root/ash/wm/workspace/workspace_window_resizer.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. CreateWindowResizer
  2. ShouldStickToEdge
  3. CoordinateAlongSecondaryAxis
  4. OriginForMagneticAttach
  5. BoundsForMagneticResizeAttach
  6. WindowComponentToMagneticEdge
  7. max_
  8. is_at_capacity
  9. size
  10. has_min
  11. has_max
  12. is_valid
  13. is_overflowing
  14. is_underflowing
  15. Add
  16. Create
  17. Drag
  18. CompleteDrag
  19. RevertDrag
  20. weak_ptr_factory_
  21. LayoutAttachedWindows
  22. CalculateAttachedSizes
  23. GrowFairly
  24. CalculateGrowthRatios
  25. CreateBucketsForAttached
  26. MagneticallySnapToOtherWindows
  27. MagneticallySnapResizeToOtherWindows
  28. UpdateMagnetismWindow
  29. AdjustBoundsForMainWindow
  30. StickToWorkAreaOnMove
  31. StickToWorkAreaOnResize
  32. PrimaryAxisSize
  33. PrimaryAxisCoordinate
  34. UpdateSnapPhantomWindow
  35. RestackWindows
  36. GetSnapType
  37. SetDraggedWindowDocked
  38. AreBoundsValidSnappedBounds

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ash/wm/workspace/workspace_window_resizer.h"

#include <algorithm>
#include <cmath>
#include <utility>
#include <vector>

#include "ash/ash_switches.h"
#include "ash/display/display_controller.h"
#include "ash/metrics/user_metrics_recorder.h"
#include "ash/root_window_controller.h"
#include "ash/screen_util.h"
#include "ash/shell.h"
#include "ash/shell_window_ids.h"
#include "ash/wm/coordinate_conversion.h"
#include "ash/wm/default_window_resizer.h"
#include "ash/wm/dock/docked_window_layout_manager.h"
#include "ash/wm/dock/docked_window_resizer.h"
#include "ash/wm/drag_window_resizer.h"
#include "ash/wm/panels/panel_window_resizer.h"
#include "ash/wm/window_state.h"
#include "ash/wm/window_util.h"
#include "ash/wm/wm_event.h"
#include "ash/wm/workspace/phantom_window_controller.h"
#include "ash/wm/workspace/two_step_edge_cycler.h"
#include "base/command_line.h"
#include "base/memory/weak_ptr.h"
#include "ui/aura/client/aura_constants.h"
#include "ui/aura/client/screen_position_client.h"
#include "ui/aura/window.h"
#include "ui/aura/window_delegate.h"
#include "ui/aura/window_event_dispatcher.h"
#include "ui/base/hit_test.h"
#include "ui/compositor/layer.h"
#include "ui/gfx/screen.h"
#include "ui/gfx/transform.h"
#include "ui/wm/core/window_util.h"
#include "ui/wm/public/window_types.h"

namespace ash {

scoped_ptr<WindowResizer> CreateWindowResizer(
    aura::Window* window,
    const gfx::Point& point_in_parent,
    int window_component,
    aura::client::WindowMoveSource source) {
  DCHECK(window);
  wm::WindowState* window_state = wm::GetWindowState(window);
  // No need to return a resizer when the window cannot get resized or when a
  // resizer already exists for this window.
  if ((!window_state->CanResize() && window_component != HTCAPTION) ||
      window_state->drag_details()) {
    return scoped_ptr<WindowResizer>();
  }

  if (window_component == HTCAPTION && !window_state->can_be_dragged())
    return scoped_ptr<WindowResizer>();

  // TODO(varkha): The chaining of window resizers causes some of the logic
  // to be repeated and the logic flow difficult to control. With some windows
  // classes using reparenting during drag operations it becomes challenging to
  // implement proper transition from one resizer to another during or at the
  // end of the drag. This also causes http://crbug.com/247085.
  // It seems the only thing the panel or dock resizer needs to do is notify the
  // layout manager when a docked window is being dragged. We should have a
  // better way of doing this, perhaps by having a way of observing drags or
  // having a generic drag window wrapper which informs a layout manager that a
  // drag has started or stopped.
  // It may be possible to refactor and eliminate chaining.
  WindowResizer* window_resizer = NULL;

  if (!window_state->IsNormalOrSnapped())
    return scoped_ptr<WindowResizer>();

  int bounds_change = WindowResizer::GetBoundsChangeForWindowComponent(
      window_component);
  if (bounds_change == WindowResizer::kBoundsChangeDirection_None)
    return scoped_ptr<WindowResizer>();

  window_state->CreateDragDetails(window, point_in_parent, window_component,
      source);
  if (window->parent() &&
      (window->parent()->id() == kShellWindowId_DefaultContainer ||
       window->parent()->id() == kShellWindowId_DockedContainer ||
       window->parent()->id() == kShellWindowId_PanelContainer)) {
    window_resizer = WorkspaceWindowResizer::Create(
        window_state, std::vector<aura::Window*>());
  } else {
    window_resizer = DefaultWindowResizer::Create(window_state);
  }
  window_resizer = DragWindowResizer::Create(window_resizer, window_state);
  if (window->type() == ui::wm::WINDOW_TYPE_PANEL)
    window_resizer = PanelWindowResizer::Create(window_resizer, window_state);
  if (switches::UseDockedWindows() && window_resizer && window->parent() &&
      !::wm::GetTransientParent(window) &&
      (window->parent()->id() == kShellWindowId_DefaultContainer ||
       window->parent()->id() == kShellWindowId_DockedContainer ||
       window->parent()->id() == kShellWindowId_PanelContainer)) {
    window_resizer = DockedWindowResizer::Create(window_resizer, window_state);
  }
  return make_scoped_ptr<WindowResizer>(window_resizer);
}

namespace {

// Snapping distance used instead of WorkspaceWindowResizer::kScreenEdgeInset
// when resizing a window using touchscreen.
const int kScreenEdgeInsetForTouchDrag = 32;

