root/modules/ml/src/precomp.hpp

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. setRangeVector
  2. writeTermCrit
  3. readTermCrit
  4. setMaxCategories
  5. setMaxDepth
  6. setMinSampleCount
  7. setCVFolds
  8. setRegressionAccuracy
  9. getMaxCategories
  10. getMaxDepth
  11. getMinSampleCount
  12. getCVFolds
  13. getRegressionAccuracy
  14. getDefaultName
  15. isTrained
  16. isClassifier
  17. getVarCount
  18. getCatCount
  19. getSubsetSize
  20. getRoots
  21. getNodes
  22. getSplits
  23. getSubsets
  24. readVectorOrMat

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_ML_PRECOMP_HPP__
#define __OPENCV_ML_PRECOMP_HPP__

#include "opencv2/core.hpp"
#include "opencv2/ml.hpp"
#include "opencv2/core/core_c.h"
#include "opencv2/core/utility.hpp"

#include "opencv2/core/private.hpp"

#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <vector>

/****************************************************************************************\
 *                               Main struct definitions                                  *
 \****************************************************************************************/

/* log(2*PI) */
#define CV_LOG2PI (1.8378770664093454835606594728112)

namespace cv
{
namespace ml
{
    using std::vector;

    #define CV_DTREE_CAT_DIR(idx,subset) \
        (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1)

    template<typename _Tp> struct cmp_lt_idx
    {
        cmp_lt_idx(const _Tp* _arr) : arr(_arr) {}
        bool operator ()(int a, int b) const { return arr[a] < arr[b]; }
        const _Tp* arr;
    };

    template<typename _Tp> struct cmp_lt_ptr
    {
        cmp_lt_ptr() {}
        bool operator ()(const _Tp* a, const _Tp* b) const { return *a < *b; }
    };

    static inline void setRangeVector(std::vector<int>& vec, int n)
    {
        vec.resize(n);
        for( int i = 0; i < n; i++ )
            vec[i] = i;
    }

    static inline void writeTermCrit(FileStorage& fs, const TermCriteria& termCrit)
    {
        if( (termCrit.type & TermCriteria::EPS) != 0 )
            fs << "epsilon" << termCrit.epsilon;
        if( (termCrit.type & TermCriteria::COUNT) != 0 )
            fs << "iterations" << termCrit.maxCount;
    }

    static inline TermCriteria readTermCrit(const FileNode& fn)
    {
        TermCriteria termCrit;
        double epsilon = (double)fn["epsilon"];
        if( epsilon > 0 )
        {
            termCrit.type |= TermCriteria::EPS;
            termCrit.epsilon = epsilon;
        }
        int iters = (int)fn["iterations"];
        if( iters > 0 )
        {
            termCrit.type |= TermCriteria::COUNT;
            termCrit.maxCount = iters;
        }
        return termCrit;
    }

    struct TreeParams
    {
        TreeParams();
        TreeParams( int maxDepth, int minSampleCount,
                    double regressionAccuracy, bool useSurrogates,
                    int maxCategories, int CVFolds,
                    bool use1SERule, bool truncatePrunedTree,
                    const Mat& priors );

        inline void setMaxCategories(int val)
        {
            if( val < 2 )
                CV_Error( CV_StsOutOfRange, "max_categories should be >= 2" );
            maxCategories = std::min(val, 15 );
        }
        inline void setMaxDepth(int val)
        {
            if( val < 0 )
                CV_Error( CV_StsOutOfRange, "max_depth should be >= 0" );
            maxDepth = std::min( val, 25 );
        }
        inline void setMinSampleCount(int val)
        {
            minSampleCount = std::max(val, 1);
        }
        inline void setCVFolds(int val)
        {
            if( val < 0 )
                CV_Error( CV_StsOutOfRange,
                          "params.CVFolds should be =0 (the tree is not pruned) "
                          "or n>0 (tree is pruned using n-fold cross-validation)" );
            if( val == 1 )
                val = 0;
            CVFolds = val;
        }
        inline void setRegressionAccuracy(float val)
        {
            if( val < 0 )
                CV_Error( CV_StsOutOfRange, "params.regression_accuracy should be >= 0" );
            regressionAccuracy = val;
        }

        inline int getMaxCategories() const { return maxCategories; }
        inline int getMaxDepth() const { return maxDepth; }
        inline int getMinSampleCount() const { return minSampleCount; }
        inline int getCVFolds() const { return CVFolds; }
        inline float getRegressionAccuracy() const { return regressionAccuracy; }

