root/modules/imgcodecs/src/grfmt_exr.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. close
  2. type
  3. readHeader
  4. readData
  5. UpSample
  6. UpSampleX
  7. UpSampleY
  8. ChromaToBGR
  9. RGBToGray
  10. newDecoder
  11. isFormatSupported
  12. write
  13. newEncoder

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

#ifdef HAVE_OPENEXR

#if defined _MSC_VER && _MSC_VER >= 1200
#  pragma warning( disable: 4100 4244 4267 )
#endif

#if defined __GNUC__ && defined __APPLE__
#  pragma GCC diagnostic ignored "-Wshadow"
#endif

#include <ImfHeader.h>
#include <ImfInputFile.h>
#include <ImfOutputFile.h>
#include <ImfChannelList.h>
#include <ImfStandardAttributes.h>
#include <half.h>
#include "grfmt_exr.hpp"

#if defined _WIN32

#undef UINT
#define UINT ((Imf::PixelType)0)
#undef HALF
#define HALF ((Imf::PixelType)1)
#undef FLOAT
#define FLOAT ((Imf::PixelType)2)

#endif

namespace cv
{

/////////////////////// ExrDecoder ///////////////////

ExrDecoder::ExrDecoder()
{
    m_signature = "\x76\x2f\x31\x01";
    m_file = 0;
    m_red = m_green = m_blue = 0;
}


ExrDecoder::~ExrDecoder()
{
    close();
}


void  ExrDecoder::close()
{
    if( m_file )
    {
        delete m_file;
        m_file = 0;
    }
}


int  ExrDecoder::type() const
{
    return CV_MAKETYPE((m_isfloat ? CV_32F : CV_32S), m_iscolor ? 3 : 1);
}


bool  ExrDecoder::readHeader()
{
    bool result = false;

    m_file = new InputFile( m_filename.c_str() );

    if( !m_file ) // probably paranoid
        return false;

    m_datawindow = m_file->header().dataWindow();
    m_width = m_datawindow.max.x - m_datawindow.min.x + 1;
    m_height = m_datawindow.max.y - m_datawindow.min.y + 1;

    // the type HALF is converted to 32 bit float
    // and the other types supported by OpenEXR are 32 bit anyway
    m_bit_depth = 32;

    if( hasChromaticities( m_file->header() ))
        m_chroma = chromaticities( m_file->header() );

    const ChannelList &channels = m_file->header().channels();
    m_red = channels.findChannel( "R" );
    m_green = channels.findChannel( "G" );
    m_blue = channels.findChannel( "B" );
    if( m_red || m_green || m_blue )
    {
        m_iscolor = true;
        m_ischroma = false;
        result = true;
    }
    else
    {
        m_green = channels.findChannel( "Y" );
        if( m_green )
        {
            m_ischroma = true;
            m_red = channels.findChannel( "RY" );
            m_blue = channels.findChannel( "BY" );
            m_iscolor = (m_blue || m_red);
            result = true;
        }
        else
            result = false;
    }

    if( result )
    {
        int uintcnt = 0;
        int chcnt = 0;
        if( m_red )
        {
            chcnt++;
            uintcnt += ( m_red->type == UINT );
        }
        if( m_green )
        {
            chcnt++;
            uintcnt += ( m_green->type == UINT );
        }
        if( m_blue )
        {
            chcnt++;
            uintcnt += ( m_blue->type == UINT );
        }
        m_type = (chcnt == uintcnt) ? UINT : FLOAT;

        m_isfloat = (m_type == FLOAT);
    }

    if( !result )
        close();

    return result;
}


bool  ExrDecoder::readData( Mat& img )
{
    m_native_depth = CV_MAT_DEPTH(type()) == img.depth();
    bool color = img.channels() > 1;

    uchar* data = img.ptr();
    int step = img.step;
    bool justcopy = m_native_depth;
    bool chromatorgb = false;
    bool rgbtogray = false;
    bool result = true;
    FrameBuffer frame;
    int xsample[3] = {1, 1, 1};
    char *buffer;
    int xstep;
    int ystep;

    xstep = m_native_depth ? 4 : 1;

