root/cc/base/math_util.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ProjectHomogeneousPoint
  2. MapHomogeneousPoint
  3. ComputeClippedPointForEdge
  4. ExpandBoundsToIncludePoint
  5. AddVertexToClippedQuad
  6. MapEnclosingClippedRect
  7. MapClippedRect
  8. ProjectEnclosingClippedRect
  9. ProjectClippedRect
  10. MapClippedQuad
  11. ComputeEnclosingRectOfVertices
  12. ComputeEnclosingClippedRect
  13. MapQuad
  14. MapPoint
  15. MapPoint
  16. ProjectQuad
  17. ProjectPoint
  18. ScaleRectProportional
  19. ScaleOnAxis
  20. ComputeTransform2dScaleComponents
  21. SmallestAngleBetweenVectors
  22. ProjectVector
  23. AsValue
  24. AsValue
  25. AsValue
  26. FromValue
  27. AsValue
  28. AsValue
  29. AsValue
  30. AsValue
  31. AsValue
  32. AsValue
  33. AsValueSafely
  34. AsValueSafely

// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/base/math_util.h"

#include <algorithm>
#include <cmath>
#include <limits>

#include "base/values.h"
#include "ui/gfx/quad_f.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/rect_conversions.h"
#include "ui/gfx/rect_f.h"
#include "ui/gfx/transform.h"
#include "ui/gfx/vector2d_f.h"

namespace cc {

const double MathUtil::kPiDouble = 3.14159265358979323846;
const float MathUtil::kPiFloat = 3.14159265358979323846f;

static HomogeneousCoordinate ProjectHomogeneousPoint(
    const gfx::Transform& transform,
    const gfx::PointF& p) {
  // In this case, the layer we are trying to project onto is perpendicular to
  // ray (point p and z-axis direction) that we are trying to project. This
  // happens when the layer is rotated so that it is infinitesimally thin, or
  // when it is co-planar with the camera origin -- i.e. when the layer is
  // invisible anyway.
  if (!transform.matrix().get(2, 2))
    return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);

  SkMScalar z = -(transform.matrix().get(2, 0) * p.x() +
             transform.matrix().get(2, 1) * p.y() +
             transform.matrix().get(2, 3)) /
             transform.matrix().get(2, 2);
  HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
  transform.matrix().mapMScalars(result.vec, result.vec);
  return result;
}

static HomogeneousCoordinate MapHomogeneousPoint(
    const gfx::Transform& transform,
    const gfx::Point3F& p) {
  HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
  transform.matrix().mapMScalars(result.vec, result.vec);
  return result;
}

static HomogeneousCoordinate ComputeClippedPointForEdge(
    const HomogeneousCoordinate& h1,
    const HomogeneousCoordinate& h2) {
  // Points h1 and h2 form a line in 4d, and any point on that line can be
  // represented as an interpolation between h1 and h2:
  //    p = (1-t) h1 + (t) h2
  //
  // We want to compute point p such that p.w == epsilon, where epsilon is a
  // small non-zero number. (but the smaller the number is, the higher the risk
  // of overflow)
  // To do this, we solve for t in the following equation:
  //    p.w = epsilon = (1-t) * h1.w + (t) * h2.w
  //
  // Once paramter t is known, the rest of p can be computed via
  //    p = (1-t) h1 + (t) h2.

  // Technically this is a special case of the following assertion, but its a
  // good idea to keep it an explicit sanity check here.
  DCHECK_NE(h2.w(), h1.w());
  // Exactly one of h1 or h2 (but not both) must be on the negative side of the
  // w plane when this is called.
  DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());

  // ...or any positive non-zero small epsilon
  SkMScalar w = 0.00001f;
  SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());

  SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
  SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
  SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();

  return HomogeneousCoordinate(x, y, z, w);
}

static inline void ExpandBoundsToIncludePoint(float* xmin,
                                              float* xmax,
                                              float* ymin,
                                              float* ymax,
                                              const gfx::PointF& p) {
  *xmin = std::min(p.x(), *xmin);
  *xmax = std::max(p.x(), *xmax);
  *ymin = std::min(p.y(), *ymin);
  *ymax = std::max(p.y(), *ymax);
}

static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex,
                                          gfx::PointF clipped_quad[8],
                                          int* num_vertices_in_clipped_quad) {
  clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
  (*num_vertices_in_clipped_quad)++;
}

gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
                                            const gfx::Rect& src_rect) {
  if (transform.IsIdentityOrIntegerTranslation()) {
    return src_rect +
           gfx::Vector2d(
               static_cast<int>(SkMScalarToFloat(transform.matrix().get(0, 3))),
               static_cast<int>(
                   SkMScalarToFloat(transform.matrix().get(1, 3))));
  }
  return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
}

gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
                                    const gfx::RectF& src_rect) {
  if (transform.IsIdentityOrTranslation()) {
    return src_rect +
           gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
                          SkMScalarToFloat(transform.matrix().get(1, 3)));
  }

  // Apply the transform, but retain the result in homogeneous coordinates.

