root/modules/core/src/ocl.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. getBoolParameter
  2. getConfigurationParameterForSize
  3. initOpenCLAndLoad
  4. initOpenCLAndLoad
  5. initOpenCLAndLoad
  6. initOpenCLAndLoad
  7. isRaiseError
  8. crc64
  9. haveOpenCL
  10. useOpenCL
  11. setUseOpenCL
  12. getInstance
  13. isAvailable
  14. haveAmdBlas
  15. haveAmdBlas
  16. getInstance
  17. isAvailable
  18. haveAmdFft
  19. haveAmdFft
  20. haveSVM
  21. finish
  22. init
  23. ptr
  24. getDefault
  25. parseDeviceVersion
  26. getProp
  27. getBoolProp
  28. getStrProp
  29. set
  30. ptr
  31. name
  32. extensions
  33. version
  34. vendorName
  35. vendorID
  36. OpenCL_C_Version
  37. OpenCLVersion
  38. deviceVersionMajor
  39. deviceVersionMinor
  40. driverVersion
  41. type
  42. addressBits
  43. available
  44. compilerAvailable
  45. linkerAvailable
  46. doubleFPConfig
  47. singleFPConfig
  48. halfFPConfig
  49. endianLittle
  50. errorCorrectionSupport
  51. executionCapabilities
  52. globalMemCacheSize
  53. globalMemCacheType
  54. globalMemCacheLineSize
  55. globalMemSize
  56. localMemSize
  57. localMemType
  58. hostUnifiedMemory
  59. imageSupport
  60. imageFromBufferSupport
  61. imagePitchAlignment
  62. imageBaseAddressAlignment
  63. image2DMaxWidth
  64. image2DMaxHeight
  65. image3DMaxWidth
  66. image3DMaxHeight
  67. image3DMaxDepth
  68. imageMaxBufferSize
  69. imageMaxArraySize
  70. maxClockFrequency
  71. maxComputeUnits
  72. maxConstantArgs
  73. maxConstantBufferSize
  74. maxMemAllocSize
  75. maxParameterSize
  76. maxReadImageArgs
  77. maxWriteImageArgs
  78. maxSamplers
  79. maxWorkGroupSize
  80. maxWorkItemDims
  81. maxWorkItemSizes
  82. memBaseAddrAlign
  83. nativeVectorWidthChar
  84. nativeVectorWidthShort
  85. nativeVectorWidthInt
  86. nativeVectorWidthLong
  87. nativeVectorWidthFloat
  88. nativeVectorWidthDouble
  89. nativeVectorWidthHalf
  90. preferredVectorWidthChar
  91. preferredVectorWidthShort
  92. preferredVectorWidthInt
  93. preferredVectorWidthLong
  94. preferredVectorWidthFloat
  95. preferredVectorWidthDouble
  96. preferredVectorWidthHalf
  97. printfBufferSize
  98. profilingTimerResolution
  99. getDefault
  100. getStringInfo
  101. split
  102. parseOpenCLDeviceConfiguration
  103. selectOpenCLDevice
  104. selectOpenCLDevice
  105. checkForceSVMUmatUsage
  106. checkDisableSVMUMatUsage
  107. checkDisableSVM
  108. getSVMCapabilitiesMask
  109. get
  110. __init
  111. setDefault
  112. getProg
  113. svmInit
  114. create
  115. create
  116. ptr
  117. ndevices
  118. device
  119. getDefault
  120. getProg
  121. useSVM
  122. setUseSVM
  123. useSVM
  124. setUseSVM
  125. getSVMCapabilitites
  126. getSVMFunctions
  127. useSVM
  128. initializeContextFromHandle
  129. create
  130. finish
  131. ptr
  132. getDefault
  133. getQueue
  134. iwscale
  135. iwscale
  136. Constant
  137. nu
  138. cleanupUMats
  139. addUMat
  140. addImage
  141. finit
  142. oclCleanupCallback
  143. create
  144. create
  145. ptr
  146. empty
  147. set
  148. set
  149. set
  150. set
  151. run
  152. runTask
  153. workGroupSize
  154. preferedWorkGroupSizeMultiple
  155. compileWorkGroupSize
  156. localMemSize
  157. store
  158. create
  159. source
  160. ptr
  161. read
  162. write
  163. getPrefix
  164. getPrefix
  165. init
  166. source
  167. derived
  168. _findAndRemoveEntryFromAllocatedList
  169. _findAndRemoveEntryFromReservedList
  170. _checkSizeOfReservedEntries
  171. _allocationGranularity
  172. maxReservedSize
  173. allocate
  174. release
  175. getReservedSize
  176. getMaxReservedSize
  177. setMaxReservedSize
  178. freeAllReservedBuffers
  179. capacity_
  180. _allocateBufferEntry
  181. _releaseBufferEntry
  182. capacity_
  183. _allocateBufferEntry
  184. _releaseBufferEntry
  185. allocatedPtr_
  186. getAlignedPtr
  187. bufferPoolHostPtr
  188. defaultAllocate
  189. getBestFlags
  190. allocate
  191. allocate
  192. deallocate
  193. map
  194. unmap
  195. checkContinuous
  196. download
  197. upload
  198. copy
  199. getBufferPoolController
  200. getOpenCLAllocator
  201. getDevices
  202. getStrProp
  203. deviceNumber
  204. getDevice
  205. name
  206. vendor
  207. version
  208. getPlatforms
  209. getPlatfomsInfo
  210. typeToStr
  211. memopTypeToStr
  212. vecopTypeToStr
  213. convertTypeStr
  214. kerToStr
  215. kernelToStr
  216. predictOptimalVectorWidth
  217. checkOptimalVectorWidth
  218. predictOptimalVectorWidthMax
  219. buildOptionsAddMatrixDescription
  220. getImageFormat
  221. isFormatSupported
  222. init
  223. canCreateAlias
  224. isFormatSupported
  225. ptr
  226. isPerformanceCheckBypassed
  227. isCLBuffer

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include <list>
#include <map>
#include <string>
#include <sstream>
#include <iostream> // std::cerr

#define CV_OPENCL_ALWAYS_SHOW_BUILD_LOG 0
#define CV_OPENCL_SHOW_RUN_ERRORS       0
#define CV_OPENCL_SHOW_SVM_ERROR_LOG    1
#define CV_OPENCL_SHOW_SVM_LOG          0

#include "opencv2/core/bufferpool.hpp"
#ifndef LOG_BUFFER_POOL
# if 0
#   define LOG_BUFFER_POOL printf
# else
#   define LOG_BUFFER_POOL(...)
# endif
#endif


// TODO Move to some common place
static bool getBoolParameter(const char* name, bool defaultValue)
{
/*
 * If your system doesn't support getenv(), define NO_GETENV to disable
 * this feature.
 */
#ifdef NO_GETENV
    const char* envValue = NULL;
#else
    const char* envValue = getenv(name);
#endif
    if (envValue == NULL)
    {
        return defaultValue;
    }
    cv::String value = envValue;
    if (value == "1" || value == "True" || value == "true" || value == "TRUE")
    {
        return true;
    }
    if (value == "0" || value == "False" || value == "false" || value == "FALSE")
    {
        return false;
    }
    CV_ErrorNoReturn(cv::Error::StsBadArg, cv::format("Invalid value for %s parameter: %s", name, value.c_str()));
}


