This source file includes following definitions.
- signd
- getHnorm
- normalize
- removeScale
- isRotationValid
- passesSameSideOfPlaneConstraint
- decomposeHomography
- findMotionFrom_tstar_n
- decompose
- oppositeOfMinor
- findRmatFrom_tstar_n
- decompose
- decomposeHomographyMat
#include "precomp.hpp"
#include <memory>
namespace cv
{
namespace HomographyDecomposition
{
typedef struct _CameraMotion {
cv::Matx33d R;
cv::Vec3d n;
cv::Vec3d t;
} CameraMotion;
inline int signd(const double x)
{
return ( x >= 0 ? 1 : -1 );
}
class HomographyDecomp {
public:
HomographyDecomp() {}
virtual ~HomographyDecomp() {}
virtual void decomposeHomography(const cv::Matx33d& H, const cv::Matx33d& K,
std::vector<CameraMotion>& camMotions);
bool isRotationValid(const cv::Matx33d& R, const double epsilon=0.01);
protected:
bool passesSameSideOfPlaneConstraint(CameraMotion& motion);
virtual void decompose(std::vector<CameraMotion>& camMotions) = 0;
const cv::Matx33d& getHnorm() const {
return _Hnorm;
}
private:
cv::Matx33d normalize(const cv::Matx33d& H, const cv::Matx33d& K);
void removeScale();
cv::Matx33d _Hnorm;
};
class HomographyDecompZhang : public HomographyDecomp {
public:
HomographyDecompZhang():HomographyDecomp() {}
virtual ~HomographyDecompZhang() {}
private:
virtual void decompose(std::vector<CameraMotion>& camMotions);
bool findMotionFrom_tstar_n(const cv::Vec3d& tstar, const cv::Vec3d& n, CameraMotion& motion);
};
class HomographyDecompInria : public HomographyDecomp {
public:
HomographyDecompInria():HomographyDecomp() {}
virtual ~HomographyDecompInria() {}
private:
virtual void decompose(std::vector<CameraMotion>& camMotions);
double oppositeOfMinor(const cv::Matx33d& M, const int row, const int col);
void findRmatFrom_tstar_n(const cv::Vec3d& tstar, const cv::Vec3d& n, const double v, cv::Matx33d& R);
};
Matx33d HomographyDecomp::normalize(const Matx33d& H, const Matx33d& K)
{
return K.inv() * H * K;
}
void HomographyDecomp::removeScale()
{
Mat W;
SVD::compute(_Hnorm, W);
_Hnorm = _Hnorm * (1.0/W.at<double>(1));
}
bool HomographyDecomp::isRotationValid(const Matx33d& R, const double epsilon)
{
Matx33d RtR = R.t() * R;
Matx33d I(1,0,0, 0,1,0, 0,0,1);
if (norm(RtR, I, NORM_INF) > epsilon)
return false;
return (fabs(determinant(R) - 1.0) < epsilon);
}
bool HomographyDecomp::passesSameSideOfPlaneConstraint(CameraMotion& motion)
{
typedef Matx<double, 1, 1> Matx11d;
Matx31d t = Matx31d(motion.t);
Matx31d n = Matx31d(motion.n);
Matx11d proj = n.t() * motion.R.t() * t;
if ( (1 + proj(0, 0) ) <= 0 )
return false;
return true;
}
void HomographyDecomp::decomposeHomography(const Matx33d& H, const cv::Matx33d& K,
std::vector<CameraMotion>& camMotions)
{
_Hnorm = normalize(H, K);
removeScale();
decompose(camMotions);
}
bool HomographyDecompZhang::findMotionFrom_tstar_n(const cv::Vec3d& tstar, const cv::Vec3d& n, CameraMotion& motion)
{
Matx31d tstar_m = Mat(tstar);
Matx31d n_m = Mat(n);
Matx33d temp = tstar_m * n_m.t();
temp(0, 0) += 1.0;
temp(1, 1) += 1.0;
temp(2, 2) += 1.0;
motion.R = getHnorm() * temp.inv();
motion.t = motion.R * tstar;
motion.n = n;
