root/net/disk_cache/memory/mem_entry_impl.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ToChildIndex
  2. ToChildOffset
  3. GenerateChildName
  4. NetLogChildEntryCreationCallback
  5. CreateEntry
  6. InternalDoom
  7. Open
  8. InUse
  9. Doom
  10. Close
  11. GetKey
  12. GetLastUsed
  13. GetLastModified
  14. GetDataSize
  15. ReadData
  16. WriteData
  17. ReadSparseData
  18. WriteSparseData
  19. GetAvailableRange
  20. CouldBeSparse
  21. ReadyForSparseIO
  22. InternalReadData
  23. InternalWriteData
  24. InternalReadSparseData
  25. InternalWriteSparseData
  26. GetAvailableRange
  27. PrepareTarget
  28. UpdateRank
  29. InitSparseInfo
  30. InitChildEntry
  31. OpenChild
  32. FindNextChild
  33. DetachChild

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/disk_cache/memory/mem_entry_impl.h"

#include "base/bind.h"
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "base/values.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/memory/mem_backend_impl.h"
#include "net/disk_cache/net_log_parameters.h"

using base::Time;

namespace {

const int kSparseData = 1;

// Maximum size of a sparse entry is 2 to the power of this number.
const int kMaxSparseEntryBits = 12;

// Sparse entry has maximum size of 4KB.
const int kMaxSparseEntrySize = 1 << kMaxSparseEntryBits;

// Convert global offset to child index.
inline int ToChildIndex(int64 offset) {
  return static_cast<int>(offset >> kMaxSparseEntryBits);
}

// Convert global offset to offset in child entry.
inline int ToChildOffset(int64 offset) {
  return static_cast<int>(offset & (kMaxSparseEntrySize - 1));
}

// Returns a name for a child entry given the base_name of the parent and the
// child_id.  This name is only used for logging purposes.
// If the entry is called entry_name, child entries will be named something
// like Range_entry_name:YYY where YYY is the number of the particular child.
std::string GenerateChildName(const std::string& base_name, int child_id) {
  return base::StringPrintf("Range_%s:%i", base_name.c_str(), child_id);
}

// Returns NetLog parameters for the creation of a child MemEntryImpl.  Separate
// function needed because child entries don't suppport GetKey().
base::Value* NetLogChildEntryCreationCallback(
    const disk_cache::MemEntryImpl* parent,
    int child_id,
    net::NetLog::LogLevel /* log_level */) {
  base::DictionaryValue* dict = new base::DictionaryValue();
  dict->SetString("key", GenerateChildName(parent->GetKey(), child_id));
  dict->SetBoolean("created", true);
  return dict;
}

}  // namespace

namespace disk_cache {

MemEntryImpl::MemEntryImpl(MemBackendImpl* backend) {
  doomed_ = false;
  backend_ = backend;
  ref_count_ = 0;
  parent_ = NULL;
  child_id_ = 0;
  child_first_pos_ = 0;
  next_ = NULL;
  prev_ = NULL;
  for (int i = 0; i < NUM_STREAMS; i++)
    data_size_[i] = 0;
}

// ------------------------------------------------------------------------

bool MemEntryImpl::CreateEntry(const std::string& key, net::NetLog* net_log) {
  key_ = key;
  Time current = Time::Now();
  last_modified_ = current;
  last_used_ = current;

  net_log_ = net::BoundNetLog::Make(net_log,
                                    net::NetLog::SOURCE_MEMORY_CACHE_ENTRY);
  // Must be called after |key_| is set, so GetKey() works.
  net_log_.BeginEvent(
      net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL,
      CreateNetLogEntryCreationCallback(this, true));