  SkMScalar quad[4 * 2];  // input: 4 x 2D points
  quad[0] = src_rect.x();
  quad[1] = src_rect.y();
  quad[2] = src_rect.right();
  quad[3] = src_rect.y();
  quad[4] = src_rect.right();
  quad[5] = src_rect.bottom();
  quad[6] = src_rect.x();
  quad[7] = src_rect.bottom();

  SkMScalar result[4 * 4];  // output: 4 x 4D homogeneous points
  transform.matrix().map2(quad, 4, result);

  HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
  HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
  HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
  HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
  return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
}

gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
                                                const gfx::Rect& src_rect) {
  if (transform.IsIdentityOrIntegerTranslation()) {
    return src_rect +
           gfx::Vector2d(
               static_cast<int>(SkMScalarToFloat(transform.matrix().get(0, 3))),
               static_cast<int>(
                   SkMScalarToFloat(transform.matrix().get(1, 3))));
  }
  return gfx::ToEnclosingRect(
      ProjectClippedRect(transform, gfx::RectF(src_rect)));
}

gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
                                        const gfx::RectF& src_rect) {
  if (transform.IsIdentityOrTranslation()) {
    return src_rect +
           gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
                          SkMScalarToFloat(transform.matrix().get(1, 3)));
  }

  // Perform the projection, but retain the result in homogeneous coordinates.
  gfx::QuadF q = gfx::QuadF(src_rect);
  HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
  HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
  HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
  HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());

  return ComputeEnclosingClippedRect(h1, h2, h3, h4);
}

void MathUtil::MapClippedQuad(const gfx::Transform& transform,
                              const gfx::QuadF& src_quad,
                              gfx::PointF clipped_quad[8],
                              int* num_vertices_in_clipped_quad) {
  HomogeneousCoordinate h1 =
      MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
  HomogeneousCoordinate h2 =
      MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
  HomogeneousCoordinate h3 =
      MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
  HomogeneousCoordinate h4 =
      MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));

  // The order of adding the vertices to the array is chosen so that
  // clockwise / counter-clockwise orientation is retained.

  *num_vertices_in_clipped_quad = 0;

  if (!h1.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
  }

  if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
        clipped_quad,
        num_vertices_in_clipped_quad);
  }

  if (!h2.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
  }

  if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
        clipped_quad,
        num_vertices_in_clipped_quad);
  }

  if (!h3.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
  }

  if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
        clipped_quad,
        num_vertices_in_clipped_quad);
  }

  if (!h4.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
  }

  if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
        clipped_quad,
        num_vertices_in_clipped_quad);
  }

  DCHECK_LE(*num_vertices_in_clipped_quad, 8);
}

gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
    const gfx::PointF vertices[],
    int num_vertices) {
  if (num_vertices < 2)
    return gfx::RectF();

  float xmin = std::numeric_limits<float>::max();
  float xmax = -std::numeric_limits<float>::max();
  float ymin = std::numeric_limits<float>::max();
  float ymax = -std::numeric_limits<float>::max();

  for (int i = 0; i < num_vertices; ++i)
    ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);

  return gfx::RectF(gfx::PointF(xmin, ymin),
                    gfx::SizeF(xmax - xmin, ymax - ymin));
}

gfx::RectF MathUtil::ComputeEnclosingClippedRect(
    const HomogeneousCoordinate& h1,
    const HomogeneousCoordinate& h2,
    const HomogeneousCoordinate& h3,
    const HomogeneousCoordinate& h4) {
  // This function performs clipping as necessary and computes the enclosing 2d
  // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
  // to avoid the overhead of storing an unknown number of clipped vertices.