return passesSameSideOfPlaneConstraint(motion);
}
void HomographyDecompZhang::decompose(std::vector<CameraMotion>& camMotions)
{
Mat W, U, Vt;
SVD::compute(getHnorm(), W, U, Vt);
double lambda1=W.at<double>(0);
double lambda3=W.at<double>(2);
double lambda1m3 = (lambda1-lambda3);
double lambda1m3_2 = lambda1m3*lambda1m3;
double lambda1t3 = lambda1*lambda3;
double t1 = 1.0/(2.0*lambda1t3);
double t2 = sqrt(1.0+4.0*lambda1t3/lambda1m3_2);
double t12 = t1*t2;
double e1 = -t1 + t12;
double e3 = -t1 - t12;
double e1_2 = e1*e1;
double e3_2 = e3*e3;
double nv1p = sqrt(e1_2*lambda1m3_2 + 2*e1*(lambda1t3-1) + 1.0);
double nv3p = sqrt(e3_2*lambda1m3_2 + 2*e3*(lambda1t3-1) + 1.0);
double v1p[3], v3p[3];
v1p[0]=Vt.at<double>(0)*nv1p, v1p[1]=Vt.at<double>(1)*nv1p, v1p[2]=Vt.at<double>(2)*nv1p;
v3p[0]=Vt.at<double>(6)*nv3p, v3p[1]=Vt.at<double>(7)*nv3p, v3p[2]=Vt.at<double>(8)*nv3p;
double v1pmv3p[3], v1ppv3p[3];
double e1v3me3v1[3], e1v3pe3v1[3];
double inv_e1me3 = 1.0/(e1-e3);
for(int kk=0;kk<3;++kk){
v1pmv3p[kk] = v1p[kk]-v3p[kk];
v1ppv3p[kk] = v1p[kk]+v3p[kk];
}
for(int kk=0; kk<3; ++kk){
double e1v3 = e1*v3p[kk];
double e3v1=e3*v1p[kk];
e1v3me3v1[kk] = e1v3-e3v1;
e1v3pe3v1[kk] = e1v3+e3v1;
}
Vec3d tstar_p, tstar_n;
Vec3d n_p, n_n;
for(int kk=0; kk<3; ++kk) {
tstar_p[kk] = v1pmv3p[kk]*inv_e1me3;
tstar_n[kk] = -tstar_p[kk];
n_p[kk] = e1v3me3v1[kk]*inv_e1me3;
n_n[kk] = -n_p[kk];
}
CameraMotion cmotion;
if (findMotionFrom_tstar_n(tstar_p, n_p, cmotion))
camMotions.push_back(cmotion);
if (findMotionFrom_tstar_n(tstar_p, n_n, cmotion))
camMotions.push_back(cmotion);
if (findMotionFrom_tstar_n(tstar_n, n_p, cmotion))
camMotions.push_back(cmotion);
if (findMotionFrom_tstar_n(tstar_n, n_n, cmotion))
camMotions.push_back(cmotion);
for(int kk=0;kk<3;++kk){
tstar_p[kk] = v1ppv3p[kk]*inv_e1me3;
tstar_n[kk] = -tstar_p[kk];
n_p[kk] = e1v3pe3v1[kk]*inv_e1me3;
n_n[kk] = -n_p[kk];
}
if (findMotionFrom_tstar_n(tstar_p, n_p, cmotion))
camMotions.push_back(cmotion);
if (findMotionFrom_tstar_n(tstar_p, n_n, cmotion))
camMotions.push_back(cmotion);
if (findMotionFrom_tstar_n(tstar_n, n_p, cmotion))
camMotions.push_back(cmotion);
if (findMotionFrom_tstar_n(tstar_n, n_n, cmotion))
camMotions.push_back(cmotion);
}
double HomographyDecompInria::oppositeOfMinor(const Matx33d& M, const int row, const int col)
{
int x1 = col == 0 ? 1 : 0;
int x2 = col == 2 ? 1 : 2;
int y1 = row == 0 ? 1 : 0;
int y2 = row == 2 ? 1 : 2;
return (M(y1, x2) * M(y2, x1) - M(y1, x1) * M(y2, x2));
}
void HomographyDecompInria::findRmatFrom_tstar_n(const cv::Vec3d& tstar, const cv::Vec3d& n, const double v, cv::Matx33d& R)
{
Matx31d tstar_m = Matx31d(tstar);
Matx31d n_m = Matx31d(n);
Matx33d I(1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0);
R = getHnorm() * (I - (2/v) * tstar_m * n_m.t() );
}
void HomographyDecompInria::decompose(std::vector<CameraMotion>& camMotions)
{
const double epsilon = 0.001;
Matx33d S;
S = getHnorm().t() * getHnorm();
S(0, 0) -= 1.0;
S(1, 1) -= 1.0;
S(2, 2) -= 1.0;
if( norm(S, NORM_INF) < epsilon) {
CameraMotion motion;
motion.R = Matx33d(getHnorm());
motion.t = Vec3d(0, 0, 0);
motion.n = Vec3d(0, 0, 0);
