root/modules/ml/src/boost.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. log_ratio
  2. isClassifier
  3. clear
  4. startTraining
  5. normalizeWeights
  6. endTraining
  7. scaleTree
  8. calcValue
  9. train
  10. updateWeightsAndTrim
  11. predictTrees
  12. writeTrainingParams
  13. write
  14. readParams
  15. read
  16. CV_IMPL_PROPERTY
  17. train
  18. predict
  19. write
  20. read
  21. getVarCount
  22. isTrained
  23. isClassifier
  24. getRoots
  25. getNodes
  26. getSplits
  27. getSubsets
  28. create

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

namespace cv { namespace ml {

static inline double
log_ratio( double val )
{
    const double eps = 1e-5;
    val = std::max( val, eps );
    val = std::min( val, 1. - eps );
    return log( val/(1. - val) );
}


BoostTreeParams::BoostTreeParams()
{
    boostType = Boost::REAL;
    weakCount = 100;
    weightTrimRate = 0.95;
}

BoostTreeParams::BoostTreeParams( int _boostType, int _weak_count,
                                  double _weightTrimRate)
{
    boostType = _boostType;
    weakCount = _weak_count;
    weightTrimRate = _weightTrimRate;
}

class DTreesImplForBoost : public DTreesImpl
{
public:
    DTreesImplForBoost()
    {
        params.setCVFolds(0);
        params.setMaxDepth(1);
    }
    virtual ~DTreesImplForBoost() {}

    bool isClassifier() const { return true; }

    void clear()
    {
        DTreesImpl::clear();
    }

    void startTraining( const Ptr<TrainData>& trainData, int flags )
    {
        DTreesImpl::startTraining(trainData, flags);
        sumResult.assign(w->sidx.size(), 0.);

        if( bparams.boostType != Boost::DISCRETE )
        {
            _isClassifier = false;
            int i, n = (int)w->cat_responses.size();
            w->ord_responses.resize(n);

            double a = -1, b = 1;
            if( bparams.boostType == Boost::LOGIT )
            {
                a = -2, b = 2;
            }
            for( i = 0; i < n; i++ )
                w->ord_responses[i] = w->cat_responses[i] > 0 ? b : a;
        }

        normalizeWeights();
    }

    void normalizeWeights()
    {
        int i, n = (int)w->sidx.size();
        double sumw = 0, a, b;
        for( i = 0; i < n; i++ )
            sumw += w->sample_weights[w->sidx[i]];
        if( sumw > DBL_EPSILON )
        {
            a = 1./sumw;
            b = 0;
        }
        else
        {
            a = 0;
            b = 1;
        }
        for( i = 0; i < n; i++ )
        {
            double& wval = w->sample_weights[w->sidx[i]];
            wval = wval*a + b;
        }
    }

    void endTraining()
    {
        DTreesImpl::endTraining();
        vector<double> e;
        std::swap(sumResult, e);
    }

    void scaleTree( int root, double scale )
    {
        int nidx = root, pidx = 0;
        Node *node = 0;

        // traverse the tree and save all the nodes in depth-first order
        for(;;)
        {
            for(;;)
            {
                node = &nodes[nidx];
                node->value *= scale;
                if( node->left < 0 )
                    break;
                nidx = node->left;
            }

            for( pidx = node->parent; pidx >= 0 && nodes[pidx].right == nidx;
                 nidx = pidx, pidx = nodes[pidx].parent )
                ;

            if( pidx < 0 )
                break;

            nidx = nodes[pidx].right;
        }
    }

    void calcValue( int nidx, const vector<int>& _sidx )
    {
        DTreesImpl::calcValue(nidx, _sidx);
        WNode* node = &w->wnodes[nidx];
        if( bparams.boostType == Boost::DISCRETE )
        {
            node->value = node->class_idx == 0 ? -1 : 1;
        }
        else if( bparams.boostType == Boost::REAL )
        {
            double p = (node->value+1)*0.5;
            node->value = 0.5*log_ratio(p);
        }
    }

