        --it;
        if ((*it)->isPlaced()) {
            lastPlacedFloatingObject = *it;
            ++it;
            break;
        }
    }

    LayoutUnit logicalTop = logicalHeight();

    // The float cannot start above the top position of the last positioned float.
    if (lastPlacedFloatingObject)
        logicalTop = max(logicalTopForFloat(lastPlacedFloatingObject), logicalTop);

    FloatingObjectSetIterator end = floatingObjectSet.end();
    // Now walk through the set of unpositioned floats and place them.
    for (; it != end; ++it) {
        FloatingObject* floatingObject = *it;
        // The containing block is responsible for positioning floats, so if we have floats in our
        // list that come from somewhere else, do not attempt to position them.
        if (floatingObject->renderer()->containingBlock() != this)
            continue;

        RenderBox* childBox = floatingObject->renderer();
        LayoutRectRecorder childBoxRecorder(*childBox);

        LayoutUnit childLogicalLeftMargin = style()->isLeftToRightDirection() ? marginStartForChild(childBox) : marginEndForChild(childBox);
        LayoutRect oldRect = childBox->frameRect();

        if (childBox->style()->clear() & CLEFT)
            logicalTop = max(lowestFloatLogicalBottom(FloatingObject::FloatLeft), logicalTop);
        if (childBox->style()->clear() & CRIGHT)
            logicalTop = max(lowestFloatLogicalBottom(FloatingObject::FloatRight), logicalTop);

        LayoutPoint floatLogicalLocation = computeLogicalLocationForFloat(floatingObject, logicalTop);

        setLogicalLeftForFloat(floatingObject, floatLogicalLocation.x());

        setLogicalLeftForChild(childBox, floatLogicalLocation.x() + childLogicalLeftMargin);
        setLogicalTopForChild(childBox, floatLogicalLocation.y() + marginBeforeForChild(childBox));

        SubtreeLayoutScope layoutScope(childBox);
        LayoutState* layoutState = view()->layoutState();
        bool isPaginated = layoutState->isPaginated();
        if (isPaginated && !childBox->needsLayout())
            childBox->markForPaginationRelayoutIfNeeded(layoutScope);

        childBox->layoutIfNeeded();

        if (isPaginated) {
            // If we are unsplittable and don't fit, then we need to move down.
            // We include our margins as part of the unsplittable area.
            LayoutUnit newLogicalTop = adjustForUnsplittableChild(childBox, floatLogicalLocation.y(), true);

            // See if we have a pagination strut that is making us move down further.
            // Note that an unsplittable child can't also have a pagination strut, so this is
            // exclusive with the case above.
            RenderBlock* childBlock = childBox->isRenderBlock() ? toRenderBlock(childBox) : 0;
            if (childBlock && childBlock->paginationStrut()) {
                newLogicalTop += childBlock->paginationStrut();
                childBlock->setPaginationStrut(0);
            }

            if (newLogicalTop != floatLogicalLocation.y()) {
                floatingObject->setPaginationStrut(newLogicalTop - floatLogicalLocation.y());

                floatLogicalLocation = computeLogicalLocationForFloat(floatingObject, newLogicalTop);
                setLogicalLeftForFloat(floatingObject, floatLogicalLocation.x());

                setLogicalLeftForChild(childBox, floatLogicalLocation.x() + childLogicalLeftMargin);
                setLogicalTopForChild(childBox, floatLogicalLocation.y() + marginBeforeForChild(childBox));

                if (childBlock)
                    childBlock->setChildNeedsLayout(MarkOnlyThis);
                childBox->layoutIfNeeded();
            }
        }

        setLogicalTopForFloat(floatingObject, floatLogicalLocation.y());

        setLogicalHeightForFloat(floatingObject, logicalHeightForChild(childBox) + marginBeforeForChild(childBox) + marginAfterForChild(childBox));

        m_floatingObjects->addPlacedObject(floatingObject);

        if (ShapeOutsideInfo* shapeOutside = childBox->shapeOutsideInfo())
            shapeOutside->setReferenceBoxLogicalSize(logicalSizeForChild(childBox));

