root/chrome/browser/extensions/api/cast_streaming/performance_test.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. AsString
  2. Print
  3. AnalyzeJitter
  4. MapFrameTimes
  5. Analyze
  6. OnAudioFrame
  7. OnVideoFrame
  8. HasFlag
  9. IsGpuAvailable
  10. GetSuffixForTestFlags
  11. getfps
  12. GetFreeLocalPort
  13. SetUp
  14. SetUpCommandLine
  15. GetTraceEvents
  16. IndexEvents
  17. FindNextEvent
  18. OutputMeasurement
  19. AnalyzeLatency
  20. AnalyzeTraceDistance
  21. RunTest
  22. IN_PROC_BROWSER_TEST_P

// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <map>
#include <vector>

#include "base/basictypes.h"
#include "base/command_line.h"
#if defined(OS_MACOSX)
#include "base/mac/mac_util.h"
#endif
#include "base/strings/stringprintf.h"
#include "base/test/trace_event_analyzer.h"
#include "base/win/windows_version.h"
#include "chrome/browser/extensions/extension_apitest.h"
#include "chrome/browser/extensions/extension_service.h"
#include "chrome/browser/extensions/extension_test_message_listener.h"
#include "chrome/browser/extensions/tab_helper.h"
#include "chrome/browser/profiles/profile.h"
#include "chrome/browser/ui/fullscreen/fullscreen_controller.h"
#include "chrome/common/chrome_switches.h"
#include "chrome/common/chrome_version_info.h"
#include "chrome/test/base/test_launcher_utils.h"
#include "chrome/test/base/test_switches.h"
#include "chrome/test/base/tracing.h"
#include "content/public/browser/render_process_host.h"
#include "content/public/browser/render_view_host.h"
#include "content/public/common/content_switches.h"
#include "extensions/common/feature_switch.h"
#include "extensions/common/features/base_feature_provider.h"
#include "extensions/common/features/complex_feature.h"
#include "extensions/common/features/feature.h"
#include "extensions/common/features/simple_feature.h"
#include "extensions/common/switches.h"
#include "media/base/video_frame.h"
#include "media/cast/cast_config.h"
#include "media/cast/cast_environment.h"
#include "media/cast/test/utility/audio_utility.h"
#include "media/cast/test/utility/barcode.h"
#include "media/cast/test/utility/default_config.h"
#include "media/cast/test/utility/in_process_receiver.h"
#include "media/cast/test/utility/standalone_cast_environment.h"
#include "media/cast/test/utility/udp_proxy.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"
#include "net/base/net_util.h"
#include "net/base/rand_callback.h"
#include "net/udp/udp_socket.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_test.h"
#include "ui/compositor/compositor_switches.h"
#include "ui/gl/gl_switches.h"

namespace {

const char kExtensionId[] = "ddchlicdkolnonkihahngkmmmjnjlkkf";

// Skip a few events from the beginning.
static const size_t kSkipEvents = 3;

enum TestFlags {
  kUseGpu              = 1 << 0, // Only execute test if --enable-gpu was given
                                 // on the command line.  This is required for
                                 // tests that run on GPU.
  kDisableVsync        = 1 << 1, // Do not limit framerate to vertical refresh.
                                 // when on GPU, nor to 60hz when not on GPU.
  kSmallWindow         = 1 << 2, // 1 = 800x600, 0 = 2000x1000
  k24fps               = 1 << 3, // use 24 fps video
  k30fps               = 1 << 4, // use 30 fps video
  k60fps               = 1 << 5, // use 60 fps video
  kProxyWifi           = 1 << 6, // Run UDP through UDPProxy wifi profile
  kProxyEvil           = 1 << 7, // Run UDP through UDPProxy evil profile
};

// We log one of these for each call to OnAudioFrame/OnVideoFrame.
struct TimeData {
  TimeData(uint16 frame_no_, base::TimeTicks render_time_) :
      frame_no(frame_no_),
      render_time(render_time_) {
  }
  // The unit here is video frames, for audio data there can be duplicates.
  // This was decoded from the actual audio/video data.
  uint16 frame_no;
  // This is when we should play this data, according to the sender.
  base::TimeTicks render_time;
};