  Open();
  backend_->ModifyStorageSize(0, static_cast<int32>(key.size()));
  return true;
}

void MemEntryImpl::InternalDoom() {
  net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM);
  doomed_ = true;
  if (!ref_count_) {
    if (type() == kParentEntry) {
      // If this is a parent entry, we need to doom all the child entries.
      if (children_.get()) {
        EntryMap children;
        children.swap(*children_);
        for (EntryMap::iterator i = children.begin();
             i != children.end(); ++i) {
          // Since a pointer to this object is also saved in the map, avoid
          // dooming it.
          if (i->second != this)
            i->second->Doom();
        }
        DCHECK(children_->empty());
      }
    } else {
      // If this is a child entry, detach it from the parent.
      parent_->DetachChild(child_id_);
    }
    delete this;
  }
}

void MemEntryImpl::Open() {
  // Only a parent entry can be opened.
  // TODO(hclam): make sure it's correct to not apply the concept of ref
  // counting to child entry.
  DCHECK(type() == kParentEntry);
  ref_count_++;
  DCHECK_GE(ref_count_, 0);
  DCHECK(!doomed_);
}

bool MemEntryImpl::InUse() {
  if (type() == kParentEntry) {
    return ref_count_ > 0;
  } else {
    // A child entry is always not in use. The consequence is that a child entry
    // can always be evicted while the associated parent entry is currently in
    // used (i.e. opened).
    return false;
  }
}

// ------------------------------------------------------------------------

void MemEntryImpl::Doom() {
  if (doomed_)
    return;
  if (type() == kParentEntry) {
    // Perform internal doom from the backend if this is a parent entry.
    backend_->InternalDoomEntry(this);
  } else {
    // Manually detach from the backend and perform internal doom.
    backend_->RemoveFromRankingList(this);
    InternalDoom();
  }
}

void MemEntryImpl::Close() {
  // Only a parent entry can be closed.
  DCHECK(type() == kParentEntry);
  ref_count_--;
  DCHECK_GE(ref_count_, 0);
  if (!ref_count_ && doomed_)
    InternalDoom();
}

std::string MemEntryImpl::GetKey() const {
  // A child entry doesn't have key so this method should not be called.
  DCHECK(type() == kParentEntry);
  return key_;
}

Time MemEntryImpl::GetLastUsed() const {
  return last_used_;
}

Time MemEntryImpl::GetLastModified() const {
  return last_modified_;
}

int32 MemEntryImpl::GetDataSize(int index) const {
  if (index < 0 || index >= NUM_STREAMS)
    return 0;
  return data_size_[index];
}

int MemEntryImpl::ReadData(int index, int offset, IOBuffer* buf, int buf_len,
                           const CompletionCallback& callback) {
  if (net_log_.IsLogging()) {
    net_log_.BeginEvent(
        net::NetLog::TYPE_ENTRY_READ_DATA,
        CreateNetLogReadWriteDataCallback(index, offset, buf_len, false));
  }

  int result = InternalReadData(index, offset, buf, buf_len);

  if (net_log_.IsLogging()) {
    net_log_.EndEvent(
        net::NetLog::TYPE_ENTRY_READ_DATA,
        CreateNetLogReadWriteCompleteCallback(result));
  }
  return result;
}

int MemEntryImpl::WriteData(int index, int offset, IOBuffer* buf, int buf_len,
                            const CompletionCallback& callback, bool truncate) {
  if (net_log_.IsLogging()) {
    net_log_.BeginEvent(
        net::NetLog::TYPE_ENTRY_WRITE_DATA,
        CreateNetLogReadWriteDataCallback(index, offset, buf_len, truncate));
  }

  int result = InternalWriteData(index, offset, buf, buf_len, truncate);

  if (net_log_.IsLogging()) {
    net_log_.EndEvent(
        net::NetLog::TYPE_ENTRY_WRITE_DATA,
        CreateNetLogReadWriteCompleteCallback(result));
  }
  return result;
}

int MemEntryImpl::ReadSparseData(int64 offset, IOBuffer* buf, int buf_len,
                                 const CompletionCallback& callback) {
  if (net_log_.IsLogging()) {
    net_log_.BeginEvent(
        net::NetLog::TYPE_SPARSE_READ,
        CreateNetLogSparseOperationCallback(offset, buf_len));
  }
  int result = InternalReadSparseData(offset, buf, buf_len);
  if (net_log_.IsLogging())
    net_log_.EndEvent(net::NetLog::TYPE_SPARSE_READ);
  return result;
}

int MemEntryImpl::WriteSparseData(int64 offset, IOBuffer* buf, int buf_len,
                                  const CompletionCallback& callback) {
  if (net_log_.IsLogging()) {
    net_log_.BeginEvent(
        net::NetLog::TYPE_SPARSE_WRITE,
        CreateNetLogSparseOperationCallback(offset, buf_len));
  }
  int result = InternalWriteSparseData(offset, buf, buf_len);
  if (net_log_.IsLogging())
    net_log_.EndEvent(net::NetLog::TYPE_SPARSE_WRITE);
  return result;
}