    if( !m_native_depth || (!color && m_iscolor ))
    {
        buffer = (char *)new float[ m_width * 3 ];
        ystep = 0;
    }
    else
    {
        buffer = (char *)data;
        ystep = step;
    }

    if( m_ischroma )
    {
        if( color )
        {
            if( m_iscolor )
            {
                if( m_blue )
                {
                    frame.insert( "BY", Slice( m_type,
                                    buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep,
                                    12, ystep, m_blue->xSampling, m_blue->ySampling, 0.0 ));
                    xsample[0] = m_blue->ySampling;
                }
                if( m_green )
                {
                    frame.insert( "Y", Slice( m_type,
                                    buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 4,
                                    12, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
                    xsample[1] = m_green->ySampling;
                }
                if( m_red )
                {
                    frame.insert( "RY", Slice( m_type,
                                    buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 8,
                                    12, ystep, m_red->xSampling, m_red->ySampling, 0.0 ));
                    xsample[2] = m_red->ySampling;
                }
                chromatorgb = true;
            }
            else
            {
                frame.insert( "Y", Slice( m_type,
                              buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep,
                              12, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
                frame.insert( "Y", Slice( m_type,
                              buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 4,
                              12, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
                frame.insert( "Y", Slice( m_type,
                              buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 8,
                              12, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
                xsample[0] = m_green->ySampling;
                xsample[1] = m_green->ySampling;
                xsample[2] = m_green->ySampling;
            }
        }
        else
        {
            frame.insert( "Y", Slice( m_type,
                            buffer - m_datawindow.min.x * 4 - m_datawindow.min.y * ystep,
                            4, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
            xsample[0] = m_green->ySampling;
        }
    }
    else
    {
        if( m_blue )
        {
            frame.insert( "B", Slice( m_type,
                            buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep,
                            12, ystep, m_blue->xSampling, m_blue->ySampling, 0.0 ));
            xsample[0] = m_blue->ySampling;
        }
        if( m_green )
        {
            frame.insert( "G", Slice( m_type,
                            buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 4,
                            12, ystep, m_green->xSampling, m_green->ySampling, 0.0 ));
            xsample[1] = m_green->ySampling;
        }
        if( m_red )
        {
            frame.insert( "R", Slice( m_type,
                            buffer - m_datawindow.min.x * 12 - m_datawindow.min.y * ystep + 8,
                            12, ystep, m_red->xSampling, m_red->ySampling, 0.0 ));
            xsample[2] = m_red->ySampling;
        }
        if(color == 0)
        {
            rgbtogray = true;
            justcopy = false;
        }
    }

    m_file->setFrameBuffer( frame );
    if( justcopy )
    {
        m_file->readPixels( m_datawindow.min.y, m_datawindow.max.y );

        if( color )
        {
            if( m_blue && (m_blue->xSampling != 1 || m_blue->ySampling != 1) )
                UpSample( data, 3, step / xstep, xsample[0], m_blue->ySampling );
            if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
                UpSample( data + xstep, 3, step / xstep, xsample[1], m_green->ySampling );
            if( m_red && (m_red->xSampling != 1 || m_red->ySampling != 1) )
                UpSample( data + 2 * xstep, 3, step / xstep, xsample[2], m_red->ySampling );
        }
        else if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
            UpSample( data, 1, step / xstep, xsample[0], m_green->ySampling );
    }
    else
    {
        uchar *out = data;
        int x, y;
        for( y = m_datawindow.min.y; y <= m_datawindow.max.y; y++ )
        {
            m_file->readPixels( y, y );

            if( rgbtogray )
            {
                if( xsample[0] != 1 )
                    UpSampleX( (float *)buffer, 3, xsample[0] );
                if( xsample[1] != 1 )
                    UpSampleX( (float *)buffer + 4, 3, xsample[1] );
                if( xsample[2] != 1 )
                    UpSampleX( (float *)buffer + 8, 3, xsample[2] );