// Returns true if the window should stick to the edge.
bool ShouldStickToEdge(int distance_from_edge, int sticky_size) {
  return distance_from_edge < sticky_size &&
         distance_from_edge > -sticky_size * 2;
}

// Returns the coordinate along the secondary axis to snap to.
int CoordinateAlongSecondaryAxis(SecondaryMagnetismEdge edge,
                                 int leading,
                                 int trailing,
                                 int none) {
  switch (edge) {
    case SECONDARY_MAGNETISM_EDGE_LEADING:
      return leading;
    case SECONDARY_MAGNETISM_EDGE_TRAILING:
      return trailing;
    case SECONDARY_MAGNETISM_EDGE_NONE:
      return none;
  }
  NOTREACHED();
  return none;
}

// Returns the origin for |src| when magnetically attaching to |attach_to| along
// the edges |edges|. |edges| is a bitmask of the MagnetismEdges.
gfx::Point OriginForMagneticAttach(const gfx::Rect& src,
                                   const gfx::Rect& attach_to,
                                   const MatchedEdge& edge) {
  int x = 0, y = 0;
  switch (edge.primary_edge) {
    case MAGNETISM_EDGE_TOP:
      y = attach_to.bottom();
      break;
    case MAGNETISM_EDGE_LEFT:
      x = attach_to.right();
      break;
    case MAGNETISM_EDGE_BOTTOM:
      y = attach_to.y() - src.height();
      break;
    case MAGNETISM_EDGE_RIGHT:
      x = attach_to.x() - src.width();
      break;
  }
  switch (edge.primary_edge) {
    case MAGNETISM_EDGE_TOP:
    case MAGNETISM_EDGE_BOTTOM:
      x = CoordinateAlongSecondaryAxis(
          edge.secondary_edge, attach_to.x(), attach_to.right() - src.width(),
          src.x());
      break;
    case MAGNETISM_EDGE_LEFT:
    case MAGNETISM_EDGE_RIGHT:
      y = CoordinateAlongSecondaryAxis(
          edge.secondary_edge, attach_to.y(), attach_to.bottom() - src.height(),
          src.y());
      break;
  }
  return gfx::Point(x, y);
}

// Returns the bounds for a magnetic attach when resizing. |src| is the bounds
// of window being resized, |attach_to| the bounds of the window to attach to
// and |edge| identifies the edge to attach to.
gfx::Rect BoundsForMagneticResizeAttach(const gfx::Rect& src,
                                        const gfx::Rect& attach_to,
                                        const MatchedEdge& edge) {
  int x = src.x();
  int y = src.y();
  int w = src.width();
  int h = src.height();
  gfx::Point attach_origin(OriginForMagneticAttach(src, attach_to, edge));
  switch (edge.primary_edge) {
    case MAGNETISM_EDGE_LEFT:
      x = attach_origin.x();
      w = src.right() - x;
      break;
    case MAGNETISM_EDGE_RIGHT:
      w += attach_origin.x() - src.x();
      break;
    case MAGNETISM_EDGE_TOP:
      y = attach_origin.y();
      h = src.bottom() - y;
      break;
    case MAGNETISM_EDGE_BOTTOM:
      h += attach_origin.y() - src.y();
      break;
  }
  switch (edge.primary_edge) {
    case MAGNETISM_EDGE_LEFT:
    case MAGNETISM_EDGE_RIGHT:
      if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_LEADING) {
        y = attach_origin.y();
        h = src.bottom() - y;
      } else if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_TRAILING) {
        h += attach_origin.y() - src.y();
      }
      break;
    case MAGNETISM_EDGE_TOP:
    case MAGNETISM_EDGE_BOTTOM:
      if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_LEADING) {
        x = attach_origin.x();
        w = src.right() - x;
      } else if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_TRAILING) {
        w += attach_origin.x() - src.x();
      }
      break;
  }
  return gfx::Rect(x, y, w, h);
}

// Converts a window component edge to the magnetic edge to snap to.
uint32 WindowComponentToMagneticEdge(int window_component) {
  switch (window_component) {
    case HTTOPLEFT:
      return MAGNETISM_EDGE_LEFT | MAGNETISM_EDGE_TOP;
    case HTTOPRIGHT:
      return MAGNETISM_EDGE_TOP | MAGNETISM_EDGE_RIGHT;
    case HTBOTTOMLEFT:
      return MAGNETISM_EDGE_LEFT | MAGNETISM_EDGE_BOTTOM;
    case HTBOTTOMRIGHT:
      return MAGNETISM_EDGE_RIGHT | MAGNETISM_EDGE_BOTTOM;
    case HTTOP:
      return MAGNETISM_EDGE_TOP;
    case HTBOTTOM:
      return MAGNETISM_EDGE_BOTTOM;
    case HTRIGHT:
      return MAGNETISM_EDGE_RIGHT;
    case HTLEFT:
      return MAGNETISM_EDGE_LEFT;
    default:
      break;
  }
  return 0;
}