int MemEntryImpl::GetAvailableRange(int64 offset, int len, int64* start,
                                    const CompletionCallback& callback) {
  if (net_log_.IsLogging()) {
    net_log_.BeginEvent(
        net::NetLog::TYPE_SPARSE_GET_RANGE,
        CreateNetLogSparseOperationCallback(offset, len));
  }
  int result = GetAvailableRange(offset, len, start);
  if (net_log_.IsLogging()) {
    net_log_.EndEvent(
        net::NetLog::TYPE_SPARSE_GET_RANGE,
        CreateNetLogGetAvailableRangeResultCallback(*start, result));
  }
  return result;
}

bool MemEntryImpl::CouldBeSparse() const {
  DCHECK_EQ(kParentEntry, type());
  return (children_.get() != NULL);
}

int MemEntryImpl::ReadyForSparseIO(const CompletionCallback& callback) {
  return net::OK;
}

// ------------------------------------------------------------------------

MemEntryImpl::~MemEntryImpl() {
  for (int i = 0; i < NUM_STREAMS; i++)
    backend_->ModifyStorageSize(data_size_[i], 0);
  backend_->ModifyStorageSize(static_cast<int32>(key_.size()), 0);
  net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL);
}

int MemEntryImpl::InternalReadData(int index, int offset, IOBuffer* buf,
                                   int buf_len) {
  DCHECK(type() == kParentEntry || index == kSparseData);

  if (index < 0 || index >= NUM_STREAMS)
    return net::ERR_INVALID_ARGUMENT;

  int entry_size = GetDataSize(index);
  if (offset >= entry_size || offset < 0 || !buf_len)
    return 0;

  if (buf_len < 0)
    return net::ERR_INVALID_ARGUMENT;

  if (offset + buf_len > entry_size)
    buf_len = entry_size - offset;

  UpdateRank(false);

  memcpy(buf->data(), &(data_[index])[offset], buf_len);
  return buf_len;
}

int MemEntryImpl::InternalWriteData(int index, int offset, IOBuffer* buf,
                                    int buf_len, bool truncate) {
  DCHECK(type() == kParentEntry || index == kSparseData);

  if (index < 0 || index >= NUM_STREAMS)
    return net::ERR_INVALID_ARGUMENT;

  if (offset < 0 || buf_len < 0)
    return net::ERR_INVALID_ARGUMENT;

  int max_file_size = backend_->MaxFileSize();

  // offset of buf_len could be negative numbers.
  if (offset > max_file_size || buf_len > max_file_size ||
      offset + buf_len > max_file_size) {
    return net::ERR_FAILED;
  }

  // Read the size at this point.
  int entry_size = GetDataSize(index);

  PrepareTarget(index, offset, buf_len);

  if (entry_size < offset + buf_len) {
    backend_->ModifyStorageSize(entry_size, offset + buf_len);
    data_size_[index] = offset + buf_len;
  } else if (truncate) {
    if (entry_size > offset + buf_len) {
      backend_->ModifyStorageSize(entry_size, offset + buf_len);
      data_size_[index] = offset + buf_len;
    }
  }

  UpdateRank(true);

  if (!buf_len)
    return 0;

  memcpy(&(data_[index])[offset], buf->data(), buf_len);
  return buf_len;
}

int MemEntryImpl::InternalReadSparseData(int64 offset, IOBuffer* buf,
                                         int buf_len) {
  DCHECK(type() == kParentEntry);

  if (!InitSparseInfo())
    return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;

  if (offset < 0 || buf_len < 0)
    return net::ERR_INVALID_ARGUMENT;

  // We will keep using this buffer and adjust the offset in this buffer.
  scoped_refptr<net::DrainableIOBuffer> io_buf(
      new net::DrainableIOBuffer(buf, buf_len));

  // Iterate until we have read enough.
  while (io_buf->BytesRemaining()) {
    MemEntryImpl* child = OpenChild(offset + io_buf->BytesConsumed(), false);

    // No child present for that offset.
    if (!child)
      break;