// TODO Move to some common place
static size_t getConfigurationParameterForSize(const char* name, size_t defaultValue)
{
#ifdef NO_GETENV
    const char* envValue = NULL;
#else
    const char* envValue = getenv(name);
#endif
    if (envValue == NULL)
    {
        return defaultValue;
    }
    cv::String value = envValue;
    size_t pos = 0;
    for (; pos < value.size(); pos++)
    {
        if (!isdigit(value[pos]))
            break;
    }
    cv::String valueStr = value.substr(0, pos);
    cv::String suffixStr = value.substr(pos, value.length() - pos);
    int v = atoi(valueStr.c_str());
    if (suffixStr.length() == 0)
        return v;
    else if (suffixStr == "MB" || suffixStr == "Mb" || suffixStr == "mb")
        return v * 1024 * 1024;
    else if (suffixStr == "KB" || suffixStr == "Kb" || suffixStr == "kb")
        return v * 1024;
    CV_ErrorNoReturn(cv::Error::StsBadArg, cv::format("Invalid value for %s parameter: %s", name, value.c_str()));
}

#if CV_OPENCL_SHOW_SVM_LOG
// TODO add timestamp logging
#define CV_OPENCL_SVM_TRACE_P printf("line %d (ocl.cpp): ", __LINE__); printf
#else
#define CV_OPENCL_SVM_TRACE_P(...)
#endif

#if CV_OPENCL_SHOW_SVM_ERROR_LOG
// TODO add timestamp logging
#define CV_OPENCL_SVM_TRACE_ERROR_P printf("Error on line %d (ocl.cpp): ", __LINE__); printf
#else
#define CV_OPENCL_SVM_TRACE_ERROR_P(...)
#endif

#include "opencv2/core/opencl/runtime/opencl_clamdblas.hpp"
#include "opencv2/core/opencl/runtime/opencl_clamdfft.hpp"

#ifdef HAVE_OPENCL
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
#else
// TODO FIXIT: This file can't be build without OPENCL

/*
  Part of the file is an extract from the standard OpenCL headers from Khronos site.
  Below is the original copyright.
*/

/*******************************************************************************
 * Copyright (c) 2008 - 2012 The Khronos Group Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and/or associated documentation files (the
 * "Materials"), to deal in the Materials without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Materials, and to
 * permit persons to whom the Materials are furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Materials.
 *
 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
 ******************************************************************************/

#if 0 //defined __APPLE__
#define HAVE_OPENCL 1
#else
#undef HAVE_OPENCL
#endif

#define OPENCV_CL_NOT_IMPLEMENTED -1000

#ifdef HAVE_OPENCL

#if defined __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/opencl.h>
#endif

static const bool g_haveOpenCL = true;

#else

extern "C" {

struct _cl_platform_id { int dummy; };
struct _cl_device_id { int dummy; };
struct _cl_context { int dummy; };
struct _cl_command_queue { int dummy; };
struct _cl_mem { int dummy; };
struct _cl_program { int dummy; };
struct _cl_kernel { int dummy; };
struct _cl_event { int dummy; };
struct _cl_sampler { int dummy; };

typedef struct _cl_platform_id *    cl_platform_id;
typedef struct _cl_device_id *      cl_device_id;
typedef struct _cl_context *        cl_context;
typedef struct _cl_command_queue *  cl_command_queue;
typedef struct _cl_mem *            cl_mem;
typedef struct _cl_program *        cl_program;
typedef struct _cl_kernel *         cl_kernel;
typedef struct _cl_event *          cl_event;
typedef struct _cl_sampler *        cl_sampler;

typedef int cl_int;
typedef unsigned cl_uint;
#if defined (_WIN32) && defined(_MSC_VER)
    typedef __int64 cl_long;
    typedef unsigned __int64 cl_ulong;
#else
    typedef long cl_long;
    typedef unsigned long cl_ulong;
#endif

typedef cl_uint             cl_bool; /* WARNING!  Unlike cl_ types in cl_platform.h, cl_bool is not guaranteed to be the same size as the bool in kernels. */
typedef cl_ulong            cl_bitfield;
typedef cl_bitfield         cl_device_type;
typedef cl_uint             cl_platform_info;
typedef cl_uint             cl_device_info;
typedef cl_bitfield         cl_device_fp_config;
typedef cl_uint             cl_device_mem_cache_type;
typedef cl_uint             cl_device_local_mem_type;
typedef cl_bitfield         cl_device_exec_capabilities;
typedef cl_bitfield         cl_command_queue_properties;
typedef intptr_t            cl_device_partition_property;
typedef cl_bitfield         cl_device_affinity_domain;

typedef intptr_t            cl_context_properties;
typedef cl_uint             cl_context_info;
typedef cl_uint             cl_command_queue_info;
typedef cl_uint             cl_channel_order;
typedef cl_uint             cl_channel_type;
typedef cl_bitfield         cl_mem_flags;
typedef cl_uint             cl_mem_object_type;
typedef cl_uint             cl_mem_info;
typedef cl_bitfield         cl_mem_migration_flags;
typedef cl_uint             cl_image_info;
typedef cl_uint             cl_buffer_create_type;
typedef cl_uint             cl_addressing_mode;
typedef cl_uint             cl_filter_mode;
typedef cl_uint             cl_sampler_info;
typedef cl_bitfield         cl_map_flags;
typedef cl_uint             cl_program_info;
typedef cl_uint             cl_program_build_info;
typedef cl_uint             cl_program_binary_type;
typedef cl_int              cl_build_status;
typedef cl_uint             cl_kernel_info;
typedef cl_uint             cl_kernel_arg_info;
typedef cl_uint             cl_kernel_arg_address_qualifier;
typedef cl_uint             cl_kernel_arg_access_qualifier;
typedef cl_bitfield         cl_kernel_arg_type_qualifier;
typedef cl_uint             cl_kernel_work_group_info;
typedef cl_uint             cl_event_info;
typedef cl_uint             cl_command_type;
typedef cl_uint             cl_profiling_info;


typedef struct _cl_image_format {
    cl_channel_order        image_channel_order;
    cl_channel_type         image_channel_data_type;
} cl_image_format;

typedef struct _cl_image_desc {
    cl_mem_object_type      image_type;
    size_t                  image_width;
    size_t                  image_height;
    size_t                  image_depth;
    size_t                  image_array_size;
    size_t                  image_row_pitch;
    size_t                  image_slice_pitch;
    cl_uint                 num_mip_levels;
    cl_uint                 num_samples;
    cl_mem                  buffer;
} cl_image_desc;

typedef struct _cl_buffer_region {
    size_t                  origin;
    size_t                  size;
} cl_buffer_region;