// TODO(hubbe): Move to media/cast to use for offline log analysis.
class MeanAndError {
 public:
  MeanAndError() {}
  explicit MeanAndError(const std::vector<double>& values) {
    double sum = 0.0;
    double sqr_sum = 0.0;
    num_values = values.size();
    if (num_values) {
      for (size_t i = 0; i < num_values; i++) {
        sum += values[i];
        sqr_sum += values[i] * values[i];
      }
      mean = sum / num_values;
      std_dev = sqrt(std::max(0.0, num_values * sqr_sum - sum * sum)) /
          num_values;
    }
  }
  std::string AsString() const {
    return base::StringPrintf("%f,%f", mean, std_dev);
  }

  void Print(const std::string& measurement,
             const std::string& modifier,
             const std::string& trace,
             const std::string& unit) {
    if (num_values >= 20) {
      perf_test::PrintResultMeanAndError(measurement,
                                         modifier,
                                         trace,
                                         AsString(),
                                         unit,
                                         true);
    } else {
      LOG(ERROR) << "Not enough events for "
                 << measurement << " " << modifier << " " << trace;
    }
  }

  size_t num_values;
  double mean;
  double std_dev;
};

// This function checks how smooth the data in |data| is.
// It computes the average error of deltas and the average delta.
// If data[x] == x * A + B, then this function returns zero.
// The unit is milliseconds.
static MeanAndError AnalyzeJitter(const std::vector<TimeData>& data) {
  CHECK_GT(data.size(), 1UL);
  VLOG(0) << "Jitter analyzis on " << data.size() << " values.";
  std::vector<double> deltas;
  double sum = 0.0;
  for (size_t i = 1; i < data.size(); i++) {
    double delta = (data[i].render_time -
                    data[i - 1].render_time).InMillisecondsF();
    deltas.push_back(delta);
    sum += delta;
  }
  double mean = sum / deltas.size();
  for (size_t i = 0; i < deltas.size(); i++) {
    deltas[i] = fabs(mean - deltas[i]);
  }

  return MeanAndError(deltas);
}

// An in-process Cast receiver that examines the audio/video frames being
// received and logs some data about each received audio/video frame.
class TestPatternReceiver : public media::cast::InProcessReceiver {
 public:
  explicit TestPatternReceiver(
      const scoped_refptr<media::cast::CastEnvironment>& cast_environment,
      const net::IPEndPoint& local_end_point)
      : InProcessReceiver(cast_environment,
                          local_end_point,
                          net::IPEndPoint(),
                          media::cast::GetDefaultAudioReceiverConfig(),
                          media::cast::GetDefaultVideoReceiverConfig()) {
  }

  typedef std::map<uint16, base::TimeTicks> TimeMap;

  // Build a map from frame ID (as encoded in the audio and video data)
  // to the rtp timestamp for that frame. Note that there will be multiple
  // audio frames which all have the same frame ID. When that happens we
  // want the minimum rtp timestamp, because that audio frame is supposed
  // to play at the same time that the corresponding image is presented.
  void MapFrameTimes(const std::vector<TimeData>& events, TimeMap* map) {
    for (size_t i = kSkipEvents; i < events.size(); i++) {
      base::TimeTicks& frame_tick = (*map)[events[i].frame_no];
      if (frame_tick.is_null()) {
        frame_tick = events[i].render_time;
      } else {
        frame_tick = std::min(events[i].render_time, frame_tick);
      }
    }
  }

  void Analyze(const std::string& name, const std::string& modifier) {
    // First, find the minimum rtp timestamp for each audio and video frame.
    // Note that the data encoded in the audio stream contains video frame
    // numbers. So in a 30-fps video stream, there will be 1/30s of "1", then
    // 1/30s of "2", etc.
    TimeMap audio_frame_times, video_frame_times;
    MapFrameTimes(audio_events_, &audio_frame_times);
    MapFrameTimes(video_events_, &video_frame_times);
    std::vector<double> deltas;
    for (TimeMap::const_iterator i = audio_frame_times.begin();
         i != audio_frame_times.end();
         ++i) {
      TimeMap::const_iterator j = video_frame_times.find(i->first);
      if (j != video_frame_times.end()) {
        deltas.push_back((i->second - j->second).InMillisecondsF());
      }
    }

