root/modules/ml/test/test_emknearestkmeans.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. defaultDistribs
  2. generateData
  3. maxIdx
  4. getLabelsMap
  5. calcErr
  6. run
  7. run
  8. termCrit
  9. runCase
  10. run
  11. run
  12. run
  13. TEST
  14. TEST
  15. TEST
  16. TEST
  17. TEST

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

using namespace std;
using namespace cv;
using cv::ml::TrainData;
using cv::ml::EM;
using cv::ml::KNearest;

static
void defaultDistribs( Mat& means, vector<Mat>& covs, int type=CV_32FC1 )
{
    float mp0[] = {0.0f, 0.0f}, cp0[] = {0.67f, 0.0f, 0.0f, 0.67f};
    float mp1[] = {5.0f, 0.0f}, cp1[] = {1.0f, 0.0f, 0.0f, 1.0f};
    float mp2[] = {1.0f, 5.0f}, cp2[] = {1.0f, 0.0f, 0.0f, 1.0f};
    means.create(3, 2, type);
    Mat m0( 1, 2, CV_32FC1, mp0 ), c0( 2, 2, CV_32FC1, cp0 );
    Mat m1( 1, 2, CV_32FC1, mp1 ), c1( 2, 2, CV_32FC1, cp1 );
    Mat m2( 1, 2, CV_32FC1, mp2 ), c2( 2, 2, CV_32FC1, cp2 );
    means.resize(3), covs.resize(3);

    Mat mr0 = means.row(0);
    m0.convertTo(mr0, type);
    c0.convertTo(covs[0], type);

    Mat mr1 = means.row(1);
    m1.convertTo(mr1, type);
    c1.convertTo(covs[1], type);

    Mat mr2 = means.row(2);
    m2.convertTo(mr2, type);
    c2.convertTo(covs[2], type);
}

// generate points sets by normal distributions
static
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int dataType, int labelType )
{
    vector<int>::const_iterator sit = sizes.begin();
    int total = 0;
    for( ; sit != sizes.end(); ++sit )
        total += *sit;
    CV_Assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() );
    CV_Assert( !data.empty() && data.rows == total );
    CV_Assert( data.type() == dataType );

    labels.create( data.rows, 1, labelType );

    randn( data, Scalar::all(-1.0), Scalar::all(1.0) );
    vector<Mat> means(sizes.size());
    for(int i = 0; i < _means.rows; i++)
        means[i] = _means.row(i);
    vector<Mat>::const_iterator mit = means.begin(), cit = covs.begin();
    int bi, ei = 0;
    sit = sizes.begin();
    for( int p = 0, l = 0; sit != sizes.end(); ++sit, ++mit, ++cit, l++ )
    {
        bi = ei;
        ei = bi + *sit;
        assert( mit->rows == 1 && mit->cols == data.cols );
        assert( cit->rows == data.cols && cit->cols == data.cols );
        for( int i = bi; i < ei; i++, p++ )
        {
            Mat r = data.row(i);
            r =  r * (*cit) + *mit;
            if( labelType == CV_32FC1 )
                labels.at<float>(p, 0) = (float)l;
            else if( labelType == CV_32SC1 )
                labels.at<int>(p, 0) = l;
            else
            {
                CV_DbgAssert(0);
            }
        }
    }
}

static
int maxIdx( const vector<int>& count )
{
    int idx = -1;
    int maxVal = -1;
    vector<int>::const_iterator it = count.begin();
    for( int i = 0; it != count.end(); ++it, i++ )
    {
        if( *it > maxVal)
        {
            maxVal = *it;
            idx = i;
        }
    }
    assert( idx >= 0);
    return idx;
}

static
bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap, bool checkClusterUniq=true )
{
    size_t total = 0, nclusters = sizes.size();
    for(size_t i = 0; i < sizes.size(); i++)
        total += sizes[i];

    assert( !labels.empty() );
    assert( labels.total() == total && (labels.cols == 1 || labels.rows == 1));
    assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 );