        // If the child moved, we have to repaint it.
        if (!RuntimeEnabledFeatures::repaintAfterLayoutEnabled()
            && childBox->checkForRepaintDuringLayout())
            childBox->repaintDuringLayoutIfMoved(oldRect);
    }
    return true;
}

bool RenderBlockFlow::hasOverhangingFloat(RenderBox* renderer)
{
    if (!m_floatingObjects || hasColumns() || !parent())
        return false;

    const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
    FloatingObjectSetIterator it = floatingObjectSet.find<FloatingObjectHashTranslator>(renderer);
    if (it == floatingObjectSet.end())
        return false;

    return logicalBottomForFloat(*it) > logicalHeight();
}

void RenderBlockFlow::addIntrudingFloats(RenderBlockFlow* prev, LayoutUnit logicalLeftOffset, LayoutUnit logicalTopOffset)
{
    ASSERT(!avoidsFloats());

    // If the parent or previous sibling doesn't have any floats to add, don't bother.
    if (!prev->m_floatingObjects)
        return;

    logicalLeftOffset += marginLogicalLeft();

    const FloatingObjectSet& prevSet = prev->m_floatingObjects->set();
    FloatingObjectSetIterator prevEnd = prevSet.end();
    for (FloatingObjectSetIterator prevIt = prevSet.begin(); prevIt != prevEnd; ++prevIt) {
        FloatingObject* floatingObject = *prevIt;
        if (logicalBottomForFloat(floatingObject) > logicalTopOffset) {
            if (!m_floatingObjects || !m_floatingObjects->set().contains(floatingObject)) {
                // We create the floating object list lazily.
                if (!m_floatingObjects)
                    createFloatingObjects();

                // Applying the child's margin makes no sense in the case where the child was passed in.
                // since this margin was added already through the modification of the |logicalLeftOffset| variable
                // above. |logicalLeftOffset| will equal the margin in this case, so it's already been taken
                // into account. Only apply this code if prev is the parent, since otherwise the left margin
                // will get applied twice.
                LayoutSize offset = isHorizontalWritingMode()
                    ? LayoutSize(logicalLeftOffset - (prev != parent() ? prev->marginLeft() : LayoutUnit()), logicalTopOffset)
                    : LayoutSize(logicalTopOffset, logicalLeftOffset - (prev != parent() ? prev->marginTop() : LayoutUnit()));

                m_floatingObjects->add(floatingObject->copyToNewContainer(offset));
            }
        }
    }
}

LayoutUnit RenderBlockFlow::addOverhangingFloats(RenderBlockFlow* child, bool makeChildPaintOtherFloats)
{
    // Prevent floats from being added to the canvas by the root element, e.g., <html>.
    if (child->hasOverflowClip() || !child->containsFloats() || child->isRoot() || child->hasColumns() || child->isWritingModeRoot())
        return 0;

    LayoutUnit childLogicalTop = child->logicalTop();
    LayoutUnit childLogicalLeft = child->logicalLeft();
    LayoutUnit lowestFloatLogicalBottom = 0;

    // Floats that will remain the child's responsibility to paint should factor into its
    // overflow.
    FloatingObjectSetIterator childEnd = child->m_floatingObjects->set().end();
    for (FloatingObjectSetIterator childIt = child->m_floatingObjects->set().begin(); childIt != childEnd; ++childIt) {
        FloatingObject* floatingObject = *childIt;
        LayoutUnit logicalBottomForFloat = min(this->logicalBottomForFloat(floatingObject), LayoutUnit::max() - childLogicalTop);
        LayoutUnit logicalBottom = childLogicalTop + logicalBottomForFloat;
        lowestFloatLogicalBottom = max(lowestFloatLogicalBottom, logicalBottom);

        if (logicalBottom > logicalHeight()) {
            // If the object is not in the list, we add it now.
            if (!containsFloat(floatingObject->renderer())) {
                LayoutSize offset = isHorizontalWritingMode() ? LayoutSize(-childLogicalLeft, -childLogicalTop) : LayoutSize(-childLogicalTop, -childLogicalLeft);
                bool shouldPaint = false;

