root/3rdparty/openexr/IlmImf/ImfPizCompressor.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. bitmapFromData
  2. forwardLutFromBitmap
  3. reverseLutFromBitmap
  4. applyLut
  5. _channelData
  6. numScanLines
  7. format
  8. compress
  9. compressTile
  10. uncompress
  11. uncompressTile
  12. compress
  13. uncompress

///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////


//-----------------------------------------------------------------------------
//
//      class PizCompressor
//
//-----------------------------------------------------------------------------

#include <ImfPizCompressor.h>
#include <ImfHeader.h>
#include <ImfChannelList.h>
#include <ImfHuf.h>
#include <ImfWav.h>
#include <ImfMisc.h>
#include <ImfCheckedArithmetic.h>
#include <ImathFun.h>
#include <ImathBox.h>
#include <Iex.h>
#include <ImfIO.h>
#include <ImfXdr.h>
#include <ImfAutoArray.h>
#include <string.h>
#include <assert.h>

namespace Imf {

using Imath::divp;
using Imath::modp;
using Imath::Box2i;
using Imath::V2i;
using Iex::InputExc;

namespace {

//
// Functions to compress the range of values in the pixel data
//

const int USHORT_RANGE = (1 << 16);
const int BITMAP_SIZE  = (USHORT_RANGE >> 3);

void
bitmapFromData (const unsigned short data[/*nData*/],
        int nData,
        unsigned char bitmap[BITMAP_SIZE],
        unsigned short &minNonZero,
        unsigned short &maxNonZero)
{
    for (int i = 0; i < BITMAP_SIZE; ++i)
    bitmap[i] = 0;

    for (int i = 0; i < nData; ++i)
    bitmap[data[i] >> 3] |= (1 << (data[i] & 7));

    bitmap[0] &= ~1;                    // zero is not explicitly stored in
                    // the bitmap; we assume that the
                    // data always contain zeroes
    minNonZero = BITMAP_SIZE - 1;
    maxNonZero = 0;

    for (int i = 0; i < BITMAP_SIZE; ++i)
    {
    if (bitmap[i])
    {
        if (minNonZero > i)
        minNonZero = i;
        if (maxNonZero < i)
        maxNonZero = i;
    }
    }
}


unsigned short
forwardLutFromBitmap (const unsigned char bitmap[BITMAP_SIZE],
              unsigned short lut[USHORT_RANGE])
{
    int k = 0;

    for (int i = 0; i < USHORT_RANGE; ++i)
    {
    if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
        lut[i] = k++;
    else
        lut[i] = 0;
    }

    return k - 1;       // maximum value stored in lut[],
}                       // i.e. number of ones in bitmap minus 1


unsigned short
reverseLutFromBitmap (const unsigned char bitmap[BITMAP_SIZE],
              unsigned short lut[USHORT_RANGE])
{
    int k = 0;

    for (int i = 0; i < USHORT_RANGE; ++i)
    {
    if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
        lut[k++] = i;
    }

    int n = k - 1;

    while (k < USHORT_RANGE)
    lut[k++] = 0;

    return n;           // maximum k where lut[k] is non-zero,
}                       // i.e. number of ones in bitmap minus 1


void
applyLut (const unsigned short lut[USHORT_RANGE],
      unsigned short data[/*nData*/],
      int nData)
{
    for (int i = 0; i < nData; ++i)
    data[i] = lut[data[i]];
}


} // namespace


struct PizCompressor::ChannelData
{
    unsigned short *    start;
    unsigned short *    end;
    int                 nx;
    int                 ny;
    int                 ys;
    int                 size;
};


PizCompressor::PizCompressor
    (const Header &hdr,
     size_t maxScanLineSize,
     size_t numScanLines)
:
    Compressor (hdr),
    _maxScanLineSize (maxScanLineSize),
    _format (XDR),
    _numScanLines (numScanLines),
    _tmpBuffer (0),
    _outBuffer (0),
    _numChans (0),
    _channels (hdr.channels()),
    _channelData (0)
{
    size_t tmpBufferSize =
                uiMult (maxScanLineSize, numScanLines) / 2;

    size_t outBufferSize =
                uiAdd (uiMult (maxScanLineSize, numScanLines),
                       size_t (65536 + 8192));