}  // namespace

// static
const int WorkspaceWindowResizer::kMinOnscreenSize = 20;

// static
const int WorkspaceWindowResizer::kMinOnscreenHeight = 32;

// static
const int WorkspaceWindowResizer::kScreenEdgeInset = 8;

// static
WorkspaceWindowResizer* WorkspaceWindowResizer::instance_ = NULL;

// Represents the width or height of a window with constraints on its minimum
// and maximum size. 0 represents a lack of a constraint.
class WindowSize {
 public:
  WindowSize(int size, int min, int max)
      : size_(size),
        min_(min),
        max_(max) {
    // Grow the min/max bounds to include the starting size.
    if (is_underflowing())
      min_ = size_;
    if (is_overflowing())
      max_ = size_;
  }

  bool is_at_capacity(bool shrinking) {
    return size_ == (shrinking ? min_ : max_);
  }

  int size() const {
    return size_;
  }

  bool has_min() const {
    return min_ != 0;
  }

  bool has_max() const {
    return max_ != 0;
  }

  bool is_valid() const {
    return !is_overflowing() && !is_underflowing();
  }

  bool is_overflowing() const {
    return has_max() && size_ > max_;
  }

  bool is_underflowing() const {
    return has_min() && size_ < min_;
  }

  // Add |amount| to this WindowSize not exceeding min or max size constraints.
  // Returns by how much |size_| + |amount| exceeds the min/max constraints.
  int Add(int amount) {
    DCHECK(is_valid());
    int new_value = size_ + amount;

    if (has_min() && new_value < min_) {
      size_ = min_;
      return new_value - min_;
    }

    if (has_max() && new_value > max_) {
      size_ = max_;
      return new_value - max_;
    }

    size_ = new_value;
    return 0;
  }

 private:
  int size_;
  int min_;
  int max_;
};

WorkspaceWindowResizer::~WorkspaceWindowResizer() {
  if (did_lock_cursor_) {
    Shell* shell = Shell::GetInstance();
    shell->cursor_manager()->UnlockCursor();
  }
  if (instance_ == this)
    instance_ = NULL;
}

// static
WorkspaceWindowResizer* WorkspaceWindowResizer::Create(
    wm::WindowState* window_state,
    const std::vector<aura::Window*>& attached_windows) {
  return new WorkspaceWindowResizer(window_state, attached_windows);
}

void WorkspaceWindowResizer::Drag(const gfx::Point& location_in_parent,
                                  int event_flags) {
  last_mouse_location_ = location_in_parent;

  int sticky_size;
  if (event_flags & ui::EF_CONTROL_DOWN) {
    sticky_size = 0;
  } else if ((details().bounds_change & kBoundsChange_Resizes) &&
      details().source == aura::client::WINDOW_MOVE_SOURCE_TOUCH) {
    sticky_size = kScreenEdgeInsetForTouchDrag;
  } else {
    sticky_size = kScreenEdgeInset;
  }
  // |bounds| is in |GetTarget()->parent()|'s coordinates.
  gfx::Rect bounds = CalculateBoundsForDrag(location_in_parent);
  AdjustBoundsForMainWindow(sticky_size, &bounds);

  if (bounds != GetTarget()->bounds()) {
    if (!did_move_or_resize_) {
      if (!details().restore_bounds.IsEmpty())
        window_state()->ClearRestoreBounds();
      RestackWindows();
    }
    did_move_or_resize_ = true;
  }

  gfx::Point location_in_screen = location_in_parent;
  wm::ConvertPointToScreen(GetTarget()->parent(), &location_in_screen);

  aura::Window* root = NULL;
  gfx::Display display =
      ScreenUtil::FindDisplayContainingPoint(location_in_screen);
  // Track the last screen that the pointer was on to keep the snap phantom
  // window there.
  if (display.is_valid()) {
    root = Shell::GetInstance()->display_controller()->
        GetRootWindowForDisplayId(display.id());
  }
  if (!attached_windows_.empty())
    LayoutAttachedWindows(&bounds);
  if (bounds != GetTarget()->bounds()) {
    // SetBounds needs to be called to update the layout which affects where the
    // phantom window is drawn. Keep track if the window was destroyed during
    // the drag and quit early if so.
    base::WeakPtr<WorkspaceWindowResizer> resizer(
        weak_ptr_factory_.GetWeakPtr());
    GetTarget()->SetBounds(bounds);
    if (!resizer)
      return;
  }
  const bool in_original_root = !root || root == GetTarget()->GetRootWindow();
  // Hide a phantom window for snapping if the cursor is in another root window.
  if (in_original_root) {
    UpdateSnapPhantomWindow(location_in_parent, bounds);
  } else {
    snap_type_ = SNAP_NONE;
    snap_phantom_window_controller_.reset();
    edge_cycler_.reset();
    SetDraggedWindowDocked(false);
  }
}

void WorkspaceWindowResizer::CompleteDrag() {
  if (!did_move_or_resize_)
    return;

  window_state()->set_bounds_changed_by_user(true);
  snap_phantom_window_controller_.reset();