//////////////////////////////////////////////////////////

#define CL_SUCCESS                                  0
#define CL_DEVICE_NOT_FOUND                         -1
#define CL_DEVICE_NOT_AVAILABLE                     -2
#define CL_COMPILER_NOT_AVAILABLE                   -3
#define CL_MEM_OBJECT_ALLOCATION_FAILURE            -4
#define CL_OUT_OF_RESOURCES                         -5
#define CL_OUT_OF_HOST_MEMORY                       -6
#define CL_PROFILING_INFO_NOT_AVAILABLE             -7
#define CL_MEM_COPY_OVERLAP                         -8
#define CL_IMAGE_FORMAT_MISMATCH                    -9
#define CL_IMAGE_FORMAT_NOT_SUPPORTED               -10
#define CL_BUILD_PROGRAM_FAILURE                    -11
#define CL_MAP_FAILURE                              -12
#define CL_MISALIGNED_SUB_BUFFER_OFFSET             -13
#define CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST -14
#define CL_COMPILE_PROGRAM_FAILURE                  -15
#define CL_LINKER_NOT_AVAILABLE                     -16
#define CL_LINK_PROGRAM_FAILURE                     -17
#define CL_DEVICE_PARTITION_FAILED                  -18
#define CL_KERNEL_ARG_INFO_NOT_AVAILABLE            -19

#define CL_INVALID_VALUE                            -30
#define CL_INVALID_DEVICE_TYPE                      -31
#define CL_INVALID_PLATFORM                         -32
#define CL_INVALID_DEVICE                           -33
#define CL_INVALID_CONTEXT                          -34
#define CL_INVALID_QUEUE_PROPERTIES                 -35
#define CL_INVALID_COMMAND_QUEUE                    -36
#define CL_INVALID_HOST_PTR                         -37
#define CL_INVALID_MEM_OBJECT                       -38
#define CL_INVALID_IMAGE_FORMAT_DESCRIPTOR          -39
#define CL_INVALID_IMAGE_SIZE                       -40
#define CL_INVALID_SAMPLER                          -41
#define CL_INVALID_BINARY                           -42
#define CL_INVALID_BUILD_OPTIONS                    -43
#define CL_INVALID_PROGRAM                          -44
#define CL_INVALID_PROGRAM_EXECUTABLE               -45
#define CL_INVALID_KERNEL_NAME                      -46
#define CL_INVALID_KERNEL_DEFINITION                -47
#define CL_INVALID_KERNEL                           -48
#define CL_INVALID_ARG_INDEX                        -49
#define CL_INVALID_ARG_VALUE                        -50
#define CL_INVALID_ARG_SIZE                         -51
#define CL_INVALID_KERNEL_ARGS                      -52
#define CL_INVALID_WORK_DIMENSION                   -53
#define CL_INVALID_WORK_GROUP_SIZE                  -54
#define CL_INVALID_WORK_ITEM_SIZE                   -55
#define CL_INVALID_GLOBAL_OFFSET                    -56
#define CL_INVALID_EVENT_WAIT_LIST                  -57
#define CL_INVALID_EVENT                            -58
#define CL_INVALID_OPERATION                        -59
#define CL_INVALID_GL_OBJECT                        -60
#define CL_INVALID_BUFFER_SIZE                      -61
#define CL_INVALID_MIP_LEVEL                        -62
#define CL_INVALID_GLOBAL_WORK_SIZE                 -63
#define CL_INVALID_PROPERTY                         -64
#define CL_INVALID_IMAGE_DESCRIPTOR                 -65
#define CL_INVALID_COMPILER_OPTIONS                 -66
#define CL_INVALID_LINKER_OPTIONS                   -67
#define CL_INVALID_DEVICE_PARTITION_COUNT           -68

/*#define CL_VERSION_1_0                              1
#define CL_VERSION_1_1                              1
#define CL_VERSION_1_2                              1*/

#define CL_FALSE                                    0
#define CL_TRUE                                     1
#define CL_BLOCKING                                 CL_TRUE
#define CL_NON_BLOCKING                             CL_FALSE

#define CL_PLATFORM_PROFILE                         0x0900
#define CL_PLATFORM_VERSION                         0x0901
#define CL_PLATFORM_NAME                            0x0902
#define CL_PLATFORM_VENDOR                          0x0903
#define CL_PLATFORM_EXTENSIONS                      0x0904

#define CL_DEVICE_TYPE_DEFAULT                      (1 << 0)
#define CL_DEVICE_TYPE_CPU                          (1 << 1)
#define CL_DEVICE_TYPE_GPU                          (1 << 2)
#define CL_DEVICE_TYPE_ACCELERATOR                  (1 << 3)
#define CL_DEVICE_TYPE_CUSTOM                       (1 << 4)
#define CL_DEVICE_TYPE_ALL                          0xFFFFFFFF
#define CL_DEVICE_TYPE                              0x1000
#define CL_DEVICE_VENDOR_ID                         0x1001
#define CL_DEVICE_MAX_COMPUTE_UNITS                 0x1002
#define CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS          0x1003
#define CL_DEVICE_MAX_WORK_GROUP_SIZE               0x1004
#define CL_DEVICE_MAX_WORK_ITEM_SIZES               0x1005
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR       0x1006
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT      0x1007
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT        0x1008
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG       0x1009
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT      0x100A
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE     0x100B
#define CL_DEVICE_MAX_CLOCK_FREQUENCY               0x100C
#define CL_DEVICE_ADDRESS_BITS                      0x100D
#define CL_DEVICE_MAX_READ_IMAGE_ARGS               0x100E
#define CL_DEVICE_MAX_WRITE_IMAGE_ARGS              0x100F
#define CL_DEVICE_MAX_MEM_ALLOC_SIZE                0x1010
#define CL_DEVICE_IMAGE2D_MAX_WIDTH                 0x1011
#define CL_DEVICE_IMAGE2D_MAX_HEIGHT                0x1012
#define CL_DEVICE_IMAGE3D_MAX_WIDTH                 0x1013
#define CL_DEVICE_IMAGE3D_MAX_HEIGHT                0x1014
#define CL_DEVICE_IMAGE3D_MAX_DEPTH                 0x1015
#define CL_DEVICE_IMAGE_SUPPORT                     0x1016
#define CL_DEVICE_MAX_PARAMETER_SIZE                0x1017
#define CL_DEVICE_MAX_SAMPLERS                      0x1018
#define CL_DEVICE_MEM_BASE_ADDR_ALIGN               0x1019
#define CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE          0x101A
#define CL_DEVICE_SINGLE_FP_CONFIG                  0x101B
#define CL_DEVICE_GLOBAL_MEM_CACHE_TYPE             0x101C
#define CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE         0x101D
#define CL_DEVICE_GLOBAL_MEM_CACHE_SIZE             0x101E
#define CL_DEVICE_GLOBAL_MEM_SIZE                   0x101F
#define CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE          0x1020
#define CL_DEVICE_MAX_CONSTANT_ARGS                 0x1021
#define CL_DEVICE_LOCAL_MEM_TYPE                    0x1022
#define CL_DEVICE_LOCAL_MEM_SIZE                    0x1023
#define CL_DEVICE_ERROR_CORRECTION_SUPPORT          0x1024
#define CL_DEVICE_PROFILING_TIMER_RESOLUTION        0x1025
#define CL_DEVICE_ENDIAN_LITTLE                     0x1026
#define CL_DEVICE_AVAILABLE                         0x1027
#define CL_DEVICE_COMPILER_AVAILABLE                0x1028
#define CL_DEVICE_EXECUTION_CAPABILITIES            0x1029
#define CL_DEVICE_QUEUE_PROPERTIES                  0x102A
#define CL_DEVICE_NAME                              0x102B
#define CL_DEVICE_VENDOR                            0x102C
#define CL_DRIVER_VERSION                           0x102D
#define CL_DEVICE_PROFILE                           0x102E
#define CL_DEVICE_VERSION                           0x102F
#define CL_DEVICE_EXTENSIONS                        0x1030
#define CL_DEVICE_PLATFORM                          0x1031
#define CL_DEVICE_DOUBLE_FP_CONFIG                  0x1032
#define CL_DEVICE_HALF_FP_CONFIG                    0x1033
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF       0x1034
#define CL_DEVICE_HOST_UNIFIED_MEMORY               0x1035
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR          0x1036
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT         0x1037
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_INT           0x1038
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG          0x1039
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT         0x103A
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE        0x103B
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF          0x103C
#define CL_DEVICE_OPENCL_C_VERSION                  0x103D
#define CL_DEVICE_LINKER_AVAILABLE                  0x103E
#define CL_DEVICE_BUILT_IN_KERNELS                  0x103F
#define CL_DEVICE_IMAGE_MAX_BUFFER_SIZE             0x1040
#define CL_DEVICE_IMAGE_MAX_ARRAY_SIZE              0x1041
#define CL_DEVICE_PARENT_DEVICE                     0x1042
#define CL_DEVICE_PARTITION_MAX_SUB_DEVICES         0x1043
#define CL_DEVICE_PARTITION_PROPERTIES              0x1044
#define CL_DEVICE_PARTITION_AFFINITY_DOMAIN         0x1045
#define CL_DEVICE_PARTITION_TYPE                    0x1046
#define CL_DEVICE_REFERENCE_COUNT                   0x1047
#define CL_DEVICE_PREFERRED_INTEROP_USER_SYNC       0x1048
#define CL_DEVICE_PRINTF_BUFFER_SIZE                0x1049
#define CL_DEVICE_IMAGE_PITCH_ALIGNMENT             0x104A
#define CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT      0x104B