        CV_IMPL_PROPERTY(bool, UseSurrogates, useSurrogates)
        CV_IMPL_PROPERTY(bool, Use1SERule, use1SERule)
        CV_IMPL_PROPERTY(bool, TruncatePrunedTree, truncatePrunedTree)
        CV_IMPL_PROPERTY_S(cv::Mat, Priors, priors)

        public:
            bool  useSurrogates;
        bool  use1SERule;
        bool  truncatePrunedTree;
        Mat priors;

    protected:
        int   maxCategories;
        int   maxDepth;
        int   minSampleCount;
        int   CVFolds;
        float regressionAccuracy;
    };

    struct RTreeParams
    {
        RTreeParams();
        RTreeParams(bool calcVarImportance, int nactiveVars, TermCriteria termCrit );
        bool calcVarImportance;
        int nactiveVars;
        TermCriteria termCrit;
    };

    struct BoostTreeParams
    {
        BoostTreeParams();
        BoostTreeParams(int boostType, int weakCount, double weightTrimRate);
        int boostType;
        int weakCount;
        double weightTrimRate;
    };

    class DTreesImpl : public DTrees
    {
    public:
        struct WNode
        {
            WNode()
            {
                class_idx = sample_count = depth = complexity = 0;
                parent = left = right = split = defaultDir = -1;
                Tn = INT_MAX;
                value = maxlr = alpha = node_risk = tree_risk = tree_error = 0.;
            }

            int class_idx;
            double Tn;
            double value;

            int parent;
            int left;
            int right;
            int defaultDir;

            int split;

            int sample_count;
            int depth;
            double maxlr;

            // global pruning data
            int complexity;
            double alpha;
            double node_risk, tree_risk, tree_error;
        };

        struct WSplit
        {
            WSplit()
            {
                varIdx = next = 0;
                inversed = false;
                quality = c = 0.f;
                subsetOfs = -1;
            }

            int varIdx;
            bool inversed;
            float quality;
            int next;
            float c;
            int subsetOfs;
        };

        struct WorkData
        {
            WorkData(const Ptr<TrainData>& _data);

            Ptr<TrainData> data;
            vector<WNode> wnodes;
            vector<WSplit> wsplits;
            vector<int> wsubsets;
            vector<double> cv_Tn;
            vector<double> cv_node_risk;
            vector<double> cv_node_error;
            vector<int> cv_labels;
            vector<double> sample_weights;
            vector<int> cat_responses;
            vector<double> ord_responses;
            vector<int> sidx;
            int maxSubsetSize;
        };

        CV_WRAP_SAME_PROPERTY(int, MaxCategories, params)
        CV_WRAP_SAME_PROPERTY(int, MaxDepth, params)
        CV_WRAP_SAME_PROPERTY(int, MinSampleCount, params)
        CV_WRAP_SAME_PROPERTY(int, CVFolds, params)
        CV_WRAP_SAME_PROPERTY(bool, UseSurrogates, params)
        CV_WRAP_SAME_PROPERTY(bool, Use1SERule, params)
        CV_WRAP_SAME_PROPERTY(bool, TruncatePrunedTree, params)
        CV_WRAP_SAME_PROPERTY(float, RegressionAccuracy, params)
        CV_WRAP_SAME_PROPERTY_S(cv::Mat, Priors, params)

        DTreesImpl();
        virtual ~DTreesImpl();
        virtual void clear();