  // If the window's state type changed over the course of the drag do not snap
  // the window. This happens when the user minimizes or maximizes the window
  // using a keyboard shortcut while dragging it.
  if (window_state()->GetStateType() != details().initial_state_type)
    return;

  bool snapped = false;
  if (snap_type_ == SNAP_LEFT || snap_type_ == SNAP_RIGHT) {
    if (!window_state()->HasRestoreBounds()) {
      gfx::Rect initial_bounds = ScreenUtil::ConvertRectToScreen(
          GetTarget()->parent(), details().initial_bounds_in_parent);
      window_state()->SetRestoreBoundsInScreen(
          details().restore_bounds.IsEmpty() ?
          initial_bounds :
          details().restore_bounds);
    }
    if (!dock_layout_->is_dragged_window_docked()) {
      UserMetricsRecorder* metrics = Shell::GetInstance()->metrics();
      // TODO(oshima): Add event source type to WMEvent and move
      // metrics recording inside WindowState::OnWMEvent.
      const wm::WMEvent event(snap_type_ == SNAP_LEFT ?
                              wm::WM_EVENT_SNAP_LEFT : wm::WM_EVENT_SNAP_RIGHT);
      window_state()->OnWMEvent(&event);
      metrics->RecordUserMetricsAction(
          snap_type_ == SNAP_LEFT ?
          UMA_DRAG_MAXIMIZE_LEFT : UMA_DRAG_MAXIMIZE_RIGHT);
      snapped = true;
    }
  }

  if (!snapped && window_state()->IsSnapped()) {
    // Keep the window snapped if the user resizes the window such that the
    // window has valid bounds for a snapped window. Always unsnap the window
    // if the user dragged the window via the caption area because doing this is
    // slightly less confusing.
    if (details().window_component == HTCAPTION ||
        !AreBoundsValidSnappedBounds(window_state()->GetStateType(),
                                     GetTarget()->bounds())) {
      // Set the window to WINDOW_STATE_TYPE_NORMAL but keep the
      // window at the bounds that the user has moved/resized the
      // window to. ClearRestoreBounds() is used instead of
      // SaveCurrentBoundsForRestore() because most of the restore
      // logic is skipped because we are still in the middle of a
      // drag.  TODO(pkotwicz): Fix this and use
      // SaveCurrentBoundsForRestore().
      window_state()->ClearRestoreBounds();
      window_state()->Restore();
    }
  }
}

void WorkspaceWindowResizer::RevertDrag() {
  window_state()->set_bounds_changed_by_user(initial_bounds_changed_by_user_);
  snap_phantom_window_controller_.reset();

  if (!did_move_or_resize_)
    return;

  GetTarget()->SetBounds(details().initial_bounds_in_parent);
  if (!details().restore_bounds.IsEmpty()) {
    window_state()->SetRestoreBoundsInScreen(details().restore_bounds);
  }

  if (details().window_component == HTRIGHT) {
    int last_x = details().initial_bounds_in_parent.right();
    for (size_t i = 0; i < attached_windows_.size(); ++i) {
      gfx::Rect bounds(attached_windows_[i]->bounds());
      bounds.set_x(last_x);
      bounds.set_width(initial_size_[i]);
      attached_windows_[i]->SetBounds(bounds);
      last_x = attached_windows_[i]->bounds().right();
    }
  } else {
    int last_y = details().initial_bounds_in_parent.bottom();
    for (size_t i = 0; i < attached_windows_.size(); ++i) {
      gfx::Rect bounds(attached_windows_[i]->bounds());
      bounds.set_y(last_y);
      bounds.set_height(initial_size_[i]);
      attached_windows_[i]->SetBounds(bounds);
      last_y = attached_windows_[i]->bounds().bottom();
    }
  }
}

WorkspaceWindowResizer::WorkspaceWindowResizer(
    wm::WindowState* window_state,
    const std::vector<aura::Window*>& attached_windows)
    : WindowResizer(window_state),
      attached_windows_(attached_windows),
      did_lock_cursor_(false),
      did_move_or_resize_(false),
      initial_bounds_changed_by_user_(window_state_->bounds_changed_by_user()),
      total_min_(0),
      total_initial_size_(0),
      snap_type_(SNAP_NONE),
      num_mouse_moves_since_bounds_change_(0),
      magnetism_window_(NULL),
      weak_ptr_factory_(this) {
  DCHECK(details().is_resizable);

  // A mousemove should still show the cursor even if the window is
  // being moved or resized with touch, so do not lock the cursor.
  if (details().source != aura::client::WINDOW_MOVE_SOURCE_TOUCH) {
    Shell* shell = Shell::GetInstance();
    shell->cursor_manager()->LockCursor();
    did_lock_cursor_ = true;
  }

  aura::Window* dock_container = Shell::GetContainer(
      GetTarget()->GetRootWindow(), kShellWindowId_DockedContainer);
  dock_layout_ = static_cast<DockedWindowLayoutManager*>(
      dock_container->layout_manager());

  // Only support attaching to the right/bottom.
  DCHECK(attached_windows_.empty() ||
         (details().window_component == HTRIGHT ||
          details().window_component == HTBOTTOM));

  // TODO: figure out how to deal with window going off the edge.