  // If no vertices on the quad are clipped, then we can simply return the
  // enclosing rect directly.
  bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
                           h3.ShouldBeClipped() || h4.ShouldBeClipped();
  if (!something_clipped) {
    gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
                                        h2.CartesianPoint2d(),
                                        h3.CartesianPoint2d(),
                                        h4.CartesianPoint2d());
    return mapped_quad.BoundingBox();
  }

  bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
                            h3.ShouldBeClipped() && h4.ShouldBeClipped();
  if (everything_clipped)
    return gfx::RectF();

  float xmin = std::numeric_limits<float>::max();
  float xmax = -std::numeric_limits<float>::max();
  float ymin = std::numeric_limits<float>::max();
  float ymax = -std::numeric_limits<float>::max();

  if (!h1.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
                               h1.CartesianPoint2d());

  if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin,
                               &xmax,
                               &ymin,
                               &ymax,
                               ComputeClippedPointForEdge(h1, h2)
                                   .CartesianPoint2d());

  if (!h2.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
                               h2.CartesianPoint2d());

  if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin,
                               &xmax,
                               &ymin,
                               &ymax,
                               ComputeClippedPointForEdge(h2, h3)
                                   .CartesianPoint2d());

  if (!h3.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
                               h3.CartesianPoint2d());

  if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin,
                               &xmax,
                               &ymin,
                               &ymax,
                               ComputeClippedPointForEdge(h3, h4)
                                   .CartesianPoint2d());

  if (!h4.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
                               h4.CartesianPoint2d());

  if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin,
                               &xmax,
                               &ymin,
                               &ymax,
                               ComputeClippedPointForEdge(h4, h1)
                                   .CartesianPoint2d());

  return gfx::RectF(gfx::PointF(xmin, ymin),
                    gfx::SizeF(xmax - xmin, ymax - ymin));
}

gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
                             const gfx::QuadF& q,
                             bool* clipped) {
  if (transform.IsIdentityOrTranslation()) {
    gfx::QuadF mapped_quad(q);
    mapped_quad +=
        gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
                       SkMScalarToFloat(transform.matrix().get(1, 3)));
    *clipped = false;
    return mapped_quad;
  }

  HomogeneousCoordinate h1 =
      MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
  HomogeneousCoordinate h2 =
      MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
  HomogeneousCoordinate h3 =
      MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
  HomogeneousCoordinate h4 =
      MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));

  *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
            h3.ShouldBeClipped() || h4.ShouldBeClipped();

  // Result will be invalid if clipped == true. But, compute it anyway just in
  // case, to emulate existing behavior.
  return gfx::QuadF(h1.CartesianPoint2d(),
                    h2.CartesianPoint2d(),
                    h3.CartesianPoint2d(),
                    h4.CartesianPoint2d());
}

gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
                               const gfx::PointF& p,
                               bool* clipped) {
  HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));

  if (h.w() > 0) {
    *clipped = false;
    return h.CartesianPoint2d();
  }

  // The cartesian coordinates will be invalid after dividing by w.
  *clipped = true;

  // Avoid dividing by w if w == 0.
  if (!h.w())
    return gfx::PointF();

  // This return value will be invalid because clipped == true, but (1) users of
  // this code should be ignoring the return value when clipped == true anyway,
  // and (2) this behavior is more consistent with existing behavior of WebKit
  // transforms if the user really does not ignore the return value.
  return h.CartesianPoint2d();
}

gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
                                const gfx::Point3F& p,
                                bool* clipped) {
  HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);

  if (h.w() > 0) {
    *clipped = false;
    return h.CartesianPoint3d();
  }

  // The cartesian coordinates will be invalid after dividing by w.
  *clipped = true;

  // Avoid dividing by w if w == 0.
  if (!h.w())
    return gfx::Point3F();

  // This return value will be invalid because clipped == true, but (1) users of
  // this code should be ignoring the return value when clipped == true anyway,
  // and (2) this behavior is more consistent with existing behavior of WebKit
  // transforms if the user really does not ignore the return value.
  return h.CartesianPoint3d();
}

gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
                                 const gfx::QuadF& q,
                                 bool* clipped) {
  gfx::QuadF projected_quad;
  bool clipped_point;
  projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
  *clipped = clipped_point;
  projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
  *clipped |= clipped_point;
  projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
  *clipped |= clipped_point;
  projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
  *clipped |= clipped_point;

  return projected_quad;
}

gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
                                   const gfx::PointF& p,
                                   bool* clipped) {
  HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);

  if (h.w() > 0) {
    // The cartesian coordinates will be valid in this case.
    *clipped = false;
    return h.CartesianPoint2d();
  }

  // The cartesian coordinates will be invalid after dividing by w.
  *clipped = true;

  // Avoid dividing by w if w == 0.
  if (!h.w())
    return gfx::PointF();