    // We then need to prepare the child offset and len.
    int child_offset = ToChildOffset(offset + io_buf->BytesConsumed());

    // If we are trying to read from a position that the child entry has no data
    // we should stop.
    if (child_offset < child->child_first_pos_)
      break;
    if (net_log_.IsLogging()) {
      net_log_.BeginEvent(
          net::NetLog::TYPE_SPARSE_READ_CHILD_DATA,
          CreateNetLogSparseReadWriteCallback(child->net_log().source(),
                                              io_buf->BytesRemaining()));
    }
    int ret = child->ReadData(kSparseData, child_offset, io_buf.get(),
                              io_buf->BytesRemaining(), CompletionCallback());
    if (net_log_.IsLogging()) {
      net_log_.EndEventWithNetErrorCode(
          net::NetLog::TYPE_SPARSE_READ_CHILD_DATA, ret);
    }

    // If we encounter an error in one entry, return immediately.
    if (ret < 0)
      return ret;
    else if (ret == 0)
      break;

    // Increment the counter by number of bytes read in the child entry.
    io_buf->DidConsume(ret);
  }

  UpdateRank(false);

  return io_buf->BytesConsumed();
}

int MemEntryImpl::InternalWriteSparseData(int64 offset, IOBuffer* buf,
                                          int buf_len) {
  DCHECK(type() == kParentEntry);

  if (!InitSparseInfo())
    return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;

  if (offset < 0 || buf_len < 0)
    return net::ERR_INVALID_ARGUMENT;

  scoped_refptr<net::DrainableIOBuffer> io_buf(
      new net::DrainableIOBuffer(buf, buf_len));

  // This loop walks through child entries continuously starting from |offset|
  // and writes blocks of data (of maximum size kMaxSparseEntrySize) into each
  // child entry until all |buf_len| bytes are written. The write operation can
  // start in the middle of an entry.
  while (io_buf->BytesRemaining()) {
    MemEntryImpl* child = OpenChild(offset + io_buf->BytesConsumed(), true);
    int child_offset = ToChildOffset(offset + io_buf->BytesConsumed());

    // Find the right amount to write, this evaluates the remaining bytes to
    // write and remaining capacity of this child entry.
    int write_len = std::min(static_cast<int>(io_buf->BytesRemaining()),
                             kMaxSparseEntrySize - child_offset);

    // Keep a record of the last byte position (exclusive) in the child.
    int data_size = child->GetDataSize(kSparseData);

    if (net_log_.IsLogging()) {
      net_log_.BeginEvent(
          net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA,
          CreateNetLogSparseReadWriteCallback(child->net_log().source(),
                                              write_len));
    }

    // Always writes to the child entry. This operation may overwrite data
    // previously written.
    // TODO(hclam): if there is data in the entry and this write is not
    // continuous we may want to discard this write.
    int ret = child->WriteData(kSparseData, child_offset, io_buf.get(),
                               write_len, CompletionCallback(), true);
    if (net_log_.IsLogging()) {
      net_log_.EndEventWithNetErrorCode(
          net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA, ret);
    }
    if (ret < 0)
      return ret;
    else if (ret == 0)
      break;

    // Keep a record of the first byte position in the child if the write was
    // not aligned nor continuous. This is to enable witting to the middle
    // of an entry and still keep track of data off the aligned edge.
    if (data_size != child_offset)
      child->child_first_pos_ = child_offset;

    // Adjust the offset in the IO buffer.
    io_buf->DidConsume(ret);
  }

  UpdateRank(true);

  return io_buf->BytesConsumed();
}

int MemEntryImpl::GetAvailableRange(int64 offset, int len, int64* start) {
  DCHECK(type() == kParentEntry);
  DCHECK(start);

  if (!InitSparseInfo())
    return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;

  if (offset < 0 || len < 0 || !start)
    return net::ERR_INVALID_ARGUMENT;

  MemEntryImpl* current_child = NULL;

  // Find the first child and record the number of empty bytes.
  int empty = FindNextChild(offset, len, &current_child);
  if (current_child) {
    *start = offset + empty;
    len -= empty;

    // Counts the number of continuous bytes.
    int continuous = 0;