                // The nearest enclosing layer always paints the float (so that zindex and stacking
                // behaves properly). We always want to propagate the desire to paint the float as
                // far out as we can, to the outermost block that overlaps the float, stopping only
                // if we hit a self-painting layer boundary.
                if (floatingObject->renderer()->enclosingFloatPaintingLayer() == enclosingFloatPaintingLayer()) {
                    floatingObject->setShouldPaint(false);
                    shouldPaint = true;
                }
                // We create the floating object list lazily.
                if (!m_floatingObjects)
                    createFloatingObjects();

                m_floatingObjects->add(floatingObject->copyToNewContainer(offset, shouldPaint, true));
            }
        } else {
            if (makeChildPaintOtherFloats && !floatingObject->shouldPaint() && !floatingObject->renderer()->hasSelfPaintingLayer()
                && floatingObject->renderer()->isDescendantOf(child) && floatingObject->renderer()->enclosingFloatPaintingLayer() == child->enclosingFloatPaintingLayer()) {
                // The float is not overhanging from this block, so if it is a descendant of the child, the child should
                // paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing
                // layer.
                // If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats
                // it should paint.
                floatingObject->setShouldPaint(true);
            }

            // Since the float doesn't overhang, it didn't get put into our list. We need to go ahead and add its overflow in to the
            // child now.
            if (floatingObject->isDescendant())
                child->addOverflowFromChild(floatingObject->renderer(), LayoutSize(xPositionForFloatIncludingMargin(floatingObject), yPositionForFloatIncludingMargin(floatingObject)));
        }
    }
    return lowestFloatLogicalBottom;
}

LayoutUnit RenderBlockFlow::lowestFloatLogicalBottom(FloatingObject::Type floatType) const
{
    if (!m_floatingObjects)
        return 0;

    return m_floatingObjects->lowestFloatLogicalBottom(floatType);
}

LayoutUnit RenderBlockFlow::nextFloatLogicalBottomBelow(LayoutUnit logicalHeight, ShapeOutsideFloatOffsetMode offsetMode) const
{
    if (!m_floatingObjects)
        return logicalHeight;

    LayoutUnit logicalBottom = LayoutUnit::max();
    const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
    FloatingObjectSetIterator end = floatingObjectSet.end();
    for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
        FloatingObject* floatingObject = *it;
        LayoutUnit floatLogicalBottom = logicalBottomForFloat(floatingObject);
        ShapeOutsideInfo* shapeOutside = floatingObject->renderer()->shapeOutsideInfo();
        if (shapeOutside && (offsetMode == ShapeOutsideFloatShapeOffset)) {
            LayoutUnit shapeLogicalBottom = logicalTopForFloat(floatingObject) + marginBeforeForChild(floatingObject->renderer()) + shapeOutside->shapeLogicalBottom();
            // Use the shapeLogicalBottom unless it extends outside of the margin box, in which case it is clipped.
            if (shapeLogicalBottom < floatLogicalBottom)
                floatLogicalBottom = shapeLogicalBottom;
        }
        if (floatLogicalBottom > logicalHeight)
            logicalBottom = min(floatLogicalBottom, logicalBottom);
    }

    return logicalBottom == LayoutUnit::max() ? LayoutUnit() : logicalBottom;
}

bool RenderBlockFlow::hitTestFloats(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset)
{
    if (!m_floatingObjects)
        return false;