#define CL_FP_DENORM                                (1 << 0)
#define CL_FP_INF_NAN                               (1 << 1)
#define CL_FP_ROUND_TO_NEAREST                      (1 << 2)
#define CL_FP_ROUND_TO_ZERO                         (1 << 3)
#define CL_FP_ROUND_TO_INF                          (1 << 4)
#define CL_FP_FMA                                   (1 << 5)
#define CL_FP_SOFT_FLOAT                            (1 << 6)
#define CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT         (1 << 7)

#define CL_NONE                                     0x0
#define CL_READ_ONLY_CACHE                          0x1
#define CL_READ_WRITE_CACHE                         0x2
#define CL_LOCAL                                    0x1
#define CL_GLOBAL                                   0x2
#define CL_EXEC_KERNEL                              (1 << 0)
#define CL_EXEC_NATIVE_KERNEL                       (1 << 1)
#define CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE      (1 << 0)
#define CL_QUEUE_PROFILING_ENABLE                   (1 << 1)

#define CL_CONTEXT_REFERENCE_COUNT                  0x1080
#define CL_CONTEXT_DEVICES                          0x1081
#define CL_CONTEXT_PROPERTIES                       0x1082
#define CL_CONTEXT_NUM_DEVICES                      0x1083
#define CL_CONTEXT_PLATFORM                         0x1084
#define CL_CONTEXT_INTEROP_USER_SYNC                0x1085

#define CL_DEVICE_PARTITION_EQUALLY                 0x1086
#define CL_DEVICE_PARTITION_BY_COUNTS               0x1087
#define CL_DEVICE_PARTITION_BY_COUNTS_LIST_END      0x0
#define CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN      0x1088
#define CL_DEVICE_AFFINITY_DOMAIN_NUMA                     (1 << 0)
#define CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE                 (1 << 1)
#define CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE                 (1 << 2)
#define CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE                 (1 << 3)
#define CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE                 (1 << 4)
#define CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE       (1 << 5)
#define CL_QUEUE_CONTEXT                            0x1090
#define CL_QUEUE_DEVICE                             0x1091
#define CL_QUEUE_REFERENCE_COUNT                    0x1092
#define CL_QUEUE_PROPERTIES                         0x1093
#define CL_MEM_READ_WRITE                           (1 << 0)
#define CL_MEM_WRITE_ONLY                           (1 << 1)
#define CL_MEM_READ_ONLY                            (1 << 2)
#define CL_MEM_USE_HOST_PTR                         (1 << 3)
#define CL_MEM_ALLOC_HOST_PTR                       (1 << 4)
#define CL_MEM_COPY_HOST_PTR                        (1 << 5)
// reserved                                         (1 << 6)
#define CL_MEM_HOST_WRITE_ONLY                      (1 << 7)
#define CL_MEM_HOST_READ_ONLY                       (1 << 8)
#define CL_MEM_HOST_NO_ACCESS                       (1 << 9)
#define CL_MIGRATE_MEM_OBJECT_HOST                  (1 << 0)
#define CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED     (1 << 1)

#define CL_R                                        0x10B0
#define CL_A                                        0x10B1
#define CL_RG                                       0x10B2
#define CL_RA                                       0x10B3
#define CL_RGB                                      0x10B4
#define CL_RGBA                                     0x10B5
#define CL_BGRA                                     0x10B6
#define CL_ARGB                                     0x10B7
#define CL_INTENSITY                                0x10B8
#define CL_LUMINANCE                                0x10B9
#define CL_Rx                                       0x10BA
#define CL_RGx                                      0x10BB
#define CL_RGBx                                     0x10BC
#define CL_DEPTH                                    0x10BD
#define CL_DEPTH_STENCIL                            0x10BE

#define CL_SNORM_INT8                               0x10D0
#define CL_SNORM_INT16                              0x10D1
#define CL_UNORM_INT8                               0x10D2
#define CL_UNORM_INT16                              0x10D3
#define CL_UNORM_SHORT_565                          0x10D4
#define CL_UNORM_SHORT_555                          0x10D5
#define CL_UNORM_INT_101010                         0x10D6
#define CL_SIGNED_INT8                              0x10D7
#define CL_SIGNED_INT16                             0x10D8
#define CL_SIGNED_INT32                             0x10D9
#define CL_UNSIGNED_INT8                            0x10DA
#define CL_UNSIGNED_INT16                           0x10DB
#define CL_UNSIGNED_INT32                           0x10DC
#define CL_HALF_FLOAT                               0x10DD
#define CL_FLOAT                                    0x10DE
#define CL_UNORM_INT24                              0x10DF