    // This loop scan for continuous bytes.
    while (len && current_child) {
      // Number of bytes available in this child.
      int data_size = current_child->GetDataSize(kSparseData) -
                      ToChildOffset(*start + continuous);
      if (data_size > len)
        data_size = len;

      // We have found more continuous bytes so increment the count. Also
      // decrement the length we should scan.
      continuous += data_size;
      len -= data_size;

      // If the next child is discontinuous, break the loop.
      if (FindNextChild(*start + continuous, len, &current_child))
        break;
    }
    return continuous;
  }
  *start = offset;
  return 0;
}

void MemEntryImpl::PrepareTarget(int index, int offset, int buf_len) {
  int entry_size = GetDataSize(index);

  if (entry_size >= offset + buf_len)
    return;  // Not growing the stored data.

  if (static_cast<int>(data_[index].size()) < offset + buf_len)
    data_[index].resize(offset + buf_len);

  if (offset <= entry_size)
    return;  // There is no "hole" on the stored data.

  // Cleanup the hole not written by the user. The point is to avoid returning
  // random stuff later on.
  memset(&(data_[index])[entry_size], 0, offset - entry_size);
}

void MemEntryImpl::UpdateRank(bool modified) {
  Time current = Time::Now();
  last_used_ = current;

  if (modified)
    last_modified_ = current;

  if (!doomed_)
    backend_->UpdateRank(this);
}

bool MemEntryImpl::InitSparseInfo() {
  DCHECK(type() == kParentEntry);

  if (!children_.get()) {
    // If we already have some data in sparse stream but we are being
    // initialized as a sparse entry, we should fail.
    if (GetDataSize(kSparseData))
      return false;
    children_.reset(new EntryMap());

    // The parent entry stores data for the first block, so save this object to
    // index 0.
    (*children_)[0] = this;
  }
  return true;
}

bool MemEntryImpl::InitChildEntry(MemEntryImpl* parent, int child_id,
                                  net::NetLog* net_log) {
  DCHECK(!parent_);
  DCHECK(!child_id_);

  net_log_ = net::BoundNetLog::Make(net_log,
                                    net::NetLog::SOURCE_MEMORY_CACHE_ENTRY);
  net_log_.BeginEvent(
      net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL,
      base::Bind(&NetLogChildEntryCreationCallback, parent, child_id_));

  parent_ = parent;
  child_id_ = child_id;
  Time current = Time::Now();
  last_modified_ = current;
  last_used_ = current;
  // Insert this to the backend's ranking list.
  backend_->InsertIntoRankingList(this);
  return true;
}

MemEntryImpl* MemEntryImpl::OpenChild(int64 offset, bool create) {
  DCHECK(type() == kParentEntry);
  int index = ToChildIndex(offset);
  EntryMap::iterator i = children_->find(index);
  if (i != children_->end()) {
    return i->second;
  } else if (create) {
    MemEntryImpl* child = new MemEntryImpl(backend_);
    child->InitChildEntry(this, index, net_log_.net_log());
    (*children_)[index] = child;
    return child;
  }
  return NULL;
}

int MemEntryImpl::FindNextChild(int64 offset, int len, MemEntryImpl** child) {
  DCHECK(child);
  *child = NULL;
  int scanned_len = 0;

  // This loop tries to find the first existing child.
  while (scanned_len < len) {
    // This points to the current offset in the child.
    int current_child_offset = ToChildOffset(offset + scanned_len);
    MemEntryImpl* current_child = OpenChild(offset + scanned_len, false);
    if (current_child) {
      int child_first_pos = current_child->child_first_pos_;

      // This points to the first byte that we should be reading from, we need
      // to take care of the filled region and the current offset in the child.
      int first_pos =  std::max(current_child_offset, child_first_pos);

      // If the first byte position we should read from doesn't exceed the
      // filled region, we have found the first child.
      if (first_pos < current_child->GetDataSize(kSparseData)) {
         *child = current_child;

         // We need to advance the scanned length.
         scanned_len += first_pos - current_child_offset;
         break;
      }
    }
    scanned_len += kMaxSparseEntrySize - current_child_offset;
  }
  return scanned_len;
}

void MemEntryImpl::DetachChild(int child_id) {
  children_->erase(child_id);
}

}  // namespace disk_cache

/* [<][>][^][v][top][bottom][index][help] */