    LayoutPoint adjustedLocation = accumulatedOffset;
    if (isRenderView()) {
        adjustedLocation += toLayoutSize(toRenderView(this)->frameView()->scrollPosition());
    }

    const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
    FloatingObjectSetIterator begin = floatingObjectSet.begin();
    for (FloatingObjectSetIterator it = floatingObjectSet.end(); it != begin;) {
        --it;
        FloatingObject* floatingObject = *it;
        if (floatingObject->shouldPaint() && !floatingObject->renderer()->hasSelfPaintingLayer()) {
            LayoutUnit xOffset = xPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer()->x();
            LayoutUnit yOffset = yPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer()->y();
            LayoutPoint childPoint = flipFloatForWritingModeForChild(floatingObject, adjustedLocation + LayoutSize(xOffset, yOffset));
            if (floatingObject->renderer()->hitTest(request, result, locationInContainer, childPoint)) {
                updateHitTestResult(result, locationInContainer.point() - toLayoutSize(childPoint));
                return true;
            }
        }
    }

    return false;
}

void RenderBlockFlow::adjustForBorderFit(LayoutUnit x, LayoutUnit& left, LayoutUnit& right) const
{
    RenderBlock::adjustForBorderFit(x, left, right);
    if (m_floatingObjects && style()->visibility() == VISIBLE) {
        const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
        FloatingObjectSetIterator end = floatingObjectSet.end();
        for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
            FloatingObject* floatingObject = *it;
            // Only examine the object if our m_shouldPaint flag is set.
            if (floatingObject->shouldPaint()) {
                LayoutUnit floatLeft = xPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer()->x();
                LayoutUnit floatRight = floatLeft + floatingObject->renderer()->width();
                left = min(left, floatLeft);
                right = max(right, floatRight);
            }
        }
    }
}

LayoutUnit RenderBlockFlow::logicalLeftFloatOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, LayoutUnit logicalHeight) const
{
    if (m_floatingObjects && m_floatingObjects->hasLeftObjects())
        return m_floatingObjects->logicalLeftOffset(fixedOffset, logicalTop, logicalHeight);

    return fixedOffset;
}

LayoutUnit RenderBlockFlow::logicalRightFloatOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, LayoutUnit logicalHeight) const
{
    if (m_floatingObjects && m_floatingObjects->hasRightObjects())
        return m_floatingObjects->logicalRightOffset(fixedOffset, logicalTop, logicalHeight);

    return fixedOffset;
}

GapRects RenderBlockFlow::inlineSelectionGaps(RenderBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
    LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight, const PaintInfo* paintInfo)
{
    GapRects result;

    bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth;

    if (!firstLineBox()) {
        if (containsStart) {
            // Go ahead and update our lastLogicalTop to be the bottom of the block.  <hr>s or empty blocks with height can trip this
            // case.
            lastLogicalTop = rootBlock->blockDirectionOffset(offsetFromRootBlock) + logicalHeight();
            lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight());
            lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight());
        }
        return result;
    }

    RootInlineBox* lastSelectedLine = 0;
    RootInlineBox* curr;
    for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { }

    // Now paint the gaps for the lines.
    for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) {
        LayoutUnit selTop =  curr->selectionTopAdjustedForPrecedingBlock();
        LayoutUnit selHeight = curr->selectionHeightAdjustedForPrecedingBlock();

        if (!containsStart && !lastSelectedLine && selectionState() != SelectionStart && selectionState() != SelectionBoth) {
            result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop,
                lastLogicalLeft, lastLogicalRight, selTop, paintInfo));
        }