                RGBToGray( (float *)buffer, (float *)out );
            }
            else
            {
                if( xsample[0] != 1 )
                    UpSampleX( (float *)buffer, 3, xsample[0] );
                if( xsample[1] != 1 )
                    UpSampleX( (float *)(buffer + 4), 3, xsample[1] );
                if( xsample[2] != 1 )
                    UpSampleX( (float *)(buffer + 8), 3, xsample[2] );

                if( chromatorgb )
                    ChromaToBGR( (float *)buffer, 1, step );

                if( m_type == FLOAT )
                {
                    float *fi = (float *)buffer;
                    for( x = 0; x < m_width * 3; x++)
                    {
                        out[x] = cv::saturate_cast<uchar>(fi[x]*5);
                    }
                }
                else
                {
                    unsigned *ui = (unsigned *)buffer;
                    for( x = 0; x < m_width * 3; x++)
                    {
                        out[x] = cv::saturate_cast<uchar>(ui[x]);
                    }
                }
            }

            out += step;
        }
        if( color )
        {
            if( m_blue && (m_blue->xSampling != 1 || m_blue->ySampling != 1) )
                UpSampleY( data, 3, step / xstep, m_blue->ySampling );
            if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
                UpSampleY( data + xstep, 3, step / xstep, m_green->ySampling );
            if( m_red && (m_red->xSampling != 1 || m_red->ySampling != 1) )
                UpSampleY( data + 2 * xstep, 3, step / xstep, m_red->ySampling );
        }
        else if( m_green && (m_green->xSampling != 1 || m_green->ySampling != 1) )
            UpSampleY( data, 1, step / xstep, m_green->ySampling );
    }

    if( chromatorgb )
        ChromaToBGR( (float *)data, m_height, step / xstep );

    close();

    return result;
}

/**
// on entry pixel values are stored packed in the upper left corner of the image
// this functions expands them by duplication to cover the whole image
 */
void  ExrDecoder::UpSample( uchar *data, int xstep, int ystep, int xsample, int ysample )
{
    for( int y = (m_height - 1) / ysample, yre = m_height - ysample; y >= 0; y--, yre -= ysample )
    {
        for( int x = (m_width - 1) / xsample, xre = m_width - xsample; x >= 0; x--, xre -= xsample )
        {
            for( int i = 0; i < ysample; i++ )
            {
                for( int n = 0; n < xsample; n++ )
                {
                    if( !m_native_depth )
                        data[(yre + i) * ystep + (xre + n) * xstep] = data[y * ystep + x * xstep];
                    else if( m_type == FLOAT )
                        ((float *)data)[(yre + i) * ystep + (xre + n) * xstep] = ((float *)data)[y * ystep + x * xstep];
                    else
                        ((unsigned *)data)[(yre + i) * ystep + (xre + n) * xstep] = ((unsigned *)data)[y * ystep + x * xstep];
                }
            }
        }
    }
}

/**
// on entry pixel values are stored packed in the upper left corner of the image
// this functions expands them by duplication to cover the whole image
 */
void  ExrDecoder::UpSampleX( float *data, int xstep, int xsample )
{
    for( int x = (m_width - 1) / xsample, xre = m_width - xsample; x >= 0; x--, xre -= xsample )
    {
        for( int n = 0; n < xsample; n++ )
        {
            if( m_type == FLOAT )
                ((float *)data)[(xre + n) * xstep] = ((float *)data)[x * xstep];
            else
                ((unsigned *)data)[(xre + n) * xstep] = ((unsigned *)data)[x * xstep];
        }
    }
}

/**
// on entry pixel values are stored packed in the upper left corner of the image
// this functions expands them by duplication to cover the whole image
 */
void  ExrDecoder::UpSampleY( uchar *data, int xstep, int ystep, int ysample )
{
    for( int y = m_height - ysample, yre = m_height - ysample; y >= 0; y -= ysample, yre -= ysample )
    {
        for( int x = 0; x < m_width; x++ )
        {
            for( int i = 1; i < ysample; i++ )
            {
                if( !m_native_depth )
                    data[(yre + i) * ystep + x * xstep] = data[y * ystep + x * xstep];
                else if( m_type == FLOAT )
                    ((float *)data)[(yre + i) * ystep + x * xstep] = ((float *)data)[y * ystep + x * xstep];
                else
                    ((unsigned *)data)[(yre + i) * ystep + x * xstep] = ((unsigned *)data)[y * ystep + x * xstep];
            }
        }
    }
}