  // Calculate sizes so that we can maintain the ratios if we need to resize.
  int total_available = 0;
  for (size_t i = 0; i < attached_windows_.size(); ++i) {
    gfx::Size min(attached_windows_[i]->delegate()->GetMinimumSize());
    int initial_size = PrimaryAxisSize(attached_windows_[i]->bounds().size());
    initial_size_.push_back(initial_size);
    // If current size is smaller than the min, use the current size as the min.
    // This way we don't snap on resize.
    int min_size = std::min(initial_size,
                            std::max(PrimaryAxisSize(min), kMinOnscreenSize));
    total_min_ += min_size;
    total_initial_size_ += initial_size;
    total_available += std::max(min_size, initial_size) - min_size;
  }
  instance_ = this;
}

void WorkspaceWindowResizer::LayoutAttachedWindows(
    gfx::Rect* bounds) {
  gfx::Rect work_area(ScreenUtil::GetDisplayWorkAreaBoundsInParent(
      GetTarget()));
  int initial_size = PrimaryAxisSize(details().initial_bounds_in_parent.size());
  int current_size = PrimaryAxisSize(bounds->size());
  int start = PrimaryAxisCoordinate(bounds->right(), bounds->bottom());
  int end = PrimaryAxisCoordinate(work_area.right(), work_area.bottom());

  int delta = current_size - initial_size;
  int available_size = end - start;
  std::vector<int> sizes;
  int leftovers = CalculateAttachedSizes(delta, available_size, &sizes);

  // leftovers > 0 means that the attached windows can't grow to compensate for
  // the shrinkage of the main window. This line causes the attached windows to
  // be moved so they are still flush against the main window, rather than the
  // main window being prevented from shrinking.
  leftovers = std::min(0, leftovers);
  // Reallocate any leftover pixels back into the main window. This is
  // necessary when, for example, the main window shrinks, but none of the
  // attached windows can grow without exceeding their max size constraints.
  // Adding the pixels back to the main window effectively prevents the main
  // window from resizing too far.
  if (details().window_component == HTRIGHT)
    bounds->set_width(bounds->width() + leftovers);
  else
    bounds->set_height(bounds->height() + leftovers);

  DCHECK_EQ(attached_windows_.size(), sizes.size());
  int last = PrimaryAxisCoordinate(bounds->right(), bounds->bottom());
  for (size_t i = 0; i < attached_windows_.size(); ++i) {
    gfx::Rect attached_bounds(attached_windows_[i]->bounds());
    if (details().window_component == HTRIGHT) {
      attached_bounds.set_x(last);
      attached_bounds.set_width(sizes[i]);
    } else {
      attached_bounds.set_y(last);
      attached_bounds.set_height(sizes[i]);
    }
    attached_windows_[i]->SetBounds(attached_bounds);
    last += sizes[i];
  }
}

int WorkspaceWindowResizer::CalculateAttachedSizes(
    int delta,
    int available_size,
    std::vector<int>* sizes) const {
  std::vector<WindowSize> window_sizes;
  CreateBucketsForAttached(&window_sizes);

  // How much we need to grow the attached by (collectively).
  int grow_attached_by = 0;
  if (delta > 0) {
    // If the attached windows don't fit when at their initial size, we will
    // have to shrink them by how much they overflow.
    if (total_initial_size_ >= available_size)
      grow_attached_by = available_size - total_initial_size_;
  } else {
    // If we're shrinking, we grow the attached so the total size remains
    // constant.
    grow_attached_by = -delta;
  }

  int leftover_pixels = 0;
  while (grow_attached_by != 0) {
    int leftovers = GrowFairly(grow_attached_by, window_sizes);
    if (leftovers == grow_attached_by) {
      leftover_pixels = leftovers;
      break;
    }
    grow_attached_by = leftovers;
  }

  for (size_t i = 0; i < window_sizes.size(); ++i)
    sizes->push_back(window_sizes[i].size());

  return leftover_pixels;
}

int WorkspaceWindowResizer::GrowFairly(
    int pixels,
    std::vector<WindowSize>& sizes) const {
  bool shrinking = pixels < 0;
  std::vector<WindowSize*> nonfull_windows;
  for (size_t i = 0; i < sizes.size(); ++i) {
    if (!sizes[i].is_at_capacity(shrinking))
      nonfull_windows.push_back(&sizes[i]);
  }
  std::vector<float> ratios;
  CalculateGrowthRatios(nonfull_windows, &ratios);

  int remaining_pixels = pixels;
  bool add_leftover_pixels_to_last = true;
  for (size_t i = 0; i < nonfull_windows.size(); ++i) {
    int grow_by = pixels * ratios[i];
    // Put any leftover pixels into the last window.
    if (i == nonfull_windows.size() - 1 && add_leftover_pixels_to_last)
      grow_by = remaining_pixels;
    int remainder = nonfull_windows[i]->Add(grow_by);
    int consumed = grow_by - remainder;
    remaining_pixels -= consumed;
    if (nonfull_windows[i]->is_at_capacity(shrinking) && remainder > 0) {
      // Because this window overflowed, some of the pixels in
      // |remaining_pixels| aren't there due to rounding errors. Rather than
      // unfairly giving all those pixels to the last window, we refrain from
      // allocating them so that this function can be called again to distribute
      // the pixels fairly.
      add_leftover_pixels_to_last = false;
    }
  }
  return remaining_pixels;
}