    _tmpBuffer = new unsigned short
            [checkArraySize (tmpBufferSize, sizeof (unsigned short))];

    _outBuffer = new char [outBufferSize];

    const ChannelList &channels = header().channels();
    bool onlyHalfChannels = true;

    for (ChannelList::ConstIterator c = channels.begin();
     c != channels.end();
     ++c)
    {
    _numChans++;

    assert (pixelTypeSize (c.channel().type) % pixelTypeSize (HALF) == 0);

    if (c.channel().type != HALF)
        onlyHalfChannels = false;
    }

    _channelData = new ChannelData[_numChans];

    const Box2i &dataWindow = hdr.dataWindow();

    _minX = dataWindow.min.x;
    _maxX = dataWindow.max.x;
    _maxY = dataWindow.max.y;

    //
    // We can support uncompressed data in the machine's native format
    // if all image channels are of type HALF, and if the Xdr and the
    // native represenations of a half have the same size.
    //

    if (onlyHalfChannels && (sizeof (half) == pixelTypeSize (HALF)))
    _format = NATIVE;
}


PizCompressor::~PizCompressor ()
{
    delete [] _tmpBuffer;
    delete [] _outBuffer;
    delete [] _channelData;
}


int
PizCompressor::numScanLines () const
{
    return _numScanLines;
}


Compressor::Format
PizCompressor::format () const
{
    return _format;
}


int
PizCompressor::compress (const char *inPtr,
             int inSize,
             int minY,
             const char *&outPtr)
{
    return compress (inPtr,
             inSize,
             Box2i (V2i (_minX, minY),
                V2i (_maxX, minY + numScanLines() - 1)),
             outPtr);
}


int
PizCompressor::compressTile (const char *inPtr,
                 int inSize,
                 Imath::Box2i range,
                 const char *&outPtr)
{
    return compress (inPtr, inSize, range, outPtr);
}


int
PizCompressor::uncompress (const char *inPtr,
               int inSize,
               int minY,
               const char *&outPtr)
{
    return uncompress (inPtr,
               inSize,
               Box2i (V2i (_minX, minY),
                  V2i (_maxX, minY + numScanLines() - 1)),
               outPtr);
}


int
PizCompressor::uncompressTile (const char *inPtr,
                   int inSize,
                   Imath::Box2i range,
                   const char *&outPtr)
{
    return uncompress (inPtr, inSize, range, outPtr);
}


int
PizCompressor::compress (const char *inPtr,
             int inSize,
             Imath::Box2i range,
             const char *&outPtr)
{
    //
    // This is the compress function which is used by both the tiled and
    // scanline compression routines.
    //

    //
    // Special case ­- empty input buffer
    //

    if (inSize == 0)
    {
    outPtr = _outBuffer;
    return 0;
    }

    //
    // Rearrange the pixel data so that the wavelet
    // and Huffman encoders can process them easily.
    //
    // The wavelet and Huffman encoders both handle only
    // 16-bit data, so 32-bit data must be split into smaller
    // pieces.  We treat each 32-bit channel (UINT, FLOAT) as
    // two interleaved 16-bit channels.
    //

    int minX = range.min.x;
    int maxX = range.max.x;
    int minY = range.min.y;
    int maxY = range.max.y;

    if (maxY > _maxY)
        maxY = _maxY;

    if (maxX > _maxX)
        maxX = _maxX;

    unsigned short *tmpBufferEnd = _tmpBuffer;
    int i = 0;

    for (ChannelList::ConstIterator c = _channels.begin();
     c != _channels.end();
     ++c, ++i)
    {
    ChannelData &cd = _channelData[i];

    cd.start = tmpBufferEnd;
    cd.end = cd.start;