#define CL_MEM_OBJECT_BUFFER                        0x10F0
#define CL_MEM_OBJECT_IMAGE2D                       0x10F1
#define CL_MEM_OBJECT_IMAGE3D                       0x10F2
#define CL_MEM_OBJECT_IMAGE2D_ARRAY                 0x10F3
#define CL_MEM_OBJECT_IMAGE1D                       0x10F4
#define CL_MEM_OBJECT_IMAGE1D_ARRAY                 0x10F5
#define CL_MEM_OBJECT_IMAGE1D_BUFFER                0x10F6

#define CL_MEM_TYPE                                 0x1100
#define CL_MEM_FLAGS                                0x1101
#define CL_MEM_SIZE                                 0x1102
#define CL_MEM_HOST_PTR                             0x1103
#define CL_MEM_MAP_COUNT                            0x1104
#define CL_MEM_REFERENCE_COUNT                      0x1105
#define CL_MEM_CONTEXT                              0x1106
#define CL_MEM_ASSOCIATED_MEMOBJECT                 0x1107
#define CL_MEM_OFFSET                               0x1108

#define CL_IMAGE_FORMAT                             0x1110
#define CL_IMAGE_ELEMENT_SIZE                       0x1111
#define CL_IMAGE_ROW_PITCH                          0x1112
#define CL_IMAGE_SLICE_PITCH                        0x1113
#define CL_IMAGE_WIDTH                              0x1114
#define CL_IMAGE_HEIGHT                             0x1115
#define CL_IMAGE_DEPTH                              0x1116
#define CL_IMAGE_ARRAY_SIZE                         0x1117
#define CL_IMAGE_BUFFER                             0x1118
#define CL_IMAGE_NUM_MIP_LEVELS                     0x1119
#define CL_IMAGE_NUM_SAMPLES                        0x111A

#define CL_ADDRESS_NONE                             0x1130
#define CL_ADDRESS_CLAMP_TO_EDGE                    0x1131
#define CL_ADDRESS_CLAMP                            0x1132
#define CL_ADDRESS_REPEAT                           0x1133
#define CL_ADDRESS_MIRRORED_REPEAT                  0x1134

#define CL_FILTER_NEAREST                           0x1140
#define CL_FILTER_LINEAR                            0x1141

#define CL_SAMPLER_REFERENCE_COUNT                  0x1150
#define CL_SAMPLER_CONTEXT                          0x1151
#define CL_SAMPLER_NORMALIZED_COORDS                0x1152
#define CL_SAMPLER_ADDRESSING_MODE                  0x1153
#define CL_SAMPLER_FILTER_MODE                      0x1154

#define CL_MAP_READ                                 (1 << 0)
#define CL_MAP_WRITE                                (1 << 1)
#define CL_MAP_WRITE_INVALIDATE_REGION              (1 << 2)

#define CL_PROGRAM_REFERENCE_COUNT                  0x1160
#define CL_PROGRAM_CONTEXT                          0x1161
#define CL_PROGRAM_NUM_DEVICES                      0x1162
#define CL_PROGRAM_DEVICES                          0x1163
#define CL_PROGRAM_SOURCE                           0x1164
#define CL_PROGRAM_BINARY_SIZES                     0x1165
#define CL_PROGRAM_BINARIES                         0x1166
#define CL_PROGRAM_NUM_KERNELS                      0x1167
#define CL_PROGRAM_KERNEL_NAMES                     0x1168
#define CL_PROGRAM_BUILD_STATUS                     0x1181
#define CL_PROGRAM_BUILD_OPTIONS                    0x1182
#define CL_PROGRAM_BUILD_LOG                        0x1183
#define CL_PROGRAM_BINARY_TYPE                      0x1184
#define CL_PROGRAM_BINARY_TYPE_NONE                 0x0
#define CL_PROGRAM_BINARY_TYPE_COMPILED_OBJECT      0x1
#define CL_PROGRAM_BINARY_TYPE_LIBRARY              0x2
#define CL_PROGRAM_BINARY_TYPE_EXECUTABLE           0x4

#define CL_BUILD_SUCCESS                            0
#define CL_BUILD_NONE                               -1
#define CL_BUILD_ERROR                              -2
#define CL_BUILD_IN_PROGRESS                        -3

#define CL_KERNEL_FUNCTION_NAME                     0x1190
#define CL_KERNEL_NUM_ARGS                          0x1191
#define CL_KERNEL_REFERENCE_COUNT                   0x1192
#define CL_KERNEL_CONTEXT                           0x1193
#define CL_KERNEL_PROGRAM                           0x1194
#define CL_KERNEL_ATTRIBUTES                        0x1195
#define CL_KERNEL_ARG_ADDRESS_QUALIFIER             0x1196
#define CL_KERNEL_ARG_ACCESS_QUALIFIER              0x1197
#define CL_KERNEL_ARG_TYPE_NAME                     0x1198
#define CL_KERNEL_ARG_TYPE_QUALIFIER                0x1199
#define CL_KERNEL_ARG_NAME                          0x119A
#define CL_KERNEL_ARG_ADDRESS_GLOBAL                0x119B
#define CL_KERNEL_ARG_ADDRESS_LOCAL                 0x119C
#define CL_KERNEL_ARG_ADDRESS_CONSTANT              0x119D
#define CL_KERNEL_ARG_ADDRESS_PRIVATE               0x119E
#define CL_KERNEL_ARG_ACCESS_READ_ONLY              0x11A0
#define CL_KERNEL_ARG_ACCESS_WRITE_ONLY             0x11A1
#define CL_KERNEL_ARG_ACCESS_READ_WRITE             0x11A2
#define CL_KERNEL_ARG_ACCESS_NONE                   0x11A3
#define CL_KERNEL_ARG_TYPE_NONE                     0
#define CL_KERNEL_ARG_TYPE_CONST                    (1 << 0)
#define CL_KERNEL_ARG_TYPE_RESTRICT                 (1 << 1)
#define CL_KERNEL_ARG_TYPE_VOLATILE                 (1 << 2)
#define CL_KERNEL_WORK_GROUP_SIZE                   0x11B0
#define CL_KERNEL_COMPILE_WORK_GROUP_SIZE           0x11B1
#define CL_KERNEL_LOCAL_MEM_SIZE                    0x11B2
#define CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE 0x11B3
#define CL_KERNEL_PRIVATE_MEM_SIZE                  0x11B4
#define CL_KERNEL_GLOBAL_WORK_SIZE                  0x11B5

#define CL_EVENT_COMMAND_QUEUE                      0x11D0
#define CL_EVENT_COMMAND_TYPE                       0x11D1
#define CL_EVENT_REFERENCE_COUNT                    0x11D2
#define CL_EVENT_COMMAND_EXECUTION_STATUS           0x11D3
#define CL_EVENT_CONTEXT                            0x11D4