  // This return value will be invalid because clipped == true, but (1) users of
  // this code should be ignoring the return value when clipped == true anyway,
  // and (2) this behavior is more consistent with existing behavior of WebKit
  // transforms if the user really does not ignore the return value.
  return h.CartesianPoint2d();
}

gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
                                           const gfx::RectF& scale_outer_rect,
                                           const gfx::RectF& scale_inner_rect) {
  gfx::RectF output_inner_rect = input_outer_rect;
  float scale_rect_to_input_scale_x =
      scale_outer_rect.width() / input_outer_rect.width();
  float scale_rect_to_input_scale_y =
      scale_outer_rect.height() / input_outer_rect.height();

  gfx::Vector2dF top_left_diff =
      scale_inner_rect.origin() - scale_outer_rect.origin();
  gfx::Vector2dF bottom_right_diff =
      scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
  output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
                          top_left_diff.y() / scale_rect_to_input_scale_y,
                          -bottom_right_diff.x() / scale_rect_to_input_scale_x,
                          -bottom_right_diff.y() / scale_rect_to_input_scale_y);
  return output_inner_rect;
}

static inline float ScaleOnAxis(double a, double b, double c) {
  if (!b && !c)
    return a;
  if (!a && !c)
    return b;
  if (!a && !b)
    return c;

  // Do the sqrt as a double to not lose precision.
  return static_cast<float>(std::sqrt(a * a + b * b + c * c));
}

gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
    const gfx::Transform& transform,
    float fallback_value) {
  if (transform.HasPerspective())
    return gfx::Vector2dF(fallback_value, fallback_value);
  float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
                              transform.matrix().getDouble(1, 0),
                              transform.matrix().getDouble(2, 0));
  float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
                              transform.matrix().getDouble(1, 1),
                              transform.matrix().getDouble(2, 1));
  return gfx::Vector2dF(x_scale, y_scale);
}

float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
                                            const gfx::Vector2dF& v2) {
  double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
  // Clamp to compensate for rounding errors.
  dot_product = std::max(-1.0, std::min(1.0, dot_product));
  return static_cast<float>(Rad2Deg(std::acos(dot_product)));
}

gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
                                       const gfx::Vector2dF& destination) {
  float projected_length =
      gfx::DotProduct(source, destination) / destination.LengthSquared();
  return gfx::Vector2dF(projected_length * destination.x(),
                        projected_length * destination.y());
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) {
  scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
  res->SetDouble("width", s.width());
  res->SetDouble("height", s.height());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::SizeF& s) {
  scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
  res->SetDouble("width", s.width());
  res->SetDouble("height", s.height());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  res->AppendInteger(r.x());
  res->AppendInteger(r.y());
  res->AppendInteger(r.width());
  res->AppendInteger(r.height());
  return res.PassAs<base::Value>();
}

bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
  const base::ListValue* value = NULL;
  if (!raw_value->GetAsList(&value))
    return false;

  if (value->GetSize() != 4)
    return false;

  int x, y, w, h;
  bool ok = true;
  ok &= value->GetInteger(0, &x);
  ok &= value->GetInteger(1, &y);
  ok &= value->GetInteger(2, &w);
  ok &= value->GetInteger(3, &h);
  if (!ok)
    return false;

  *out_rect = gfx::Rect(x, y, w, h);
  return true;
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  res->AppendDouble(pt.x());
  res->AppendDouble(pt.y());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Vector2d& v) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  res->AppendInteger(v.x());
  res->AppendInteger(v.y());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::QuadF& q) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  res->AppendDouble(q.p1().x());
  res->AppendDouble(q.p1().y());
  res->AppendDouble(q.p2().x());
  res->AppendDouble(q.p2().y());
  res->AppendDouble(q.p3().x());
  res->AppendDouble(q.p3().y());
  res->AppendDouble(q.p4().x());
  res->AppendDouble(q.p4().y());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::RectF& rect) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  res->AppendDouble(rect.x());
  res->AppendDouble(rect.y());
  res->AppendDouble(rect.width());
  res->AppendDouble(rect.height());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Transform& transform) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  const SkMatrix44& m = transform.matrix();
  for (int row = 0; row < 4; ++row) {
    for (int col = 0; col < 4; ++col)
      res->AppendDouble(m.getDouble(row, col));
  }
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::BoxF& box) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  res->AppendInteger(box.x());
  res->AppendInteger(box.y());
  res->AppendInteger(box.z());
  res->AppendInteger(box.width());
  res->AppendInteger(box.height());
  res->AppendInteger(box.depth());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValueSafely(double value) {
  return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
      std::min(value, std::numeric_limits<double>::max())));
}

scoped_ptr<base::Value> MathUtil::AsValueSafely(float value) {
  return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
      std::min(value, std::numeric_limits<float>::max())));
}

}  // namespace cc

/* [<][>][^][v][top][bottom][index][help] */