    bool isFlt = labels.type() == CV_32FC1;

    labelsMap.resize(nclusters);

    vector<bool> buzy(nclusters, false);
    int startIndex = 0;
    for( size_t clusterIndex = 0; clusterIndex < sizes.size(); clusterIndex++ )
    {
        vector<int> count( nclusters, 0 );
        for( int i = startIndex; i < startIndex + sizes[clusterIndex]; i++)
        {
            int lbl = isFlt ? (int)labels.at<float>(i) : labels.at<int>(i);
            CV_Assert(lbl < (int)nclusters);
            count[lbl]++;
            CV_Assert(count[lbl] < (int)total);
        }
        startIndex += sizes[clusterIndex];

        int cls = maxIdx( count );
        CV_Assert( !checkClusterUniq || !buzy[cls] );

        labelsMap[clusterIndex] = cls;

        buzy[cls] = true;
    }

    if(checkClusterUniq)
    {
        for(size_t i = 0; i < buzy.size(); i++)
            if(!buzy[i])
                return false;
    }

    return true;
}

static
bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, float& err, bool labelsEquivalent = true, bool checkClusterUniq=true )
{
    err = 0;
    CV_Assert( !labels.empty() && !origLabels.empty() );
    CV_Assert( labels.rows == 1 || labels.cols == 1 );
    CV_Assert( origLabels.rows == 1 || origLabels.cols == 1 );
    CV_Assert( labels.total() == origLabels.total() );
    CV_Assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 );
    CV_Assert( origLabels.type() == labels.type() );

    vector<int> labelsMap;
    bool isFlt = labels.type() == CV_32FC1;
    if( !labelsEquivalent )
    {
        if( !getLabelsMap( labels, sizes, labelsMap, checkClusterUniq ) )
            return false;

        for( int i = 0; i < labels.rows; i++ )
            if( isFlt )
                err += labels.at<float>(i) != labelsMap[(int)origLabels.at<float>(i)] ? 1.f : 0.f;
            else
                err += labels.at<int>(i) != labelsMap[origLabels.at<int>(i)] ? 1.f : 0.f;
    }
    else
    {
        for( int i = 0; i < labels.rows; i++ )
            if( isFlt )
                err += labels.at<float>(i) != origLabels.at<float>(i) ? 1.f : 0.f;
            else
                err += labels.at<int>(i) != origLabels.at<int>(i) ? 1.f : 0.f;
    }
    err /= (float)labels.rows;
    return true;
}

//--------------------------------------------------------------------------------------------
class CV_KMeansTest : public cvtest::BaseTest {
public:
    CV_KMeansTest() {}
protected:
    virtual void run( int start_from );
};

void CV_KMeansTest::run( int /*start_from*/ )
{
    const int iters = 100;
    int sizesArr[] = { 5000, 7000, 8000 };
    int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];

    Mat data( pointsCount, 2, CV_32FC1 ), labels;
    vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
    Mat means;
    vector<Mat> covs;
    defaultDistribs( means, covs );
    generateData( data, labels, sizes, means, covs, CV_32FC1, CV_32SC1 );

    int code = cvtest::TS::OK;
    float err;
    Mat bestLabels;
    // 1. flag==KMEANS_PP_CENTERS
    kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_PP_CENTERS, noArray() );
    if( !calcErr( bestLabels, labels, sizes, err , false ) )
    {
        ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_PP_CENTERS.\n" );
        code = cvtest::TS::FAIL_INVALID_OUTPUT;
    }
    else if( err > 0.01f )
    {
        ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_PP_CENTERS.\n", err );
        code = cvtest::TS::FAIL_BAD_ACCURACY;
    }

    // 2. flag==KMEANS_RANDOM_CENTERS
    kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_RANDOM_CENTERS, noArray() );
    if( !calcErr( bestLabels, labels, sizes, err, false ) )
    {
        ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_RANDOM_CENTERS.\n" );
        code = cvtest::TS::FAIL_INVALID_OUTPUT;
    }
    else if( err > 0.01f )
    {
        ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_RANDOM_CENTERS.\n", err );
        code = cvtest::TS::FAIL_BAD_ACCURACY;
    }