    // Close to zero is better. (can be negative)
    MeanAndError(deltas).Print(name, modifier, "av_sync", "ms");
    // lower is better.
    AnalyzeJitter(audio_events_).Print(name, modifier, "audio_jitter", "ms");
    // lower is better.
    AnalyzeJitter(video_events_).Print(name, modifier, "video_jitter", "ms");
  }

 private:
  // Invoked by InProcessReceiver for each received audio frame.
  virtual void OnAudioFrame(scoped_ptr<media::cast::PcmAudioFrame> audio_frame,
                            const base::TimeTicks& playout_time) OVERRIDE {
    CHECK(cast_env()->CurrentlyOn(media::cast::CastEnvironment::MAIN));

    if (audio_frame->samples.empty()) {
      NOTREACHED() << "OnAudioFrame called with no samples?!?";
      return;
    }

    std::vector<int16> samples;
    for (size_t i = 0;
         i < audio_frame->samples.size();
         i += audio_frame->channels) {
      samples.push_back(audio_frame->samples[i]);
    }
    // Note: This is the number of the video frame that this audio belongs to.
    uint16 frame_no;
    if (media::cast::DecodeTimestamp(samples, &frame_no)) {
      audio_events_.push_back(TimeData(frame_no, playout_time));
    } else {
      VLOG(0) << "Failed to decode audio timestamp!";
    }
  }

  virtual void OnVideoFrame(const scoped_refptr<media::VideoFrame>& video_frame,
                            const base::TimeTicks& render_time) OVERRIDE {
    CHECK(cast_env()->CurrentlyOn(media::cast::CastEnvironment::MAIN));

    TRACE_EVENT_INSTANT1(
        "mirroring", "TestPatternReceiver::OnVideoFrame",
        TRACE_EVENT_SCOPE_THREAD,
        "render_time", render_time.ToInternalValue());

    uint16 frame_no;
    if (media::cast::test::DecodeBarcode(video_frame, &frame_no)) {
      video_events_.push_back(TimeData(frame_no, render_time));
    } else {
      VLOG(0) << "Failed to decode barcode!";
    }
  }

  std::vector<TimeData> audio_events_;
  std::vector<TimeData> video_events_;

  DISALLOW_COPY_AND_ASSIGN(TestPatternReceiver);
};

class CastV2PerformanceTest
    : public ExtensionApiTest,
      public testing::WithParamInterface<int> {
 public:
  CastV2PerformanceTest() {}

  bool HasFlag(TestFlags flag) const {
    return (GetParam() & flag) == flag;
  }

  bool IsGpuAvailable() const {
    return CommandLine::ForCurrentProcess()->HasSwitch("enable-gpu");
  }

  std::string GetSuffixForTestFlags() {
    std::string suffix;
    if (HasFlag(kUseGpu))
      suffix += "_gpu";
    if (HasFlag(kDisableVsync))
      suffix += "_novsync";
    if (HasFlag(kSmallWindow))
      suffix += "_small";
    if (HasFlag(k24fps))
      suffix += "_24fps";
    if (HasFlag(k30fps))
      suffix += "_30fps";
    if (HasFlag(k60fps))
      suffix += "_60fps";
    if (HasFlag(kProxyWifi))
      suffix += "_wifi";
    if (HasFlag(kProxyEvil))
      suffix += "_evil";
    return suffix;
  }

  int getfps() {
    if (HasFlag(k24fps))
      return 24;
    if (HasFlag(k30fps))
      return 30;
    if (HasFlag(k60fps))
      return 60;
    NOTREACHED();
    return 0;
  }

  net::IPEndPoint GetFreeLocalPort() {
    // Determine a unused UDP port for the in-process receiver to listen on.
    // Method: Bind a UDP socket on port 0, and then check which port the
    // operating system assigned to it.
    net::IPAddressNumber localhost;
    localhost.push_back(127);
    localhost.push_back(0);
    localhost.push_back(0);
    localhost.push_back(1);
    scoped_ptr<net::UDPSocket> receive_socket(
        new net::UDPSocket(net::DatagramSocket::DEFAULT_BIND,
                           net::RandIntCallback(),
                           NULL,
                           net::NetLog::Source()));
    receive_socket->AllowAddressReuse();
    CHECK_EQ(net::OK, receive_socket->Bind(net::IPEndPoint(localhost, 0)));
    net::IPEndPoint endpoint;
    CHECK_EQ(net::OK, receive_socket->GetLocalAddress(&endpoint));
    return endpoint;
  }

  virtual void SetUp() OVERRIDE {
    EnablePixelOutput();
    ExtensionApiTest::SetUp();
  }