        String getDefaultName() const { return "opencv_ml_dtree"; }
        bool isTrained() const { return !roots.empty(); }
        bool isClassifier() const { return _isClassifier; }
        int getVarCount() const { return varType.empty() ? 0 : (int)(varType.size() - 1); }
        int getCatCount(int vi) const { return catOfs[vi][1] - catOfs[vi][0]; }
        int getSubsetSize(int vi) const { return (getCatCount(vi) + 31)/32; }

        virtual void setDParams(const TreeParams& _params);
        virtual void startTraining( const Ptr<TrainData>& trainData, int flags );
        virtual void endTraining();
        virtual void initCompVarIdx();
        virtual bool train( const Ptr<TrainData>& trainData, int flags );

        virtual int addTree( const vector<int>& sidx );
        virtual int addNodeAndTrySplit( int parent, const vector<int>& sidx );
        virtual const vector<int>& getActiveVars();
        virtual int findBestSplit( const vector<int>& _sidx );
        virtual void calcValue( int nidx, const vector<int>& _sidx );

        virtual WSplit findSplitOrdClass( int vi, const vector<int>& _sidx, double initQuality );

        // simple k-means, slightly modified to take into account the "weight" (L1-norm) of each vector.
        virtual void clusterCategories( const double* vectors, int n, int m, double* csums, int k, int* labels );
        virtual WSplit findSplitCatClass( int vi, const vector<int>& _sidx, double initQuality, int* subset );

        virtual WSplit findSplitOrdReg( int vi, const vector<int>& _sidx, double initQuality );
        virtual WSplit findSplitCatReg( int vi, const vector<int>& _sidx, double initQuality, int* subset );

        virtual int calcDir( int splitidx, const vector<int>& _sidx, vector<int>& _sleft, vector<int>& _sright );
        virtual int pruneCV( int root );

        virtual double updateTreeRNC( int root, double T, int fold );
        virtual bool cutTree( int root, double T, int fold, double min_alpha );
        virtual float predictTrees( const Range& range, const Mat& sample, int flags ) const;
        virtual float predict( InputArray inputs, OutputArray outputs, int flags ) const;

        virtual void writeTrainingParams( FileStorage& fs ) const;
        virtual void writeParams( FileStorage& fs ) const;
        virtual void writeSplit( FileStorage& fs, int splitidx ) const;
        virtual void writeNode( FileStorage& fs, int nidx, int depth ) const;
        virtual void writeTree( FileStorage& fs, int root ) const;
        virtual void write( FileStorage& fs ) const;

        virtual void readParams( const FileNode& fn );
        virtual int readSplit( const FileNode& fn );
        virtual int readNode( const FileNode& fn );
        virtual int readTree( const FileNode& fn );
        virtual void read( const FileNode& fn );

        virtual const std::vector<int>& getRoots() const { return roots; }
        virtual const std::vector<Node>& getNodes() const { return nodes; }
        virtual const std::vector<Split>& getSplits() const { return splits; }
        virtual const std::vector<int>& getSubsets() const { return subsets; }

        TreeParams params;

        vector<int> varIdx;
        vector<int> compVarIdx;
        vector<uchar> varType;
        vector<Vec2i> catOfs;
        vector<int> catMap;
        vector<int> roots;
        vector<Node> nodes;
        vector<Split> splits;
        vector<int> subsets;
        vector<int> classLabels;
        vector<float> missingSubst;
        vector<int> varMapping;
        bool _isClassifier;

        Ptr<WorkData> w;
    };

    template <typename T>
    static inline void readVectorOrMat(const FileNode & node, std::vector<T> & v)
    {
        if (node.type() == FileNode::MAP)
        {
            Mat m;
            node >> m;
            m.copyTo(v);
        }
        else if (node.type() == FileNode::SEQ)
        {
            node >> v;
        }
    }

}}

#endif /* __OPENCV_ML_PRECOMP_HPP__ */

/* [<][>][^][v][top][bottom][index][help] */