    // 3. flag==KMEANS_USE_INITIAL_LABELS
    labels.copyTo( bestLabels );
    RNG rng;
    for( int i = 0; i < 0.5f * pointsCount; i++ )
        bestLabels.at<int>( rng.next() % pointsCount, 0 ) = rng.next() % 3;
    kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_USE_INITIAL_LABELS, noArray() );
    if( !calcErr( bestLabels, labels, sizes, err, false ) )
    {
        ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_USE_INITIAL_LABELS.\n" );
        code = cvtest::TS::FAIL_INVALID_OUTPUT;
    }
    else if( err > 0.01f )
    {
        ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_USE_INITIAL_LABELS.\n", err );
        code = cvtest::TS::FAIL_BAD_ACCURACY;
    }

    ts->set_failed_test_info( code );
}

//--------------------------------------------------------------------------------------------
class CV_KNearestTest : public cvtest::BaseTest {
public:
    CV_KNearestTest() {}
protected:
    virtual void run( int start_from );
};

void CV_KNearestTest::run( int /*start_from*/ )
{
    int sizesArr[] = { 500, 700, 800 };
    int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];

    // train data
    Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels;
    vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
    Mat means;
    vector<Mat> covs;
    defaultDistribs( means, covs );
    generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32FC1 );

    // test data
    Mat testData( pointsCount, 2, CV_32FC1 ), testLabels, bestLabels;
    generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 );

    int code = cvtest::TS::OK;

    // KNearest default implementation
    Ptr<KNearest> knearest = KNearest::create();
    knearest->train(trainData, ml::ROW_SAMPLE, trainLabels);
    knearest->findNearest(testData, 4, bestLabels);
    float err;
    if( !calcErr( bestLabels, testLabels, sizes, err, true ) )
    {
        ts->printf( cvtest::TS::LOG, "Bad output labels.\n" );
        code = cvtest::TS::FAIL_INVALID_OUTPUT;
    }
    else if( err > 0.01f )
    {
        ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err );
        code = cvtest::TS::FAIL_BAD_ACCURACY;
    }

    // KNearest KDTree implementation
    Ptr<KNearest> knearestKdt = KNearest::create();
    knearestKdt->setAlgorithmType(KNearest::KDTREE);
    knearestKdt->train(trainData, ml::ROW_SAMPLE, trainLabels);
    knearestKdt->findNearest(testData, 4, bestLabels);
    if( !calcErr( bestLabels, testLabels, sizes, err, true ) )
    {
        ts->printf( cvtest::TS::LOG, "Bad output labels.\n" );
        code = cvtest::TS::FAIL_INVALID_OUTPUT;
    }
    else if( err > 0.01f )
    {
        ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err );
        code = cvtest::TS::FAIL_BAD_ACCURACY;
    }

    ts->set_failed_test_info( code );
}

class EM_Params
{
public:
    EM_Params(int _nclusters=10, int _covMatType=EM::COV_MAT_DIAGONAL, int _startStep=EM::START_AUTO_STEP,
           const cv::TermCriteria& _termCrit=cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, FLT_EPSILON),
           const cv::Mat* _probs=0, const cv::Mat* _weights=0,
           const cv::Mat* _means=0, const std::vector<cv::Mat>* _covs=0)
        : nclusters(_nclusters), covMatType(_covMatType), startStep(_startStep),
        probs(_probs), weights(_weights), means(_means), covs(_covs), termCrit(_termCrit)
    {}

    int nclusters;
    int covMatType;
    int startStep;

    // all 4 following matrices should have type CV_32FC1
    const cv::Mat* probs;
    const cv::Mat* weights;
    const cv::Mat* means;
    const std::vector<cv::Mat>* covs;

    cv::TermCriteria termCrit;
};