  virtual void SetUpCommandLine(CommandLine* command_line) OVERRIDE {
    // Some of the tests may launch http requests through JSON or AJAX
    // which causes a security error (cross domain request) when the page
    // is loaded from the local file system ( file:// ). The following switch
    // fixes that error.
    command_line->AppendSwitch(switches::kAllowFileAccessFromFiles);

    if (HasFlag(kSmallWindow)) {
      command_line->AppendSwitchASCII(switches::kWindowSize, "800,600");
    } else {
      command_line->AppendSwitchASCII(switches::kWindowSize, "2000,1500");
    }

    if (!HasFlag(kUseGpu)) {
      command_line->AppendSwitch(switches::kDisableGpu);
    } else {
      command_line->AppendSwitch(switches::kForceCompositingMode);
    }

    if (HasFlag(kDisableVsync))
      command_line->AppendSwitch(switches::kDisableGpuVsync);

    command_line->AppendSwitchASCII(
        extensions::switches::kWhitelistedExtensionID,
        kExtensionId);
    ExtensionApiTest::SetUpCommandLine(command_line);
  }

  void GetTraceEvents(trace_analyzer::TraceAnalyzer* analyzer,
                      const std::string& event_name,
                      trace_analyzer::TraceEventVector* events) {
    trace_analyzer::Query query =
        trace_analyzer::Query::EventNameIs(event_name) &&
        (trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_BEGIN) ||
         trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_ASYNC_BEGIN) ||
         trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_FLOW_BEGIN) ||
         trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_INSTANT));
    analyzer->FindEvents(query, events);
  }

  // The key contains the name of the argument and the argument.
  typedef std::pair<std::string, double> EventMapKey;
  typedef std::map<EventMapKey, const trace_analyzer::TraceEvent*> EventMap;

  // Make events findable by their arguments, for instance, if an
  // event has a "timestamp": 238724 argument, the map will contain
  // pair<"timestamp", 238724> -> &event.  All arguments are indexed.
  void IndexEvents(trace_analyzer::TraceAnalyzer* analyzer,
                   const std::string& event_name,
                   EventMap* event_map) {
    trace_analyzer::TraceEventVector events;
    GetTraceEvents(analyzer, event_name, &events);
    for (size_t i = 0; i < events.size(); i++) {
      std::map<std::string, double>::const_iterator j;
      for (j = events[i]->arg_numbers.begin();
           j != events[i]->arg_numbers.end();
           ++j) {
        (*event_map)[*j] = events[i];
      }
    }
  }

  // Look up an event in |event_map|. The return event will have the same
  // value for the argument |key_name| as |prev_event|. Note that if
  // the |key_name| is "time_delta", then we allow some fuzzy logic since
  // the time deltas are truncated to milliseconds in the code.
  const trace_analyzer::TraceEvent* FindNextEvent(
      const EventMap& event_map,
      std::vector<const trace_analyzer::TraceEvent*> prev_events,
      std::string key_name) {
    EventMapKey key;
    for (size_t i = prev_events.size(); i;) {
      --i;
      std::map<std::string, double>::const_iterator j =
          prev_events[i]->arg_numbers.find(key_name);
      if (j != prev_events[i]->arg_numbers.end()) {
        key = *j;
        break;
      }
    }
    EventMap::const_iterator i = event_map.lower_bound(key);
    if (i == event_map.end())
      return NULL;
    if (i->first.second == key.second)
      return i->second;
    if (key_name != "time_delta")
      return NULL;
    if (fabs(i->first.second - key.second) < 1000)
      return i->second;
    if (i == event_map.begin())
      return NULL;
    i--;
    if (fabs(i->first.second - key.second) < 1000)
      return i->second;
    return NULL;
  }

  // Given a vector of vector of data, extract the difference between
  // two columns (|col_a| and |col_b|) and output the result as a
  // performance metric.
  void OutputMeasurement(const std::string& test_name,
                         const std::vector<std::vector<double> > data,
                         const std::string& measurement_name,
                         int col_a,
                         int col_b) {
    std::vector<double> tmp;
    for (size_t i = 0; i < data.size(); i++) {
      tmp.push_back((data[i][col_b] - data[i][col_a]) / 1000.0);
    }
    return MeanAndError(tmp).Print(test_name,
                                   GetSuffixForTestFlags(),
                                   measurement_name,
                                   "ms");
  }