    bool train( const Ptr<TrainData>& trainData, int flags )
    {
        startTraining(trainData, flags);
        int treeidx, ntrees = bparams.weakCount >= 0 ? bparams.weakCount : 10000;
        vector<int> sidx = w->sidx;

        for( treeidx = 0; treeidx < ntrees; treeidx++ )
        {
            int root = addTree( sidx );
            if( root < 0 )
                return false;
            updateWeightsAndTrim( treeidx, sidx );
        }
        endTraining();
        return true;
    }

    void updateWeightsAndTrim( int treeidx, vector<int>& sidx )
    {
        int i, n = (int)w->sidx.size();
        int nvars = (int)varIdx.size();
        double sumw = 0., C = 1.;
        cv::AutoBuffer<double> buf(n + nvars);
        double* result = buf;
        float* sbuf = (float*)(result + n);
        Mat sample(1, nvars, CV_32F, sbuf);
        int predictFlags = bparams.boostType == Boost::DISCRETE ? (PREDICT_MAX_VOTE | RAW_OUTPUT) : PREDICT_SUM;
        predictFlags |= COMPRESSED_INPUT;

        for( i = 0; i < n; i++ )
        {
            w->data->getSample(varIdx, w->sidx[i], sbuf );
            result[i] = predictTrees(Range(treeidx, treeidx+1), sample, predictFlags);
        }

        // now update weights and other parameters for each type of boosting
        if( bparams.boostType == Boost::DISCRETE )
        {
            // Discrete AdaBoost:
            //   weak_eval[i] (=f(x_i)) is in {-1,1}
            //   err = sum(w_i*(f(x_i) != y_i))/sum(w_i)
            //   C = log((1-err)/err)
            //   w_i *= exp(C*(f(x_i) != y_i))
            double err = 0.;

            for( i = 0; i < n; i++ )
            {
                int si = w->sidx[i];
                double wval = w->sample_weights[si];
                sumw += wval;
                err += wval*(result[i] != w->cat_responses[si]);
            }

            if( sumw != 0 )
                err /= sumw;
            C = -log_ratio( err );
            double scale = std::exp(C);

            sumw = 0;
            for( i = 0; i < n; i++ )
            {
                int si = w->sidx[i];
                double wval = w->sample_weights[si];
                if( result[i] != w->cat_responses[si] )
                    wval *= scale;
                sumw += wval;
                w->sample_weights[si] = wval;
            }

            scaleTree(roots[treeidx], C);
        }
        else if( bparams.boostType == Boost::REAL || bparams.boostType == Boost::GENTLE )
        {
            // Real AdaBoost:
            //   weak_eval[i] = f(x_i) = 0.5*log(p(x_i)/(1-p(x_i))), p(x_i)=P(y=1|x_i)
            //   w_i *= exp(-y_i*f(x_i))

            // Gentle AdaBoost:
            //   weak_eval[i] = f(x_i) in [-1,1]
            //   w_i *= exp(-y_i*f(x_i))
            for( i = 0; i < n; i++ )
            {
                int si = w->sidx[i];
                CV_Assert( std::abs(w->ord_responses[si]) == 1 );
                double wval = w->sample_weights[si]*std::exp(-result[i]*w->ord_responses[si]);
                sumw += wval;
                w->sample_weights[si] = wval;
            }
        }
        else if( bparams.boostType == Boost::LOGIT )
        {
            // LogitBoost:
            //   weak_eval[i] = f(x_i) in [-z_max,z_max]
            //   sum_response = F(x_i).
            //   F(x_i) += 0.5*f(x_i)
            //   p(x_i) = exp(F(x_i))/(exp(F(x_i)) + exp(-F(x_i))=1/(1+exp(-2*F(x_i)))
            //   reuse weak_eval: weak_eval[i] <- p(x_i)
            //   w_i = p(x_i)*1(1 - p(x_i))
            //   z_i = ((y_i+1)/2 - p(x_i))/(p(x_i)*(1 - p(x_i)))
            //   store z_i to the data->data_root as the new target responses
            const double lb_weight_thresh = FLT_EPSILON;
            const double lb_z_max = 10.;