        LayoutRect logicalRect(curr->logicalLeft(), selTop, curr->logicalWidth(), selTop + selHeight);
        logicalRect.move(isHorizontalWritingMode() ? offsetFromRootBlock : offsetFromRootBlock.transposedSize());
        LayoutRect physicalRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, logicalRect);
        if (!paintInfo || (isHorizontalWritingMode() && physicalRect.y() < paintInfo->rect.maxY() && physicalRect.maxY() > paintInfo->rect.y())
            || (!isHorizontalWritingMode() && physicalRect.x() < paintInfo->rect.maxX() && physicalRect.maxX() > paintInfo->rect.x()))
            result.unite(curr->lineSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, selTop, selHeight, paintInfo));

        lastSelectedLine = curr;
    }

    if (containsStart && !lastSelectedLine) {
        // VisibleSelection must start just after our last line.
        lastSelectedLine = lastRootBox();
    }

    if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) {
        // Go ahead and update our lastY to be the bottom of the last selected line.
        lastLogicalTop = rootBlock->blockDirectionOffset(offsetFromRootBlock) + lastSelectedLine->selectionBottom();
        lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, lastSelectedLine->selectionBottom());
        lastLogicalRight = logicalRightSelectionOffset(rootBlock, lastSelectedLine->selectionBottom());
    }
    return result;
}

LayoutUnit RenderBlockFlow::logicalLeftSelectionOffset(RenderBlock* rootBlock, LayoutUnit position)
{
    LayoutUnit logicalLeft = logicalLeftOffsetForLine(position, false);
    if (logicalLeft == logicalLeftOffsetForContent())
        return RenderBlock::logicalLeftSelectionOffset(rootBlock, position);

    RenderBlock* cb = this;
    while (cb != rootBlock) {
        logicalLeft += cb->logicalLeft();
        cb = cb->containingBlock();
    }
    return logicalLeft;
}

LayoutUnit RenderBlockFlow::logicalRightSelectionOffset(RenderBlock* rootBlock, LayoutUnit position)
{
    LayoutUnit logicalRight = logicalRightOffsetForLine(position, false);
    if (logicalRight == logicalRightOffsetForContent())
        return RenderBlock::logicalRightSelectionOffset(rootBlock, position);

    RenderBlock* cb = this;
    while (cb != rootBlock) {
        logicalRight += cb->logicalLeft();
        cb = cb->containingBlock();
    }
    return logicalRight;
}

template <typename CharacterType>
static inline TextRun constructTextRunInternal(RenderObject* context, const Font& font, const CharacterType* characters, int length, RenderStyle* style, TextDirection direction, TextRun::ExpansionBehavior expansion)
{
    ASSERT(style);

    TextDirection textDirection = direction;
    bool directionalOverride = style->rtlOrdering() == VisualOrder;

    TextRun run(characters, length, 0, 0, expansion, textDirection, directionalOverride);
    if (textRunNeedsRenderingContext(font))
        run.setRenderingContext(SVGTextRunRenderingContext::create(context));

    return run;
}

template <typename CharacterType>
static inline TextRun constructTextRunInternal(RenderObject* context, const Font& font, const CharacterType* characters, int length, RenderStyle* style, TextDirection direction, TextRun::ExpansionBehavior expansion, TextRunFlags flags)
{
    ASSERT(style);

    TextDirection textDirection = direction;
    bool directionalOverride = style->rtlOrdering() == VisualOrder;
    if (flags != DefaultTextRunFlags) {
        if (flags & RespectDirection)
            textDirection = style->direction();
        if (flags & RespectDirectionOverride)
            directionalOverride |= isOverride(style->unicodeBidi());
    }

    TextRun run(characters, length, 0, 0, expansion, textDirection, directionalOverride);
    if (textRunNeedsRenderingContext(font))
        run.setRenderingContext(SVGTextRunRenderingContext::create(context));

    return run;
}

TextRun RenderBlockFlow::constructTextRun(RenderObject* context, const Font& font, const LChar* characters, int length, RenderStyle* style, TextDirection direction, TextRun::ExpansionBehavior expansion)
{
    return constructTextRunInternal(context, font, characters, length, style, direction, expansion);
}