  // Analyzing latency is hard, because there is no unifying identifier for
  // frames throughout the code. At first, we have a capture timestamp, which
  // gets converted to a time delta, then back to a timestamp. Once it enters
  // the cast library it gets converted to an rtp_timestamp, and when it leaves
  // the cast library, all we have is the render_time.
  //
  // To be able to follow the frame throughout all this, we insert TRACE
  // calls that tracks each conversion as it happens. Then we extract all
  // these events and link them together.
  void AnalyzeLatency(const std::string& test_name,
                      trace_analyzer::TraceAnalyzer* analyzer) {
    EventMap onbuffer, sink, inserted, encoded, transmitted, decoded, done;
    IndexEvents(analyzer, "OnBufferReceived", &onbuffer);
    IndexEvents(analyzer, "MediaStreamVideoSink::OnVideoFrame", &sink);
    IndexEvents(analyzer, "InsertRawVideoFrame", &inserted);
    IndexEvents(analyzer, "VideoFrameEncoded", &encoded);
    IndexEvents(analyzer, "PullEncodedVideoFrame", &transmitted);
    IndexEvents(analyzer, "FrameDecoded", &decoded);
    IndexEvents(analyzer, "TestPatternReceiver::OnVideoFrame", &done);
    std::vector<std::pair<EventMap*, std::string> > event_maps;
    event_maps.push_back(std::make_pair(&onbuffer, "timestamp"));
    event_maps.push_back(std::make_pair(&sink, "time_delta"));
    event_maps.push_back(std::make_pair(&inserted, "timestamp"));
    event_maps.push_back(std::make_pair(&encoded, "rtp_timestamp"));
    event_maps.push_back(std::make_pair(&transmitted, "rtp_timestamp"));
    event_maps.push_back(std::make_pair(&decoded, "rtp_timestamp"));
    event_maps.push_back(std::make_pair(&done, "render_time"));

    trace_analyzer::TraceEventVector capture_events;
    GetTraceEvents(analyzer, "Capture" , &capture_events);
    std::vector<std::vector<double> > traced_frames;
    for (size_t i = kSkipEvents; i < capture_events.size(); i++) {
      std::vector<double> times;
      const trace_analyzer::TraceEvent *event = capture_events[i];
      times.push_back(event->timestamp);  // begin capture
      event = event->other_event;
      if (!event) {
        continue;
      }
      times.push_back(event->timestamp);  // end capture (with timestamp)
      std::vector<const trace_analyzer::TraceEvent*> prev_events;
      prev_events.push_back(event);
      for (size_t j = 0; j < event_maps.size(); j++) {
        event = FindNextEvent(*event_maps[j].first,
                              prev_events,
                              event_maps[j].second);
        if (!event) {
          break;
        }
        prev_events.push_back(event);
        times.push_back(event->timestamp);
      }
      if (event) {
        // Successfully traced frame from beginning to end
        traced_frames.push_back(times);
      }
    }

    // 0 = capture begin
    // 1 = capture end
    // 2 = onbuffer
    // 3 = sink
    // 4 = inserted
    // 5 = encoded
    // 6 = transmitted
    // 7 = decoded
    // 8 = done

    // Lower is better for all of these.
    OutputMeasurement(test_name, traced_frames, "total_latency", 0, 8);
    OutputMeasurement(test_name, traced_frames, "capture_duration", 0, 1);
    OutputMeasurement(test_name, traced_frames, "send_to_renderer", 1, 3);
    OutputMeasurement(test_name, traced_frames, "encode", 3, 5);
    OutputMeasurement(test_name, traced_frames, "transmit", 5, 6);
    OutputMeasurement(test_name, traced_frames, "decode", 6, 7);
    OutputMeasurement(test_name, traced_frames, "cast_latency", 3, 8);
  }

  MeanAndError AnalyzeTraceDistance(trace_analyzer::TraceAnalyzer* analyzer,
                                    const std::string& event_name) {
    trace_analyzer::TraceEventVector events;
    GetTraceEvents(analyzer, event_name, &events);

    std::vector<double> deltas;
    for (size_t i = kSkipEvents + 1; i < events.size(); ++i) {
      double delta_micros = events[i]->timestamp - events[i - 1]->timestamp;
      deltas.push_back(delta_micros / 1000.0);
    }
    return MeanAndError(deltas);
  }

  void RunTest(const std::string& test_name) {
    if (HasFlag(kUseGpu) && !IsGpuAvailable()) {
      LOG(WARNING) <<
          "Test skipped: requires gpu. Pass --enable-gpu on the command "
          "line if use of GPU is desired.";
      return;
    }