    cd.nx = numSamples (c.channel().xSampling, minX, maxX);
    cd.ny = numSamples (c.channel().ySampling, minY, maxY);
    cd.ys = c.channel().ySampling;

    cd.size = pixelTypeSize (c.channel().type) / pixelTypeSize (HALF);

    tmpBufferEnd += cd.nx * cd.ny * cd.size;
    }

    if (_format == XDR)
    {
    //
    // Machine-independent (Xdr) data format
    //

    for (int y = minY; y <= maxY; ++y)
    {
        for (int i = 0; i < _numChans; ++i)
        {
        ChannelData &cd = _channelData[i];

        if (modp (y, cd.ys) != 0)
            continue;

        for (int x = cd.nx * cd.size; x > 0; --x)
        {
            Xdr::read <CharPtrIO> (inPtr, *cd.end);
            ++cd.end;
        }
        }
    }
    }
    else
    {
    //
    // Native, machine-dependent data format
    //

    for (int y = minY; y <= maxY; ++y)
    {
        for (int i = 0; i < _numChans; ++i)
        {
        ChannelData &cd = _channelData[i];

        if (modp (y, cd.ys) != 0)
            continue;

        int n = cd.nx * cd.size;
        memcpy (cd.end, inPtr, n * sizeof (unsigned short));
        inPtr  += n * sizeof (unsigned short);
        cd.end += n;
        }
    }
    }

    #if defined (DEBUG)

    for (int i = 1; i < _numChans; ++i)
        assert (_channelData[i-1].end == _channelData[i].start);

    assert (_channelData[_numChans-1].end == tmpBufferEnd);

    #endif

    //
    // Compress the range of the pixel data
    //

    AutoArray <unsigned char, BITMAP_SIZE> bitmap;
    unsigned short minNonZero;
    unsigned short maxNonZero;

    bitmapFromData (_tmpBuffer,
            tmpBufferEnd - _tmpBuffer,
            bitmap,
            minNonZero, maxNonZero);

    AutoArray <unsigned short, USHORT_RANGE> lut;
    unsigned short maxValue = forwardLutFromBitmap (bitmap, lut);
    applyLut (lut, _tmpBuffer, tmpBufferEnd - _tmpBuffer);

    //
    // Store range compression info in _outBuffer
    //

    char *buf = _outBuffer;

    Xdr::write <CharPtrIO> (buf, minNonZero);
    Xdr::write <CharPtrIO> (buf, maxNonZero);

    if (minNonZero <= maxNonZero)
    {
    Xdr::write <CharPtrIO> (buf, (char *) &bitmap[0] + minNonZero,
                maxNonZero - minNonZero + 1);
    }

    //
    // Apply wavelet encoding
    //

    for (int i = 0; i < _numChans; ++i)
    {
    ChannelData &cd = _channelData[i];

    for (int j = 0; j < cd.size; ++j)
    {
        wav2Encode (cd.start + j,
            cd.nx, cd.size,
            cd.ny, cd.nx * cd.size,
            maxValue);
    }
    }

    //
    // Apply Huffman encoding; append the result to _outBuffer
    //

    char *lengthPtr = buf;
    Xdr::write <CharPtrIO> (buf, int(0));

    int length = hufCompress (_tmpBuffer, tmpBufferEnd - _tmpBuffer, buf);
    Xdr::write <CharPtrIO> (lengthPtr, length);

    outPtr = _outBuffer;
    return buf - _outBuffer + length;
}


int
PizCompressor::uncompress (const char *inPtr,
               int inSize,
               Imath::Box2i range,
               const char *&outPtr)
{
    //
    // This is the cunompress function which is used by both the tiled and
    // scanline decompression routines.
    //