void WorkspaceWindowResizer::CalculateGrowthRatios(
    const std::vector<WindowSize*>& sizes,
    std::vector<float>* out_ratios) const {
  DCHECK(out_ratios->empty());
  int total_value = 0;
  for (size_t i = 0; i < sizes.size(); ++i)
    total_value += sizes[i]->size();

  for (size_t i = 0; i < sizes.size(); ++i)
    out_ratios->push_back(
        (static_cast<float>(sizes[i]->size())) / total_value);
}

void WorkspaceWindowResizer::CreateBucketsForAttached(
    std::vector<WindowSize>* sizes) const {
  for (size_t i = 0; i < attached_windows_.size(); i++) {
    int initial_size = initial_size_[i];
    aura::WindowDelegate* delegate = attached_windows_[i]->delegate();
    int min = PrimaryAxisSize(delegate->GetMinimumSize());
    int max = PrimaryAxisSize(delegate->GetMaximumSize());

    sizes->push_back(WindowSize(initial_size, min, max));
  }
}

void WorkspaceWindowResizer::MagneticallySnapToOtherWindows(gfx::Rect* bounds) {
  if (UpdateMagnetismWindow(*bounds, kAllMagnetismEdges)) {
    gfx::Point point = OriginForMagneticAttach(
        ScreenUtil::ConvertRectToScreen(GetTarget()->parent(), *bounds),
        magnetism_window_->GetBoundsInScreen(),
        magnetism_edge_);
    aura::client::GetScreenPositionClient(GetTarget()->GetRootWindow())->
        ConvertPointFromScreen(GetTarget()->parent(), &point);
    bounds->set_origin(point);
  }
}

void WorkspaceWindowResizer::MagneticallySnapResizeToOtherWindows(
    gfx::Rect* bounds) {
  const uint32 edges = WindowComponentToMagneticEdge(
      details().window_component);
  if (UpdateMagnetismWindow(*bounds, edges)) {
    *bounds = ScreenUtil::ConvertRectFromScreen(
        GetTarget()->parent(),
        BoundsForMagneticResizeAttach(
            ScreenUtil::ConvertRectToScreen(GetTarget()->parent(), *bounds),
            magnetism_window_->GetBoundsInScreen(),
            magnetism_edge_));
  }
}

bool WorkspaceWindowResizer::UpdateMagnetismWindow(const gfx::Rect& bounds,
                                                   uint32 edges) {
  // |bounds| are in coordinates of original window's parent.
  gfx::Rect bounds_in_screen =
      ScreenUtil::ConvertRectToScreen(GetTarget()->parent(), bounds);
  MagnetismMatcher matcher(bounds_in_screen, edges);

  // If we snapped to a window then check it first. That way we don't bounce
  // around when close to multiple edges.
  if (magnetism_window_) {
    if (window_tracker_.Contains(magnetism_window_) &&
        matcher.ShouldAttach(magnetism_window_->GetBoundsInScreen(),
                             &magnetism_edge_)) {
      return true;
    }
    window_tracker_.Remove(magnetism_window_);
    magnetism_window_ = NULL;
  }

  // Avoid magnetically snapping windows that are not resizable.
  // TODO(oshima): change this to window.type() == TYPE_NORMAL.
  if (!window_state()->CanResize())
    return false;

  aura::Window::Windows root_windows = Shell::GetAllRootWindows();
  for (aura::Window::Windows::iterator iter = root_windows.begin();
       iter != root_windows.end(); ++iter) {
    const aura::Window* root_window = *iter;
    // Test all children from the desktop in each root window.
    const aura::Window::Windows& children = Shell::GetContainer(
        root_window, kShellWindowId_DefaultContainer)->children();
    for (aura::Window::Windows::const_reverse_iterator i = children.rbegin();
         i != children.rend() && !matcher.AreEdgesObscured(); ++i) {
      wm::WindowState* other_state = wm::GetWindowState(*i);
      if (other_state->window() == GetTarget() ||
          !other_state->window()->IsVisible() ||
          !other_state->IsNormalOrSnapped() ||
          !other_state->CanResize()) {
        continue;
      }
      if (matcher.ShouldAttach(
              other_state->window()->GetBoundsInScreen(), &magnetism_edge_)) {
        magnetism_window_ = other_state->window();
        window_tracker_.Add(magnetism_window_);
        return true;
      }
    }
  }
  return false;
}

void WorkspaceWindowResizer::AdjustBoundsForMainWindow(
    int sticky_size,
    gfx::Rect* bounds) {
  gfx::Point last_mouse_location_in_screen = last_mouse_location_;
  wm::ConvertPointToScreen(GetTarget()->parent(),
                           &last_mouse_location_in_screen);
  gfx::Display display = Shell::GetScreen()->GetDisplayNearestPoint(
      last_mouse_location_in_screen);
  gfx::Rect work_area =
      ScreenUtil::ConvertRectFromScreen(GetTarget()->parent(),
                                       display.work_area());
  if (details().window_component == HTCAPTION) {
    // Adjust the bounds to the work area where the mouse cursor is located.
    // Always keep kMinOnscreenHeight or the window height (whichever is less)
    // on the bottom.
    int max_y = work_area.bottom() - std::min(kMinOnscreenHeight,
                                              bounds->height());
    if (bounds->y() > max_y) {
      bounds->set_y(max_y);
    } else if (bounds->y() <= work_area.y()) {
      // Don't allow dragging above the top of the display until the mouse
      // cursor reaches the work area above if any.
      bounds->set_y(work_area.y());
    }