    ASSERT_EQ(1,
              (HasFlag(k24fps) ? 1 : 0) +
              (HasFlag(k30fps) ? 1 : 0) +
              (HasFlag(k60fps) ? 1 : 0));

    net::IPEndPoint receiver_end_point = GetFreeLocalPort();

    // Start the in-process receiver that examines audio/video for the expected
    // test patterns.
    scoped_refptr<media::cast::StandaloneCastEnvironment> cast_environment(
        new media::cast::StandaloneCastEnvironment);
    TestPatternReceiver* const receiver =
        new TestPatternReceiver(cast_environment, receiver_end_point);
    receiver->Start();

    scoped_ptr<media::cast::test::UDPProxy> udp_proxy;
    if (HasFlag(kProxyWifi) || HasFlag(kProxyEvil)) {
      net::IPEndPoint proxy_end_point = GetFreeLocalPort();
      if (HasFlag(kProxyWifi)) {
        udp_proxy = media::cast::test::UDPProxy::Create(
            proxy_end_point,
            receiver_end_point,
            media::cast::test::WifiNetwork().Pass(),
            media::cast::test::WifiNetwork().Pass(),
            NULL);
      } else if (HasFlag(kProxyEvil)) {
        udp_proxy = media::cast::test::UDPProxy::Create(
            proxy_end_point,
            receiver_end_point,
            media::cast::test::EvilNetwork().Pass(),
            media::cast::test::EvilNetwork().Pass(),
            NULL);
      }
      receiver_end_point = proxy_end_point;
    }

    std::string json_events;
    ASSERT_TRUE(tracing::BeginTracing("test_fps,mirroring,cast_perf_test"));
    const std::string page_url = base::StringPrintf(
        "performance%d.html?port=%d",
        getfps(),
        receiver_end_point.port());
    ASSERT_TRUE(RunExtensionSubtest("cast_streaming", page_url)) << message_;
    ASSERT_TRUE(tracing::EndTracing(&json_events));
    receiver->Stop();

    // Stop all threads, removes the need for synchronization when analyzing
    // the data.
    cast_environment->Shutdown();
    scoped_ptr<trace_analyzer::TraceAnalyzer> analyzer;
    analyzer.reset(trace_analyzer::TraceAnalyzer::Create(json_events));
    analyzer->AssociateAsyncBeginEndEvents();

    // Only one of these PrintResults should actually print something.
    // The printed result will be the average time between frames in the
    // browser window.
    MeanAndError sw_frame_data = AnalyzeTraceDistance(analyzer.get(),
                                                      "TestFrameTickSW");
    MeanAndError frame_data = AnalyzeTraceDistance(analyzer.get(),
                                                   "TestFrameTickGPU");
    if (frame_data.num_values == 0) {
      frame_data = sw_frame_data;
    }
    EXPECT_GT(frame_data.num_values, 0UL);
    // Lower is better.
    frame_data.Print(test_name,
                     GetSuffixForTestFlags(),
                     "time_between_frames",
                     "ms");

    // This prints out the average time between capture events.
    // As the capture frame rate is capped at 30fps, this score
    // cannot get any better than (lower) 33.33 ms.
    MeanAndError capture_data = AnalyzeTraceDistance(analyzer.get(), "Capture");
    // Lower is better.
    capture_data.Print(test_name,
                       GetSuffixForTestFlags(),
                       "time_between_captures",
                       "ms");

    receiver->Analyze(test_name, GetSuffixForTestFlags());

    AnalyzeLatency(test_name, analyzer.get());
  }
};

}  // namespace

IN_PROC_BROWSER_TEST_P(CastV2PerformanceTest, Performance) {
  RunTest("CastV2Performance");
}

// Note: First argument is optional and intentionally left blank.
// (it's a prefix for the generated test cases)
INSTANTIATE_TEST_CASE_P(
    ,
    CastV2PerformanceTest,
    testing::Values(
        kUseGpu | k24fps,
        kUseGpu | k30fps,
        kUseGpu | k60fps,
        kUseGpu | k24fps | kDisableVsync,
        kUseGpu | k30fps | kProxyWifi,
        kUseGpu | k30fps | kProxyEvil));

/* [<][>][^][v][top][bottom][index][help] */