            for( i = 0; i < n; i++ )
            {
                int si = w->sidx[i];
                sumResult[i] += 0.5*result[i];
                double p = 1./(1 + std::exp(-2*sumResult[i]));
                double wval = std::max( p*(1 - p), lb_weight_thresh ), z;
                w->sample_weights[si] = wval;
                sumw += wval;
                if( w->ord_responses[si] > 0 )
                {
                    z = 1./p;
                    w->ord_responses[si] = std::min(z, lb_z_max);
                }
                else
                {
                    z = 1./(1-p);
                    w->ord_responses[si] = -std::min(z, lb_z_max);
                }
            }
        }
        else
            CV_Error(CV_StsNotImplemented, "Unknown boosting type");

        /*if( bparams.boostType != Boost::LOGIT )
        {
            double err = 0;
            for( i = 0; i < n; i++ )
            {
                sumResult[i] += result[i]*C;
                if( bparams.boostType != Boost::DISCRETE )
                    err += sumResult[i]*w->ord_responses[w->sidx[i]] < 0;
                else
                    err += sumResult[i]*w->cat_responses[w->sidx[i]] < 0;
            }
            printf("%d trees. C=%.2f, training error=%.1f%%, working set size=%d (out of %d)\n", (int)roots.size(), C, err*100./n, (int)sidx.size(), n);
        }*/

        // renormalize weights
        if( sumw > FLT_EPSILON )
            normalizeWeights();

        if( bparams.weightTrimRate <= 0. || bparams.weightTrimRate >= 1. )
            return;

        for( i = 0; i < n; i++ )
            result[i] = w->sample_weights[w->sidx[i]];
        std::sort(result, result + n);

        // as weight trimming occurs immediately after updating the weights,
        // where they are renormalized, we assume that the weight sum = 1.
        sumw = 1. - bparams.weightTrimRate;

        for( i = 0; i < n; i++ )
        {
            double wval = result[i];
            if( sumw <= 0 )
                break;
            sumw -= wval;
        }

        double threshold = i < n ? result[i] : DBL_MAX;
        sidx.clear();

        for( i = 0; i < n; i++ )
        {
            int si = w->sidx[i];
            if( w->sample_weights[si] >= threshold )
                sidx.push_back(si);
        }
    }

    float predictTrees( const Range& range, const Mat& sample, int flags0 ) const
    {
        int flags = (flags0 & ~PREDICT_MASK) | PREDICT_SUM;
        float val = DTreesImpl::predictTrees(range, sample, flags);
        if( flags != flags0 )
        {
            int ival = (int)(val > 0);
            if( !(flags0 & RAW_OUTPUT) )
                ival = classLabels[ival];
            val = (float)ival;
        }
        return val;
    }

    void writeTrainingParams( FileStorage& fs ) const
    {
        fs << "boosting_type" <<
        (bparams.boostType == Boost::DISCRETE ? "DiscreteAdaboost" :
        bparams.boostType == Boost::REAL ? "RealAdaboost" :
        bparams.boostType == Boost::LOGIT ? "LogitBoost" :
        bparams.boostType == Boost::GENTLE ? "GentleAdaboost" : "Unknown");

        DTreesImpl::writeTrainingParams(fs);
        fs << "weight_trimming_rate" << bparams.weightTrimRate;
    }

    void write( FileStorage& fs ) const
    {
        if( roots.empty() )
            CV_Error( CV_StsBadArg, "RTrees have not been trained" );

        writeParams(fs);

        int k, ntrees = (int)roots.size();

        fs << "ntrees" << ntrees
        << "trees" << "[";

        for( k = 0; k < ntrees; k++ )
        {
            fs << "{";
            writeTree(fs, roots[k]);
            fs << "}";
        }

        fs << "]";
    }

    void readParams( const FileNode& fn )
    {
        DTreesImpl::readParams(fn);