    if (sticky_size > 0) {
      // Possibly stick to edge except when a mouse pointer is outside the
      // work area.
      if (display.work_area().Contains(last_mouse_location_in_screen))
        StickToWorkAreaOnMove(work_area, sticky_size, bounds);
      MagneticallySnapToOtherWindows(bounds);
    }
  } else if (sticky_size > 0) {
    MagneticallySnapResizeToOtherWindows(bounds);
    if (!magnetism_window_ && sticky_size > 0)
      StickToWorkAreaOnResize(work_area, sticky_size, bounds);
  }

  if (attached_windows_.empty())
    return;

  if (details().window_component == HTRIGHT) {
    bounds->set_width(std::min(bounds->width(),
                               work_area.right() - total_min_ - bounds->x()));
  } else {
    DCHECK_EQ(HTBOTTOM, details().window_component);
    bounds->set_height(std::min(bounds->height(),
                                work_area.bottom() - total_min_ - bounds->y()));
  }
}

bool WorkspaceWindowResizer::StickToWorkAreaOnMove(
    const gfx::Rect& work_area,
    int sticky_size,
    gfx::Rect* bounds) const {
  const int left_edge = work_area.x();
  const int right_edge = work_area.right();
  const int top_edge = work_area.y();
  const int bottom_edge = work_area.bottom();
  bool updated = false;
  if (ShouldStickToEdge(bounds->x() - left_edge, sticky_size)) {
    bounds->set_x(left_edge);
    updated = true;
  } else if (ShouldStickToEdge(right_edge - bounds->right(), sticky_size)) {
    bounds->set_x(right_edge - bounds->width());
    updated = true;
  }
  if (ShouldStickToEdge(bounds->y() - top_edge, sticky_size)) {
    bounds->set_y(top_edge);
    updated = true;
  } else if (ShouldStickToEdge(bottom_edge - bounds->bottom(), sticky_size) &&
             bounds->height() < (bottom_edge - top_edge)) {
    // Only snap to the bottom if the window is smaller than the work area.
    // Doing otherwise can lead to window snapping in weird ways as it bounces
    // between snapping to top then bottom.
    bounds->set_y(bottom_edge - bounds->height());
    updated = true;
  }
  return updated;
}

void WorkspaceWindowResizer::StickToWorkAreaOnResize(
    const gfx::Rect& work_area,
    int sticky_size,
    gfx::Rect* bounds) const {
  const uint32 edges = WindowComponentToMagneticEdge(
      details().window_component);
  const int left_edge = work_area.x();
  const int right_edge = work_area.right();
  const int top_edge = work_area.y();
  const int bottom_edge = work_area.bottom();
  if (edges & MAGNETISM_EDGE_TOP &&
      ShouldStickToEdge(bounds->y() - top_edge, sticky_size)) {
    bounds->set_height(bounds->bottom() - top_edge);
    bounds->set_y(top_edge);
  }
  if (edges & MAGNETISM_EDGE_LEFT &&
      ShouldStickToEdge(bounds->x() - left_edge, sticky_size)) {
    bounds->set_width(bounds->right() - left_edge);
    bounds->set_x(left_edge);
  }
  if (edges & MAGNETISM_EDGE_BOTTOM &&
      ShouldStickToEdge(bottom_edge - bounds->bottom(), sticky_size)) {
    bounds->set_height(bottom_edge - bounds->y());
  }
  if (edges & MAGNETISM_EDGE_RIGHT &&
      ShouldStickToEdge(right_edge - bounds->right(), sticky_size)) {
    bounds->set_width(right_edge - bounds->x());
  }
}

int WorkspaceWindowResizer::PrimaryAxisSize(const gfx::Size& size) const {
  return PrimaryAxisCoordinate(size.width(), size.height());
}

int WorkspaceWindowResizer::PrimaryAxisCoordinate(int x, int y) const {
  switch (details().window_component) {
    case HTRIGHT:
      return x;
    case HTBOTTOM:
      return y;
    default:
      NOTREACHED();
  }
  return 0;
}

void WorkspaceWindowResizer::UpdateSnapPhantomWindow(const gfx::Point& location,
                                                     const gfx::Rect& bounds) {
  if (!did_move_or_resize_ || details().window_component != HTCAPTION)
    return;

  SnapType last_type = snap_type_;
  snap_type_ = GetSnapType(location);
  if (snap_type_ == SNAP_NONE || snap_type_ != last_type) {
    snap_phantom_window_controller_.reset();
    edge_cycler_.reset();
    if (snap_type_ == SNAP_NONE) {
      SetDraggedWindowDocked(false);
      return;
    }
  }

  const bool can_dock = dock_layout_->CanDockWindow(GetTarget(), snap_type_) &&
      dock_layout_->GetAlignmentOfWindow(GetTarget()) != DOCKED_ALIGNMENT_NONE;
  if (!can_dock) {
    // If the window cannot be docked, undock the window. This may change the
    // workspace bounds and hence |snap_type_|.
    SetDraggedWindowDocked(false);
    snap_type_ = GetSnapType(location);
  }
  const bool can_snap = snap_type_ != SNAP_NONE && window_state()->CanSnap();
  if (!can_snap && !can_dock) {
    snap_type_ = SNAP_NONE;
    snap_phantom_window_controller_.reset();
    edge_cycler_.reset();
    return;
  }
  if (!edge_cycler_)
    edge_cycler_.reset(new TwoStepEdgeCycler(location));
  else
    edge_cycler_->OnMove(location);