/**
// algorithm from ImfRgbaYca.cpp
 */
void  ExrDecoder::ChromaToBGR( float *data, int numlines, int step )
{
    for( int y = 0; y < numlines; y++ )
    {
        for( int x = 0; x < m_width; x++ )
        {
            double b, Y, r;
            if( !m_native_depth )
            {
                b = ((uchar *)data)[y * step + x * 3];
                Y = ((uchar *)data)[y * step + x * 3 + 1];
                r = ((uchar *)data)[y * step + x * 3 + 2];
            }
            else if( m_type == FLOAT )
            {
                b = data[y * step + x * 3];
                Y = data[y * step + x * 3 + 1];
                r = data[y * step + x * 3 + 2];
            }
            else
            {
                b = ((unsigned *)data)[y * step + x * 3];
                Y = ((unsigned *)data)[y * step + x * 3 + 1];
                r = ((unsigned *)data)[y * step + x * 3 + 2];
            }
            r = (r + 1) * Y;
            b = (b + 1) * Y;
            Y = (Y - b * m_chroma.blue[1] - r * m_chroma.red[1]) / m_chroma.green[1];

            if( !m_native_depth )
            {
                ((uchar *)data)[y * step + x * 3 + 0] = cv::saturate_cast<uchar>(b);
                ((uchar *)data)[y * step + x * 3 + 1] = cv::saturate_cast<uchar>(Y);
                ((uchar *)data)[y * step + x * 3 + 2] = cv::saturate_cast<uchar>(r);
            }
            else if( m_type == FLOAT )
            {
                data[y * step + x * 3] = (float)b;
                data[y * step + x * 3 + 1] = (float)Y;
                data[y * step + x * 3 + 2] = (float)r;
            }
            else
            {
                int t = cvRound(b);
                ((unsigned *)data)[y * step + x * 3 + 0] = (unsigned)MAX(t, 0);
                t = cvRound(Y);
                ((unsigned *)data)[y * step + x * 3 + 1] = (unsigned)MAX(t, 0);
                t = cvRound(r);
                ((unsigned *)data)[y * step + x * 3 + 2] = (unsigned)MAX(t, 0);
            }
        }
    }
}


/**
// convert one row to gray
*/
void  ExrDecoder::RGBToGray( float *in, float *out )
{
    if( m_type == FLOAT )
    {
        if( m_native_depth )
        {
            for( int i = 0, n = 0; i < m_width; i++, n += 3 )
                out[i] = in[n] * m_chroma.blue[0] + in[n + 1] * m_chroma.green[0] + in[n + 2] * m_chroma.red[0];
        }
        else
        {
            uchar *o = (uchar *)out;
            for( int i = 0, n = 0; i < m_width; i++, n += 3 )
                o[i] = (uchar) (in[n] * m_chroma.blue[0] + in[n + 1] * m_chroma.green[0] + in[n + 2] * m_chroma.red[0]);
        }
    }
    else // UINT
    {
        if( m_native_depth )
        {
            unsigned *ui = (unsigned *)in;
            for( int i = 0; i < m_width * 3; i++ )
                ui[i] -= 0x80000000;
            int *si = (int *)in;
            for( int i = 0, n = 0; i < m_width; i++, n += 3 )
                ((int *)out)[i] = int(si[n] * m_chroma.blue[0] + si[n + 1] * m_chroma.green[0] + si[n + 2] * m_chroma.red[0]);
        }
        else // how to best convert float to uchar?
        {
            unsigned *ui = (unsigned *)in;
            for( int i = 0, n = 0; i < m_width; i++, n += 3 )
                ((uchar *)out)[i] = uchar((ui[n] * m_chroma.blue[0] + ui[n + 1] * m_chroma.green[0] + ui[n + 2] * m_chroma.red[0]) * (256.0 / 4294967296.0));
        }
    }
}


ImageDecoder ExrDecoder::newDecoder() const
{
    return makePtr<ExrDecoder>();
}

/////////////////////// ExrEncoder ///////////////////


ExrEncoder::ExrEncoder()
{
    m_description = "OpenEXR Image files (*.exr)";
}


ExrEncoder::~ExrEncoder()
{
}


bool  ExrEncoder::isFormatSupported( int depth ) const
{
    return CV_MAT_DEPTH(depth) >= CV_8U && CV_MAT_DEPTH(depth) < CV_64F;
}