#define CL_COMMAND_NDRANGE_KERNEL                   0x11F0
#define CL_COMMAND_TASK                             0x11F1
#define CL_COMMAND_NATIVE_KERNEL                    0x11F2
#define CL_COMMAND_READ_BUFFER                      0x11F3
#define CL_COMMAND_WRITE_BUFFER                     0x11F4
#define CL_COMMAND_COPY_BUFFER                      0x11F5
#define CL_COMMAND_READ_IMAGE                       0x11F6
#define CL_COMMAND_WRITE_IMAGE                      0x11F7
#define CL_COMMAND_COPY_IMAGE                       0x11F8
#define CL_COMMAND_COPY_IMAGE_TO_BUFFER             0x11F9
#define CL_COMMAND_COPY_BUFFER_TO_IMAGE             0x11FA
#define CL_COMMAND_MAP_BUFFER                       0x11FB
#define CL_COMMAND_MAP_IMAGE                        0x11FC
#define CL_COMMAND_UNMAP_MEM_OBJECT                 0x11FD
#define CL_COMMAND_MARKER                           0x11FE
#define CL_COMMAND_ACQUIRE_GL_OBJECTS               0x11FF
#define CL_COMMAND_RELEASE_GL_OBJECTS               0x1200
#define CL_COMMAND_READ_BUFFER_RECT                 0x1201
#define CL_COMMAND_WRITE_BUFFER_RECT                0x1202
#define CL_COMMAND_COPY_BUFFER_RECT                 0x1203
#define CL_COMMAND_USER                             0x1204
#define CL_COMMAND_BARRIER                          0x1205
#define CL_COMMAND_MIGRATE_MEM_OBJECTS              0x1206
#define CL_COMMAND_FILL_BUFFER                      0x1207
#define CL_COMMAND_FILL_IMAGE                       0x1208

#define CL_COMPLETE                                 0x0
#define CL_RUNNING                                  0x1
#define CL_SUBMITTED                                0x2
#define CL_QUEUED                                   0x3
#define CL_BUFFER_CREATE_TYPE_REGION                0x1220

#define CL_PROFILING_COMMAND_QUEUED                 0x1280
#define CL_PROFILING_COMMAND_SUBMIT                 0x1281
#define CL_PROFILING_COMMAND_START                  0x1282
#define CL_PROFILING_COMMAND_END                    0x1283

#define CL_CALLBACK CV_STDCALL

static volatile bool g_haveOpenCL = false;
static const char* oclFuncToCheck = "clEnqueueReadBufferRect";

#if defined(__APPLE__)
#include <dlfcn.h>

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static void* handle = 0;
    if (!handle)
    {
        if(!initialized)
        {
            const char* oclpath = getenv("OPENCV_OPENCL_RUNTIME");
            oclpath = oclpath && strlen(oclpath) > 0 ? oclpath :
                "/System/Library/Frameworks/OpenCL.framework/Versions/Current/OpenCL";
            handle = dlopen(oclpath, RTLD_LAZY);
            initialized = true;
            g_haveOpenCL = handle != 0 && dlsym(handle, oclFuncToCheck) != 0;
            if( g_haveOpenCL )
                fprintf(stderr, "Successfully loaded OpenCL v1.1+ runtime from %s\n", oclpath);
            else
                fprintf(stderr, "Failed to load OpenCL runtime\n");
        }
        if(!handle)
            return 0;
    }

    return funcname && handle ? dlsym(handle, funcname) : 0;
}

#elif defined WIN32 || defined _WIN32

#ifndef _WIN32_WINNT           // This is needed for the declaration of TryEnterCriticalSection in winbase.h with Visual Studio 2005 (and older?)
  #define _WIN32_WINNT 0x0400  // http://msdn.microsoft.com/en-us/library/ms686857(VS.85).aspx
#endif
#include <windows.h>
#if (_WIN32_WINNT >= 0x0602)
  #include <synchapi.h>
#endif
#undef small
#undef min
#undef max
#undef abs

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static HMODULE handle = 0;
    if (!handle)
    {
#ifndef WINRT
        if(!initialized)
        {
            handle = LoadLibraryA("OpenCL.dll");
            initialized = true;
            g_haveOpenCL = handle != 0 && GetProcAddress(handle, oclFuncToCheck) != 0;
        }
#endif
        if(!handle)
            return 0;
    }

    return funcname ? (void*)GetProcAddress(handle, funcname) : 0;
}

#elif defined(__linux)

#include <dlfcn.h>
#include <stdio.h>

static void* initOpenCLAndLoad(const char* funcname)
{
    static bool initialized = false;
    static void* handle = 0;
    if (!handle)
    {
        if(!initialized)
        {
            handle = dlopen("libOpenCL.so", RTLD_LAZY);
            if(!handle)
                handle = dlopen("libCL.so", RTLD_LAZY);
            initialized = true;
            g_haveOpenCL = handle != 0 && dlsym(handle, oclFuncToCheck) != 0;
        }
        if(!handle)
            return 0;
    }

    return funcname ? (void*)dlsym(handle, funcname) : 0;
}

#else

static void* initOpenCLAndLoad(const char*)
{
    return 0;
}

#endif


#define OCL_FUNC(rettype, funcname, argsdecl, args) \
    typedef rettype (CV_STDCALL * funcname##_t) argsdecl; \
    static rettype funcname argsdecl \
    { \
        static funcname##_t funcname##_p = 0; \
        if( !funcname##_p ) \
        { \
            funcname##_p = (funcname##_t)initOpenCLAndLoad(#funcname); \
            if( !funcname##_p ) \
                return OPENCV_CL_NOT_IMPLEMENTED; \
        } \
        return funcname##_p args; \
    }


#define OCL_FUNC_P(rettype, funcname, argsdecl, args) \
    typedef rettype (CV_STDCALL * funcname##_t) argsdecl; \
    static rettype funcname argsdecl \
    { \
        static funcname##_t funcname##_p = 0; \
        if( !funcname##_p ) \
        { \
            funcname##_p = (funcname##_t)initOpenCLAndLoad(#funcname); \
            if( !funcname##_p ) \
            { \
                if( errcode_ret ) \
                    *errcode_ret = OPENCV_CL_NOT_IMPLEMENTED; \
                return 0; \
            } \
        } \
        return funcname##_p args; \
    }

OCL_FUNC(cl_int, clGetPlatformIDs,
    (cl_uint num_entries, cl_platform_id* platforms, cl_uint* num_platforms),
    (num_entries, platforms, num_platforms))

OCL_FUNC(cl_int, clGetPlatformInfo,
    (cl_platform_id platform, cl_platform_info param_name,
    size_t param_value_size, void * param_value,
    size_t * param_value_size_ret),
    (platform, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetDeviceInfo,
         (cl_device_id device,
          cl_device_info param_name,
          size_t param_value_size,
          void * param_value,
          size_t * param_value_size_ret),
         (device, param_name, param_value_size, param_value, param_value_size_ret))


OCL_FUNC(cl_int, clGetDeviceIDs,
    (cl_platform_id platform,
    cl_device_type device_type,
    cl_uint num_entries,
    cl_device_id * devices,
    cl_uint * num_devices),
    (platform, device_type, num_entries, devices, num_devices))

OCL_FUNC_P(cl_context, clCreateContext,
    (const cl_context_properties * properties,
    cl_uint num_devices,
    const cl_device_id * devices,
    void (CL_CALLBACK * pfn_notify)(const char *, const void *, size_t, void *),
    void * user_data,
    cl_int * errcode_ret),
    (properties, num_devices, devices, pfn_notify, user_data, errcode_ret))

OCL_FUNC(cl_int, clReleaseContext, (cl_context context), (context))