        FileNode tparams_node = fn["training_params"];
        // check for old layout
        String bts = (String)(fn["boosting_type"].empty() ?
                         tparams_node["boosting_type"] : fn["boosting_type"]);
        bparams.boostType = (bts == "DiscreteAdaboost" ? Boost::DISCRETE :
                             bts == "RealAdaboost" ? Boost::REAL :
                             bts == "LogitBoost" ? Boost::LOGIT :
                             bts == "GentleAdaboost" ? Boost::GENTLE : -1);
        _isClassifier = bparams.boostType == Boost::DISCRETE;
        // check for old layout
        bparams.weightTrimRate = (double)(fn["weight_trimming_rate"].empty() ?
                                    tparams_node["weight_trimming_rate"] : fn["weight_trimming_rate"]);
    }

    void read( const FileNode& fn )
    {
        clear();

        int ntrees = (int)fn["ntrees"];
        readParams(fn);

        FileNode trees_node = fn["trees"];
        FileNodeIterator it = trees_node.begin();
        CV_Assert( ntrees == (int)trees_node.size() );

        for( int treeidx = 0; treeidx < ntrees; treeidx++, ++it )
        {
            FileNode nfn = (*it)["nodes"];
            readTree(nfn);
        }
    }

    BoostTreeParams bparams;
    vector<double> sumResult;
};


class BoostImpl : public Boost
{
public:
    BoostImpl() {}
    virtual ~BoostImpl() {}

    CV_IMPL_PROPERTY(int, BoostType, impl.bparams.boostType)
    CV_IMPL_PROPERTY(int, WeakCount, impl.bparams.weakCount)
    CV_IMPL_PROPERTY(double, WeightTrimRate, impl.bparams.weightTrimRate)

    CV_WRAP_SAME_PROPERTY(int, MaxCategories, impl.params)
    CV_WRAP_SAME_PROPERTY(int, MaxDepth, impl.params)
    CV_WRAP_SAME_PROPERTY(int, MinSampleCount, impl.params)
    CV_WRAP_SAME_PROPERTY(int, CVFolds, impl.params)
    CV_WRAP_SAME_PROPERTY(bool, UseSurrogates, impl.params)
    CV_WRAP_SAME_PROPERTY(bool, Use1SERule, impl.params)
    CV_WRAP_SAME_PROPERTY(bool, TruncatePrunedTree, impl.params)
    CV_WRAP_SAME_PROPERTY(float, RegressionAccuracy, impl.params)
    CV_WRAP_SAME_PROPERTY_S(cv::Mat, Priors, impl.params)

    String getDefaultName() const { return "opencv_ml_boost"; }

    bool train( const Ptr<TrainData>& trainData, int flags )
    {
        return impl.train(trainData, flags);
    }

    float predict( InputArray samples, OutputArray results, int flags ) const
    {
        return impl.predict(samples, results, flags);
    }

    void write( FileStorage& fs ) const
    {
        impl.write(fs);
    }

    void read( const FileNode& fn )
    {
        impl.read(fn);
    }

    int getVarCount() const { return impl.getVarCount(); }

    bool isTrained() const { return impl.isTrained(); }
    bool isClassifier() const { return impl.isClassifier(); }

    const vector<int>& getRoots() const { return impl.getRoots(); }
    const vector<Node>& getNodes() const { return impl.getNodes(); }
    const vector<Split>& getSplits() const { return impl.getSplits(); }
    const vector<int>& getSubsets() const { return impl.getSubsets(); }

    DTreesImplForBoost impl;
};


Ptr<Boost> Boost::create()
{
    return makePtr<BoostImpl>();
}

}}

/* End of file. */

/* [<][>][^][v][top][bottom][index][help] */