// TODO scale appropriately
bool  ExrEncoder::write( const Mat& img, const std::vector<int>& )
{
    int width = img.cols, height = img.rows;
    int depth = img.depth(), channels = img.channels();
    bool result = false;
    bool issigned = depth == CV_8S || depth == CV_16S || depth == CV_32S;
    bool isfloat = depth == CV_32F || depth == CV_64F;
    depth = CV_ELEM_SIZE1(depth)*8;
    const int step = img.step;

    Header header( width, height );
    Imf::PixelType type;

    if(depth == 8)
        type = HALF;
    else if(isfloat)
        type = FLOAT;
    else
        type = UINT;

    if( channels == 3 )
    {
        header.channels().insert( "R", Channel( type ));
        header.channels().insert( "G", Channel( type ));
        header.channels().insert( "B", Channel( type ));
        //printf("bunt\n");
    }
    else
    {
        header.channels().insert( "Y", Channel( type ));
        //printf("gray\n");
    }

    OutputFile file( m_filename.c_str(), header );

    FrameBuffer frame;

    char *buffer;
    int bufferstep;
    int size;
    if( type == FLOAT && depth == 32 )
    {
        buffer = (char *)const_cast<uchar *>(img.ptr());
        bufferstep = step;
        size = 4;
    }
    else if( depth > 16 || type == UINT )
    {
        buffer = (char *)new unsigned[width * channels];
        bufferstep = 0;
        size = 4;
    }
    else
    {
        buffer = (char *)new half[width * channels];
        bufferstep = 0;
        size = 2;
    }

    //printf("depth %d %s\n", depth, types[type]);

    if( channels == 3 )
    {
        frame.insert( "B", Slice( type, buffer, size * 3, bufferstep ));
        frame.insert( "G", Slice( type, buffer + size, size * 3, bufferstep ));
        frame.insert( "R", Slice( type, buffer + size * 2, size * 3, bufferstep ));
    }
    else
        frame.insert( "Y", Slice( type, buffer, size, bufferstep ));

    file.setFrameBuffer( frame );

    int offset = issigned ? 1 << (depth - 1) : 0;

    result = true;
    if( type == FLOAT && depth == 32 )
    {
        try
        {
            file.writePixels( height );
        }
        catch(...)
        {
            result = false;
        }
    }
    else
    {
    //    int scale = 1 << (32 - depth);
    //    printf("scale %d\n", scale);
        for(int line = 0; line < height; line++)
        {
            if(type == UINT)
            {
                unsigned *buf = (unsigned*)buffer; // FIXME 64-bit problems

                if( depth <= 8 )
                {
                    const uchar* sd = img.ptr(line);
                    for(int i = 0; i < width * channels; i++)
                        buf[i] = sd[i] + offset;
                }
                else if( depth <= 16 )
                {
                    const unsigned short *sd = img.ptr<unsigned short>(line);
                    for(int i = 0; i < width * channels; i++)
                        buf[i] = sd[i] + offset;
                }
                else
                {
                    const int *sd = img.ptr<int>(line); // FIXME 64-bit problems
                    for(int i = 0; i < width * channels; i++)
                        buf[i] = (unsigned) sd[i] + offset;
                }
            }
            else
            {
                half *buf = (half *)buffer;

                if( depth <= 8 )
                {
                    const uchar* sd = img.ptr(line);
                    for(int i = 0; i < width * channels; i++)
                        buf[i] = sd[i];
                }
                else if( depth <= 16 )
                {
                    const unsigned short *sd = img.ptr<unsigned short>(line);
                    for(int i = 0; i < width * channels; i++)
                        buf[i] = sd[i];
                }
            }
            try
            {
                file.writePixels( 1 );
            }
            catch(...)
            {
                result = false;
                break;
            }
        }
        delete[] buffer;
    }

    return result;
}


ImageEncoder ExrEncoder::newEncoder() const
{
    return makePtr<ExrEncoder>();
}

}

#endif

/* End of file. */

/* [<][>][^][v][top][bottom][index][help] */