TextRun RenderBlockFlow::constructTextRun(RenderObject* context, const Font& font, const UChar* characters, int length, RenderStyle* style, TextDirection direction, TextRun::ExpansionBehavior expansion)
{
    return constructTextRunInternal(context, font, characters, length, style, direction, expansion);
}

TextRun RenderBlockFlow::constructTextRun(RenderObject* context, const Font& font, const RenderText* text, RenderStyle* style, TextDirection direction, TextRun::ExpansionBehavior expansion)
{
    if (text->is8Bit())
        return constructTextRunInternal(context, font, text->characters8(), text->textLength(), style, direction, expansion);
    return constructTextRunInternal(context, font, text->characters16(), text->textLength(), style, direction, expansion);
}

TextRun RenderBlockFlow::constructTextRun(RenderObject* context, const Font& font, const RenderText* text, unsigned offset, unsigned length, RenderStyle* style, TextDirection direction, TextRun::ExpansionBehavior expansion)
{
    ASSERT(offset + length <= text->textLength());
    if (text->is8Bit())
        return constructTextRunInternal(context, font, text->characters8() + offset, length, style, direction, expansion);
    return constructTextRunInternal(context, font, text->characters16() + offset, length, style, direction, expansion);
}

TextRun RenderBlockFlow::constructTextRun(RenderObject* context, const Font& font, const String& string, RenderStyle* style, TextDirection direction, TextRun::ExpansionBehavior expansion, TextRunFlags flags)
{
    unsigned length = string.length();
    if (!length)
        return constructTextRunInternal(context, font, static_cast<const LChar*>(0), length, style, direction, expansion, flags);
    if (string.is8Bit())
        return constructTextRunInternal(context, font, string.characters8(), length, style, direction, expansion, flags);
    return constructTextRunInternal(context, font, string.characters16(), length, style, direction, expansion, flags);
}

TextRun RenderBlockFlow::constructTextRun(RenderObject* context, const Font& font, const String& string, RenderStyle* style, TextRun::ExpansionBehavior expansion, TextRunFlags flags)
{
    bool hasStrongDirectionality;
    return constructTextRun(context, font, string, style,
        determineDirectionality(string, hasStrongDirectionality),
        expansion, flags);
}

TextRun RenderBlockFlow::constructTextRun(RenderObject* context, const Font& font, const RenderText* text, unsigned offset, unsigned length, RenderStyle* style, TextRun::ExpansionBehavior expansion)
{
    ASSERT(offset + length <= text->textLength());
    TextRun run = text->is8Bit()
        ? constructTextRunInternal(context, font, text->characters8() + offset, length, style, LTR, expansion)
        : constructTextRunInternal(context, font, text->characters16() + offset, length, style, LTR, expansion);
    bool hasStrongDirectionality;
    run.setDirection(directionForRun(run, hasStrongDirectionality));
    return run;
}

RootInlineBox* RenderBlockFlow::createRootInlineBox()
{
    return new RootInlineBox(*this);
}

void RenderBlockFlow::createMultiColumnFlowThreadIfNeeded()
{
    if ((style()->hasAutoColumnCount() && style()->hasAutoColumnWidth()) || !document().regionBasedColumnsEnabled())
        return;

    if (multiColumnFlowThread())
        return;

    setChildrenInline(false);
    RenderMultiColumnFlowThread* flowThread = RenderMultiColumnFlowThread::createAnonymous(document(), style());
    RenderBlock::addChild(flowThread);
    RenderBlockFlowRareData& rareData = ensureRareData();
    ASSERT(!rareData.m_multiColumnFlowThread);
    rareData.m_multiColumnFlowThread = flowThread;
}

RenderBlockFlow::RenderBlockFlowRareData& RenderBlockFlow::ensureRareData()
{
    if (m_rareData)
        return *m_rareData;

    m_rareData = adoptPtr(new RenderBlockFlowRareData(this));
    return *m_rareData;
}

} // namespace WebCore

/* [<][>][^][v][top][bottom][index][help] */