//--------------------------------------------------------------------------------------------
class CV_EMTest : public cvtest::BaseTest
{
public:
    CV_EMTest() {}
protected:
    virtual void run( int start_from );
    int runCase( int caseIndex, const EM_Params& params,
                  const cv::Mat& trainData, const cv::Mat& trainLabels,
                  const cv::Mat& testData, const cv::Mat& testLabels,
                  const vector<int>& sizes);
};

int CV_EMTest::runCase( int caseIndex, const EM_Params& params,
                        const cv::Mat& trainData, const cv::Mat& trainLabels,
                        const cv::Mat& testData, const cv::Mat& testLabels,
                        const vector<int>& sizes )
{
    int code = cvtest::TS::OK;

    cv::Mat labels;
    float err;

    Ptr<EM> em = EM::create();
    em->setClustersNumber(params.nclusters);
    em->setCovarianceMatrixType(params.covMatType);
    em->setTermCriteria(params.termCrit);
    if( params.startStep == EM::START_AUTO_STEP )
        em->trainEM( trainData, noArray(), labels, noArray() );
    else if( params.startStep == EM::START_E_STEP )
        em->trainE( trainData, *params.means, *params.covs,
                    *params.weights, noArray(), labels, noArray() );
    else if( params.startStep == EM::START_M_STEP )
        em->trainM( trainData, *params.probs,
                    noArray(), labels, noArray() );

    // check train error
    if( !calcErr( labels, trainLabels, sizes, err , false, false ) )
    {
        ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex );
        code = cvtest::TS::FAIL_INVALID_OUTPUT;
    }
    else if( err > 0.008f )
    {
        ts->printf( cvtest::TS::LOG, "Case index %i : Bad accuracy (%f) on train data.\n", caseIndex, err );
        code = cvtest::TS::FAIL_BAD_ACCURACY;
    }

    // check test error
    labels.create( testData.rows, 1, CV_32SC1 );
    for( int i = 0; i < testData.rows; i++ )
    {
        Mat sample = testData.row(i);
        Mat probs;
        labels.at<int>(i) = static_cast<int>(em->predict2( sample, probs )[1]);
    }
    if( !calcErr( labels, testLabels, sizes, err, false, false ) )
    {
        ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex );
        code = cvtest::TS::FAIL_INVALID_OUTPUT;
    }
    else if( err > 0.008f )
    {
        ts->printf( cvtest::TS::LOG, "Case index %i : Bad accuracy (%f) on test data.\n", caseIndex, err );
        code = cvtest::TS::FAIL_BAD_ACCURACY;
    }

    return code;
}

void CV_EMTest::run( int /*start_from*/ )
{
    int sizesArr[] = { 500, 700, 800 };
    int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];

    // Points distribution
    Mat means;
    vector<Mat> covs;
    defaultDistribs( means, covs, CV_64FC1 );

    // train data
    Mat trainData( pointsCount, 2, CV_64FC1 ), trainLabels;
    vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
    generateData( trainData, trainLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );

    // test data
    Mat testData( pointsCount, 2, CV_64FC1 ), testLabels;
    generateData( testData, testLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );

    EM_Params params;
    params.nclusters = 3;
    Mat probs(trainData.rows, params.nclusters, CV_64FC1, cv::Scalar(1));
    params.probs = &probs;
    Mat weights(1, params.nclusters, CV_64FC1, cv::Scalar(1));
    params.weights = &weights;
    params.means = &means;
    params.covs = &covs;