/*
OCL_FUNC(cl_int, clRetainContext, (cl_context context), (context))

OCL_FUNC_P(cl_context, clCreateContextFromType,
    (const cl_context_properties * properties,
    cl_device_type device_type,
    void (CL_CALLBACK * pfn_notify)(const char *, const void *, size_t, void *),
    void * user_data,
    cl_int * errcode_ret),
    (properties, device_type, pfn_notify, user_data, errcode_ret))

OCL_FUNC(cl_int, clGetContextInfo,
    (cl_context context,
    cl_context_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (context, param_name, param_value_size,
    param_value, param_value_size_ret))
*/
OCL_FUNC_P(cl_command_queue, clCreateCommandQueue,
    (cl_context context,
    cl_device_id device,
    cl_command_queue_properties properties,
    cl_int * errcode_ret),
    (context, device, properties, errcode_ret))

OCL_FUNC(cl_int, clReleaseCommandQueue, (cl_command_queue command_queue), (command_queue))

OCL_FUNC_P(cl_mem, clCreateBuffer,
    (cl_context context,
    cl_mem_flags flags,
    size_t size,
    void * host_ptr,
    cl_int * errcode_ret),
    (context, flags, size, host_ptr, errcode_ret))

/*
OCL_FUNC(cl_int, clRetainCommandQueue, (cl_command_queue command_queue), (command_queue))

OCL_FUNC(cl_int, clGetCommandQueueInfo,
 (cl_command_queue command_queue,
 cl_command_queue_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (command_queue, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC_P(cl_mem, clCreateSubBuffer,
    (cl_mem buffer,
    cl_mem_flags flags,
    cl_buffer_create_type buffer_create_type,
    const void * buffer_create_info,
    cl_int * errcode_ret),
    (buffer, flags, buffer_create_type, buffer_create_info, errcode_ret))
*/

OCL_FUNC_P(cl_mem, clCreateImage,
    (cl_context context,
    cl_mem_flags flags,
    const cl_image_format * image_format,
    const cl_image_desc * image_desc,
    void * host_ptr,
    cl_int * errcode_ret),
    (context, flags, image_format, image_desc, host_ptr, errcode_ret))

OCL_FUNC_P(cl_mem, clCreateImage2D,
    (cl_context context,
    cl_mem_flags flags,
    const cl_image_format * image_format,
    size_t image_width,
    size_t image_height,
    size_t image_row_pitch,
    void * host_ptr,
    cl_int *errcode_ret),
    (context, flags, image_format, image_width, image_height, image_row_pitch, host_ptr, errcode_ret))

OCL_FUNC(cl_int, clGetSupportedImageFormats,
 (cl_context context,
 cl_mem_flags flags,
 cl_mem_object_type image_type,
 cl_uint num_entries,
 cl_image_format * image_formats,
 cl_uint * num_image_formats),
 (context, flags, image_type, num_entries, image_formats, num_image_formats))


/*
OCL_FUNC(cl_int, clGetMemObjectInfo,
 (cl_mem memobj,
 cl_mem_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (memobj, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetImageInfo,
 (cl_mem image,
 cl_image_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (image, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clCreateKernelsInProgram,
 (cl_program program,
 cl_uint num_kernels,
 cl_kernel * kernels,
 cl_uint * num_kernels_ret),
 (program, num_kernels, kernels, num_kernels_ret))

OCL_FUNC(cl_int, clRetainKernel, (cl_kernel kernel), (kernel))

OCL_FUNC(cl_int, clGetKernelArgInfo,
 (cl_kernel kernel,
 cl_uint arg_indx,
 cl_kernel_arg_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (kernel, arg_indx, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clEnqueueReadImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_read,
 const size_t * origin[3],
 const size_t * region[3],
 size_t row_pitch,
 size_t slice_pitch,
 void * ptr,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, blocking_read, origin, region,
 row_pitch, slice_pitch,
 ptr,
 num_events_in_wait_list,
 event_wait_list,
 event))

OCL_FUNC(cl_int, clEnqueueWriteImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_write,
 const size_t * origin[3],
 const size_t * region[3],
 size_t input_row_pitch,
 size_t input_slice_pitch,
 const void * ptr,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, blocking_write, origin, region, input_row_pitch,
 input_slice_pitch, ptr, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueFillImage,
 (cl_command_queue command_queue,
 cl_mem image,
 const void * fill_color,
 const size_t * origin[3],
 const size_t * region[3],
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, image, fill_color, origin, region,
 num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyImage,
 (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_image,
 const size_t * src_origin[3],
 const size_t * dst_origin[3],
 const size_t * region[3],
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_image, dst_image, src_origin, dst_origin,
 region, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyImageToBuffer,
 (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_buffer,
 const size_t * src_origin[3],
 const size_t * region[3],
 size_t dst_offset,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_image, dst_buffer, src_origin, region, dst_offset,
 num_events_in_wait_list, event_wait_list, event))
*/

OCL_FUNC(cl_int, clEnqueueCopyBufferToImage,
 (cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_image,
 size_t src_offset,
 const size_t dst_origin[3],
 const size_t region[3],
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event),
 (command_queue, src_buffer, dst_image, src_offset, dst_origin,
 region, num_events_in_wait_list, event_wait_list, event))

 OCL_FUNC(cl_int, clFlush,
 (cl_command_queue command_queue),
 (command_queue))

/*
OCL_FUNC_P(void*, clEnqueueMapImage,
 (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_map,
 cl_map_flags map_flags,
 const size_t * origin[3],
 const size_t * region[3],
 size_t * image_row_pitch,
 size_t * image_slice_pitch,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event,
 cl_int * errcode_ret),
 (command_queue, image, blocking_map, map_flags, origin, region,
 image_row_pitch, image_slice_pitch, num_events_in_wait_list,
 event_wait_list, event, errcode_ret))
*/

/*
OCL_FUNC(cl_int, clRetainProgram, (cl_program program), (program))

OCL_FUNC(cl_int, clGetKernelInfo,
 (cl_kernel kernel,
 cl_kernel_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret),
 (kernel, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clRetainMemObject, (cl_mem memobj), (memobj))

*/

OCL_FUNC(cl_int, clReleaseMemObject, (cl_mem memobj), (memobj))


OCL_FUNC_P(cl_program, clCreateProgramWithSource,
    (cl_context context,
    cl_uint count,
    const char ** strings,
    const size_t * lengths,
    cl_int * errcode_ret),
    (context, count, strings, lengths, errcode_ret))

OCL_FUNC_P(cl_program, clCreateProgramWithBinary,
    (cl_context context,
    cl_uint num_devices,
    const cl_device_id * device_list,
    const size_t * lengths,
    const unsigned char ** binaries,
    cl_int * binary_status,
    cl_int * errcode_ret),
    (context, num_devices, device_list, lengths, binaries, binary_status, errcode_ret))

OCL_FUNC(cl_int, clReleaseProgram, (cl_program program), (program))

OCL_FUNC(cl_int, clBuildProgram,
    (cl_program program,
    cl_uint num_devices,
    const cl_device_id * device_list,
    const char * options,
    void (CL_CALLBACK * pfn_notify)(cl_program, void *),
    void * user_data),
    (program, num_devices, device_list, options, pfn_notify, user_data))