    //
    // Special case - empty input buffer
    //

    if (inSize == 0)
    {
    outPtr = _outBuffer;
    return 0;
    }

    //
    // Determine the layout of the compressed pixel data
    //

    int minX = range.min.x;
    int maxX = range.max.x;
    int minY = range.min.y;
    int maxY = range.max.y;

    if (maxY > _maxY)
        maxY = _maxY;

    if (maxX > _maxX)
        maxX = _maxX;

    unsigned short *tmpBufferEnd = _tmpBuffer;
    int i = 0;

    for (ChannelList::ConstIterator c = _channels.begin();
     c != _channels.end();
     ++c, ++i)
    {
    ChannelData &cd = _channelData[i];

    cd.start = tmpBufferEnd;
    cd.end = cd.start;

    cd.nx = numSamples (c.channel().xSampling, minX, maxX);
    cd.ny = numSamples (c.channel().ySampling, minY, maxY);
    cd.ys = c.channel().ySampling;

    cd.size = pixelTypeSize (c.channel().type) / pixelTypeSize (HALF);

    tmpBufferEnd += cd.nx * cd.ny * cd.size;
    }

    //
    // Read range compression data
    //

    unsigned short minNonZero;
    unsigned short maxNonZero;

    AutoArray <unsigned char, BITMAP_SIZE> bitmap;
    memset (bitmap, 0, sizeof (unsigned char) * BITMAP_SIZE);

    Xdr::read <CharPtrIO> (inPtr, minNonZero);
    Xdr::read <CharPtrIO> (inPtr, maxNonZero);

    if (maxNonZero >= BITMAP_SIZE)
    {
    throw InputExc ("Error in header for PIZ-compressed data "
            "(invalid bitmap size).");
    }

    if (minNonZero <= maxNonZero)
    {
    Xdr::read <CharPtrIO> (inPtr, (char *) &bitmap[0] + minNonZero,
                   maxNonZero - minNonZero + 1);
    }

    AutoArray <unsigned short, USHORT_RANGE> lut;
    unsigned short maxValue = reverseLutFromBitmap (bitmap, lut);

    //
    // Huffman decoding
    //

    int length;
    Xdr::read <CharPtrIO> (inPtr, length);

    hufUncompress (inPtr, length, _tmpBuffer, tmpBufferEnd - _tmpBuffer);

    //
    // Wavelet decoding
    //

    for (int i = 0; i < _numChans; ++i)
    {
    ChannelData &cd = _channelData[i];

    for (int j = 0; j < cd.size; ++j)
    {
        wav2Decode (cd.start + j,
            cd.nx, cd.size,
            cd.ny, cd.nx * cd.size,
            maxValue);
    }
    }

    //
    // Expand the pixel data to their original range
    //

    applyLut (lut, _tmpBuffer, tmpBufferEnd - _tmpBuffer);

    //
    // Rearrange the pixel data into the format expected by the caller.
    //

    char *outEnd = _outBuffer;

    if (_format == XDR)
    {
    //
    // Machine-independent (Xdr) data format
    //

    for (int y = minY; y <= maxY; ++y)
    {
        for (int i = 0; i < _numChans; ++i)
        {
        ChannelData &cd = _channelData[i];

        if (modp (y, cd.ys) != 0)
            continue;

        for (int x = cd.nx * cd.size; x > 0; --x)
        {
            Xdr::write <CharPtrIO> (outEnd, *cd.end);
            ++cd.end;
        }
        }
    }
    }
    else
    {
    //
    // Native, machine-dependent data format
    //

    for (int y = minY; y <= maxY; ++y)
    {
        for (int i = 0; i < _numChans; ++i)
        {
        ChannelData &cd = _channelData[i];

        if (modp (y, cd.ys) != 0)
            continue;

        int n = cd.nx * cd.size;
        memcpy (outEnd, cd.end, n * sizeof (unsigned short));
        outEnd += n * sizeof (unsigned short);
        cd.end += n;
        }
    }
    }

    #if defined (DEBUG)

    for (int i = 1; i < _numChans; ++i)
        assert (_channelData[i-1].end == _channelData[i].start);

    assert (_channelData[_numChans-1].end == tmpBufferEnd);

    #endif

    outPtr = _outBuffer;
    return outEnd - _outBuffer;
}


} // namespace Imf

/* [<][>][^][v][top][bottom][index][help] */