    int code = cvtest::TS::OK;
    int caseIndex = 0;
    {
        params.startStep = EM::START_AUTO_STEP;
        params.covMatType = EM::COV_MAT_GENERIC;
        int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
        code = currCode == cvtest::TS::OK ? code : currCode;
    }
    {
        params.startStep = EM::START_AUTO_STEP;
        params.covMatType = EM::COV_MAT_DIAGONAL;
        int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
        code = currCode == cvtest::TS::OK ? code : currCode;
    }
    {
        params.startStep = EM::START_AUTO_STEP;
        params.covMatType = EM::COV_MAT_SPHERICAL;
        int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
        code = currCode == cvtest::TS::OK ? code : currCode;
    }
    {
        params.startStep = EM::START_M_STEP;
        params.covMatType = EM::COV_MAT_GENERIC;
        int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
        code = currCode == cvtest::TS::OK ? code : currCode;
    }
    {
        params.startStep = EM::START_M_STEP;
        params.covMatType = EM::COV_MAT_DIAGONAL;
        int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
        code = currCode == cvtest::TS::OK ? code : currCode;
    }
    {
        params.startStep = EM::START_M_STEP;
        params.covMatType = EM::COV_MAT_SPHERICAL;
        int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
        code = currCode == cvtest::TS::OK ? code : currCode;
    }
    {
        params.startStep = EM::START_E_STEP;
        params.covMatType = EM::COV_MAT_GENERIC;
        int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
        code = currCode == cvtest::TS::OK ? code : currCode;
    }
    {
        params.startStep = EM::START_E_STEP;
        params.covMatType = EM::COV_MAT_DIAGONAL;
        int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
        code = currCode == cvtest::TS::OK ? code : currCode;
    }
    {
        params.startStep = EM::START_E_STEP;
        params.covMatType = EM::COV_MAT_SPHERICAL;
        int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
        code = currCode == cvtest::TS::OK ? code : currCode;
    }

    ts->set_failed_test_info( code );
}

class CV_EMTest_SaveLoad : public cvtest::BaseTest {
public:
    CV_EMTest_SaveLoad() {}
protected:
    virtual void run( int /*start_from*/ )
    {
        int code = cvtest::TS::OK;
        const int nclusters = 2;

        Mat samples = Mat(3,1,CV_64FC1);
        samples.at<double>(0,0) = 1;
        samples.at<double>(1,0) = 2;
        samples.at<double>(2,0) = 3;

        Mat labels;

        Ptr<EM> em = EM::create();
        em->setClustersNumber(nclusters);
        em->trainEM(samples, noArray(), labels, noArray());

        Mat firstResult(samples.rows, 1, CV_32SC1);
        for( int i = 0; i < samples.rows; i++)
            firstResult.at<int>(i) = static_cast<int>(em->predict2(samples.row(i), noArray())[1]);

        // Write out
        string filename = cv::tempfile(".xml");
        {
            FileStorage fs = FileStorage(filename, FileStorage::WRITE);
            try
            {
                fs << "em" << "{";
                em->write(fs);
                fs << "}";
            }
            catch(...)
            {
                ts->printf( cvtest::TS::LOG, "Crash in write method.\n" );
                ts->set_failed_test_info( cvtest::TS::FAIL_EXCEPTION );
            }
        }

        em.release();

        // Read in
        try
        {
            em = Algorithm::load<EM>(filename);
        }
        catch(...)
        {
            ts->printf( cvtest::TS::LOG, "Crash in read method.\n" );
            ts->set_failed_test_info( cvtest::TS::FAIL_EXCEPTION );
        }

        remove( filename.c_str() );

        int errCaseCount = 0;
        for( int i = 0; i < samples.rows; i++)
            errCaseCount = std::abs(em->predict2(samples.row(i), noArray())[1] - firstResult.at<int>(i)) < FLT_EPSILON ? 0 : 1;

        if( errCaseCount > 0 )
        {
            ts->printf( cvtest::TS::LOG, "Different prediction results before writeing and after reading (errCaseCount=%d).\n", errCaseCount );
            code = cvtest::TS::FAIL_BAD_ACCURACY;
        }

        ts->set_failed_test_info( code );
    }
};

class CV_EMTest_Classification : public cvtest::BaseTest
{
public:
    CV_EMTest_Classification() {}
protected:
    virtual void run(int)
    {
        // This test classifies spam by the following way:
        // 1. estimates distributions of "spam" / "not spam"
        // 2. predict classID using Bayes classifier for estimated distributions.