camMotions.push_back(motion);
return;
}
Vec3d npa, npb;
double M00 = oppositeOfMinor(S, 0, 0);
double M11 = oppositeOfMinor(S, 1, 1);
double M22 = oppositeOfMinor(S, 2, 2);
double rtM00 = sqrt(M00);
double rtM11 = sqrt(M11);
double rtM22 = sqrt(M22);
double M01 = oppositeOfMinor(S, 0, 1);
double M12 = oppositeOfMinor(S, 1, 2);
double M02 = oppositeOfMinor(S, 0, 2);
int e12 = signd(M12);
int e02 = signd(M02);
int e01 = signd(M01);
double nS00 = abs(S(0, 0));
double nS11 = abs(S(1, 1));
double nS22 = abs(S(2, 2));
int indx = 0;
if(nS00 < nS11){
indx = 1;
if( nS11 < nS22 )
indx = 2;
}
else {
if(nS00 < nS22 )
indx = 2;
}
switch (indx) {
case 0:
npa[0] = S(0, 0), npb[0] = S(0, 0);
npa[1] = S(0, 1) + rtM22, npb[1] = S(0, 1) - rtM22;
npa[2] = S(0, 2) + e12 * rtM11, npb[2] = S(0, 2) - e12 * rtM11;
break;
case 1:
npa[0] = S(0, 1) + rtM22, npb[0] = S(0, 1) - rtM22;
npa[1] = S(1, 1), npb[1] = S(1, 1);
npa[2] = S(1, 2) - e02 * rtM00, npb[2] = S(1, 2) + e02 * rtM00;
break;
case 2:
npa[0] = S(0, 2) + e01 * rtM11, npb[0] = S(0, 2) - e01 * rtM11;
npa[1] = S(1, 2) + rtM00, npb[1] = S(1, 2) - rtM00;
npa[2] = S(2, 2), npb[2] = S(2, 2);
break;
default:
break;
}
double traceS = S(0, 0) + S(1, 1) + S(2, 2);
double v = 2.0 * sqrt(1 + traceS - M00 - M11 - M22);
double ESii = signd(S(indx, indx)) ;
double r_2 = 2 + traceS + v;
double nt_2 = 2 + traceS - v;
double r = sqrt(r_2);
double n_t = sqrt(nt_2);
Vec3d na = npa / norm(npa);
Vec3d nb = npb / norm(npb);
double half_nt = 0.5 * n_t;
double esii_t_r = ESii * r;
Vec3d ta_star = half_nt * (esii_t_r * nb - n_t * na);
Vec3d tb_star = half_nt * (esii_t_r * na - n_t * nb);
camMotions.resize(4);
Matx33d Ra, Rb;
Vec3d ta, tb;
findRmatFrom_tstar_n(ta_star, na, v, Ra);
ta = Ra * ta_star;
camMotions[0].R = Ra;
camMotions[0].t = ta;
camMotions[0].n = na;
camMotions[1].R = Ra;
camMotions[1].t = -ta;
camMotions[1].n = -na;
findRmatFrom_tstar_n(tb_star, nb, v, Rb);
tb = Rb * tb_star;
camMotions[2].R = Rb;
camMotions[2].t = tb;
camMotions[2].n = nb;
camMotions[3].R = Rb;
camMotions[3].t = -tb;
camMotions[3].n = -nb;
}
}
int decomposeHomographyMat(InputArray _H,
InputArray _K,
OutputArrayOfArrays _rotations,
OutputArrayOfArrays _translations,
OutputArrayOfArrays _normals)
{
using namespace std;
using namespace HomographyDecomposition;
Mat H = _H.getMat().reshape(1, 3);
CV_Assert(H.cols == 3 && H.rows == 3);
Mat K = _K.getMat().reshape(1, 3);
CV_Assert(K.cols == 3 && K.rows == 3);
auto_ptr<HomographyDecomp> hdecomp(new HomographyDecompInria);
vector<CameraMotion> motions;
hdecomp->decomposeHomography(H, K, motions);
int nsols = static_cast<int>(motions.size());
int depth = CV_64F;
if (_rotations.needed()) {
_rotations.create(nsols, 1, depth);
for (int k = 0; k < nsols; ++k ) {
_rotations.getMatRef(k) = Mat(motions[k].R);
}
}
if (_translations.needed()) {
_translations.create(nsols, 1, depth);
for (int k = 0; k < nsols; ++k ) {
_translations.getMatRef(k) = Mat(motions[k].t);
}
}
if (_normals.needed()) {
_normals.create(nsols, 1, depth);
for (int k = 0; k < nsols; ++k ) {
_normals.getMatRef(k) = Mat(motions[k].n);
}
}
return nsols;
}
}