  // Update phantom window with snapped or docked guide bounds.
  // Windows that cannot be snapped or are less wide than kMaxDockWidth can get
  // docked without going through a snapping sequence.
  gfx::Rect phantom_bounds;
  const bool should_dock = can_dock &&
      (!can_snap ||
       GetTarget()->bounds().width() <=
           DockedWindowLayoutManager::kMaxDockWidth ||
       edge_cycler_->use_second_mode() ||
       dock_layout_->is_dragged_window_docked());
  if (should_dock) {
    SetDraggedWindowDocked(true);
    phantom_bounds = ScreenUtil::ConvertRectFromScreen(
        GetTarget()->parent(), dock_layout_->dragged_bounds());
  } else {
    phantom_bounds = (snap_type_ == SNAP_LEFT) ?
        wm::GetDefaultLeftSnappedWindowBoundsInParent(GetTarget()) :
        wm::GetDefaultRightSnappedWindowBoundsInParent(GetTarget());
  }

  if (!snap_phantom_window_controller_) {
    snap_phantom_window_controller_.reset(
        new PhantomWindowController(GetTarget()));
  }
  snap_phantom_window_controller_->Show(ScreenUtil::ConvertRectToScreen(
      GetTarget()->parent(), phantom_bounds));
}

void WorkspaceWindowResizer::RestackWindows() {
  if (attached_windows_.empty())
    return;
  // Build a map from index in children to window, returning if there is a
  // window with a different parent.
  typedef std::map<size_t, aura::Window*> IndexToWindowMap;
  IndexToWindowMap map;
  aura::Window* parent = GetTarget()->parent();
  const aura::Window::Windows& windows(parent->children());
  map[std::find(windows.begin(), windows.end(), GetTarget()) -
      windows.begin()] = GetTarget();
  for (std::vector<aura::Window*>::const_iterator i =
           attached_windows_.begin(); i != attached_windows_.end(); ++i) {
    if ((*i)->parent() != parent)
      return;
    size_t index =
        std::find(windows.begin(), windows.end(), *i) - windows.begin();
    map[index] = *i;
  }

  // Reorder the windows starting at the topmost.
  parent->StackChildAtTop(map.rbegin()->second);
  for (IndexToWindowMap::const_reverse_iterator i = map.rbegin();
       i != map.rend(); ) {
    aura::Window* window = i->second;
    ++i;
    if (i != map.rend())
      parent->StackChildBelow(i->second, window);
  }
}

SnapType WorkspaceWindowResizer::GetSnapType(
    const gfx::Point& location) const {
  // TODO: this likely only wants total display area, not the area of a single
  // display.
  gfx::Rect area(ScreenUtil::GetDisplayWorkAreaBoundsInParent(GetTarget()));
  if (details().source == aura::client::WINDOW_MOVE_SOURCE_TOUCH) {
    // Increase tolerance for touch-snapping near the screen edges. This is only
    // necessary when the work area left or right edge is same as screen edge.
    gfx::Rect display_bounds(ScreenUtil::GetDisplayBoundsInParent(GetTarget()));
    int inset_left = 0;
    if (area.x() == display_bounds.x())
      inset_left = kScreenEdgeInsetForTouchDrag;
    int inset_right = 0;
    if (area.right() == display_bounds.right())
      inset_right = kScreenEdgeInsetForTouchDrag;
    area.Inset(inset_left, 0, inset_right, 0);
  }
  if (location.x() <= area.x())
    return SNAP_LEFT;
  if (location.x() >= area.right() - 1)
    return SNAP_RIGHT;
  return SNAP_NONE;
}

void WorkspaceWindowResizer::SetDraggedWindowDocked(bool should_dock) {
  if (should_dock) {
    if (!dock_layout_->is_dragged_window_docked()) {
      window_state()->set_bounds_changed_by_user(false);
      dock_layout_->DockDraggedWindow(GetTarget());
    }
  } else {
    if (dock_layout_->is_dragged_window_docked()) {
      dock_layout_->UndockDraggedWindow();
      window_state()->set_bounds_changed_by_user(true);
    }
  }
}

bool WorkspaceWindowResizer::AreBoundsValidSnappedBounds(
    wm::WindowStateType snapped_type,
    const gfx::Rect& bounds_in_parent) const {
  DCHECK(snapped_type == wm::WINDOW_STATE_TYPE_LEFT_SNAPPED ||
         snapped_type == wm::WINDOW_STATE_TYPE_RIGHT_SNAPPED);
  gfx::Rect snapped_bounds = ScreenUtil::GetDisplayWorkAreaBoundsInParent(
      GetTarget());
  if (snapped_type == wm::WINDOW_STATE_TYPE_RIGHT_SNAPPED)
    snapped_bounds.set_x(snapped_bounds.right() - bounds_in_parent.width());
  snapped_bounds.set_width(bounds_in_parent.width());
  return bounds_in_parent == snapped_bounds;
}

}  // namespace ash

/* [<][>][^][v][top][bottom][index][help] */