        string dataFilename = string(ts->get_data_path()) + "spambase.data";
        Ptr<TrainData> data = TrainData::loadFromCSV(dataFilename, 0);

        if( data.empty() )
        {
            ts->printf(cvtest::TS::LOG, "File with spambase dataset cann't be read.\n");
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
        }

        Mat samples = data->getSamples();
        CV_Assert(samples.cols == 57);
        Mat responses = data->getResponses();

        vector<int> trainSamplesMask(samples.rows, 0);
        int trainSamplesCount = (int)(0.5f * samples.rows);
        for(int i = 0; i < trainSamplesCount; i++)
            trainSamplesMask[i] = 1;
        RNG rng(0);
        for(size_t i = 0; i < trainSamplesMask.size(); i++)
        {
            int i1 = rng(static_cast<unsigned>(trainSamplesMask.size()));
            int i2 = rng(static_cast<unsigned>(trainSamplesMask.size()));
            std::swap(trainSamplesMask[i1], trainSamplesMask[i2]);
        }

        Mat samples0, samples1;
        for(int i = 0; i < samples.rows; i++)
        {
            if(trainSamplesMask[i])
            {
                Mat sample = samples.row(i);
                int resp = (int)responses.at<float>(i);
                if(resp == 0)
                    samples0.push_back(sample);
                else
                    samples1.push_back(sample);
            }
        }
        Ptr<EM> model0 = EM::create();
        model0->setClustersNumber(3);
        model0->trainEM(samples0, noArray(), noArray(), noArray());

        Ptr<EM> model1 = EM::create();
        model1->setClustersNumber(3);
        model1->trainEM(samples1, noArray(), noArray(), noArray());

        Mat trainConfusionMat(2, 2, CV_32SC1, Scalar(0)),
            testConfusionMat(2, 2, CV_32SC1, Scalar(0));
        const double lambda = 1.;
        for(int i = 0; i < samples.rows; i++)
        {
            Mat sample = samples.row(i);
            double sampleLogLikelihoods0 = model0->predict2(sample, noArray())[0];
            double sampleLogLikelihoods1 = model1->predict2(sample, noArray())[0];

            int classID = sampleLogLikelihoods0 >= lambda * sampleLogLikelihoods1 ? 0 : 1;

            if(trainSamplesMask[i])
                trainConfusionMat.at<int>((int)responses.at<float>(i), classID)++;
            else
                testConfusionMat.at<int>((int)responses.at<float>(i), classID)++;
        }
//        std::cout << trainConfusionMat << std::endl;
//        std::cout << testConfusionMat << std::endl;

        double trainError = (double)(trainConfusionMat.at<int>(1,0) + trainConfusionMat.at<int>(0,1)) / trainSamplesCount;
        double testError = (double)(testConfusionMat.at<int>(1,0) + testConfusionMat.at<int>(0,1)) / (samples.rows - trainSamplesCount);
        const double maxTrainError = 0.23;
        const double maxTestError = 0.26;

        int code = cvtest::TS::OK;
        if(trainError > maxTrainError)
        {
            ts->printf(cvtest::TS::LOG, "Too large train classification error (calc = %f, valid=%f).\n", trainError, maxTrainError);
            code = cvtest::TS::FAIL_INVALID_TEST_DATA;
        }
        if(testError > maxTestError)
        {
            ts->printf(cvtest::TS::LOG, "Too large test classification error (calc = %f, valid=%f).\n", testError, maxTestError);
            code = cvtest::TS::FAIL_INVALID_TEST_DATA;
        }

        ts->set_failed_test_info(code);
    }
};

TEST(ML_KMeans, accuracy) { CV_KMeansTest test; test.safe_run(); }
TEST(ML_KNearest, accuracy) { CV_KNearestTest test; test.safe_run(); }
TEST(ML_EM, accuracy) { CV_EMTest test; test.safe_run(); }
TEST(ML_EM, save_load) { CV_EMTest_SaveLoad test; test.safe_run(); }
TEST(ML_EM, classification) { CV_EMTest_Classification test; test.safe_run(); }

/* [<][>][^][v][top][bottom][index][help] */