OCL_FUNC(cl_int, clGetProgramInfo,
    (cl_program program,
    cl_program_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (program, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clGetProgramBuildInfo,
    (cl_program program,
    cl_device_id device,
    cl_program_build_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (program, device, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC_P(cl_kernel, clCreateKernel,
    (cl_program program,
    const char * kernel_name,
    cl_int * errcode_ret),
    (program, kernel_name, errcode_ret))

OCL_FUNC(cl_int, clReleaseKernel, (cl_kernel kernel), (kernel))

OCL_FUNC(cl_int, clSetKernelArg,
    (cl_kernel kernel,
    cl_uint arg_index,
    size_t arg_size,
    const void * arg_value),
    (kernel, arg_index, arg_size, arg_value))

OCL_FUNC(cl_int, clGetKernelWorkGroupInfo,
    (cl_kernel kernel,
    cl_device_id device,
    cl_kernel_work_group_info param_name,
    size_t param_value_size,
    void * param_value,
    size_t * param_value_size_ret),
    (kernel, device, param_name, param_value_size, param_value, param_value_size_ret))

OCL_FUNC(cl_int, clFinish, (cl_command_queue command_queue), (command_queue))

OCL_FUNC(cl_int, clEnqueueReadBuffer,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_read,
    size_t offset,
    size_t size,
    void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_read, offset, size, ptr,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueReadBufferRect,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_read,
    const size_t * buffer_offset,
    const size_t * host_offset,
    const size_t * region,
    size_t buffer_row_pitch,
    size_t buffer_slice_pitch,
    size_t host_row_pitch,
    size_t host_slice_pitch,
    void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_read, buffer_offset, host_offset, region, buffer_row_pitch,
    buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, num_events_in_wait_list,
    event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueWriteBuffer,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_write,
    size_t offset,
    size_t size,
    const void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_write, offset, size, ptr,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueWriteBufferRect,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_write,
    const size_t * buffer_offset,
    const size_t * host_offset,
    const size_t * region,
    size_t buffer_row_pitch,
    size_t buffer_slice_pitch,
    size_t host_row_pitch,
    size_t host_slice_pitch,
    const void * ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, blocking_write, buffer_offset, host_offset,
    region, buffer_row_pitch, buffer_slice_pitch, host_row_pitch,
    host_slice_pitch, ptr, num_events_in_wait_list, event_wait_list, event))

/*OCL_FUNC(cl_int, clEnqueueFillBuffer,
    (cl_command_queue command_queue,
    cl_mem buffer,
    const void * pattern,
    size_t pattern_size,
    size_t offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, buffer, pattern, pattern_size, offset, size,
    num_events_in_wait_list, event_wait_list, event))*/

OCL_FUNC(cl_int, clEnqueueCopyBuffer,
    (cl_command_queue command_queue,
    cl_mem src_buffer,
    cl_mem dst_buffer,
    size_t src_offset,
    size_t dst_offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, src_buffer, dst_buffer, src_offset, dst_offset,
    size, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueCopyBufferRect,
    (cl_command_queue command_queue,
    cl_mem src_buffer,
    cl_mem dst_buffer,
    const size_t * src_origin,
    const size_t * dst_origin,
    const size_t * region,
    size_t src_row_pitch,
    size_t src_slice_pitch,
    size_t dst_row_pitch,
    size_t dst_slice_pitch,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, src_buffer, dst_buffer, src_origin, dst_origin,
    region, src_row_pitch, src_slice_pitch, dst_row_pitch, dst_slice_pitch,
    num_events_in_wait_list, event_wait_list, event))

OCL_FUNC_P(void*, clEnqueueMapBuffer,
    (cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_map,
    cl_map_flags map_flags,
    size_t offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event,
    cl_int * errcode_ret),
    (command_queue, buffer, blocking_map, map_flags, offset, size,
    num_events_in_wait_list, event_wait_list, event, errcode_ret))

OCL_FUNC(cl_int, clEnqueueUnmapMemObject,
    (cl_command_queue command_queue,
    cl_mem memobj,
    void * mapped_ptr,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, memobj, mapped_ptr, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueNDRangeKernel,
    (cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint work_dim,
    const size_t * global_work_offset,
    const size_t * global_work_size,
    const size_t * local_work_size,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, kernel, work_dim, global_work_offset, global_work_size,
    local_work_size, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clEnqueueTask,
    (cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint num_events_in_wait_list,
    const cl_event * event_wait_list,
    cl_event * event),
    (command_queue, kernel, num_events_in_wait_list, event_wait_list, event))

OCL_FUNC(cl_int, clSetEventCallback,
    (cl_event event,
    cl_int command_exec_callback_type ,
    void (CL_CALLBACK  *pfn_event_notify) (cl_event event, cl_int event_command_exec_status, void *user_data),
    void *user_data),
    (event, command_exec_callback_type, pfn_event_notify, user_data))

OCL_FUNC(cl_int, clReleaseEvent, (cl_event event), (event))

}

#endif

#ifndef CL_VERSION_1_2
#define CL_VERSION_1_2
#endif

#endif

#ifdef _DEBUG
#define CV_OclDbgAssert CV_DbgAssert
#else
static bool isRaiseError()
{
    static bool initialized = false;
    static bool value = false;
    if (!initialized)
    {
        value = getBoolParameter("OPENCV_OPENCL_RAISE_ERROR", false);
        initialized = true;
    }
    return value;
}
#define CV_OclDbgAssert(expr) do { if (isRaiseError()) { CV_Assert(expr); } else { (void)(expr); } } while ((void)0, 0)
#endif

#ifdef HAVE_OPENCL_SVM
#include "opencv2/core/opencl/runtime/opencl_svm_20.hpp"
#include "opencv2/core/opencl/runtime/opencl_svm_hsa_extension.hpp"
#include "opencv2/core/opencl/opencl_svm.hpp"
#endif

namespace cv { namespace ocl {

struct UMat2D
{
    UMat2D(const UMat& m)
    {
        offset = (int)m.offset;
        step = (int)m.step;
        rows = m.rows;
        cols = m.cols;
    }
    int offset;
    int step;
    int rows;
    int cols;
};

struct UMat3D
{
    UMat3D(const UMat& m)
    {
        offset = (int)m.offset;
        step = (int)m.step.p[1];
        slicestep = (int)m.step.p[0];
        slices = (int)m.size.p[0];
        rows = m.size.p[1];
        cols = m.size.p[2];
    }
    int offset;
    int slicestep;
    int step;
    int slices;
    int rows;
    int cols;
};

// Computes 64-bit "cyclic redundancy check" sum, as specified in ECMA-182
static uint64 crc64( const uchar* data, size_t size, uint64 crc0=0 )
{
    static uint64 table[256];
    static bool initialized = false;

    if( !initialized )
    {
        for( int i = 0; i < 256; i++ )
        {
            uint64 c = i;
            for( int j = 0; j < 8; j++ )
                c = ((c & 1) ? CV_BIG_UINT(0xc96c5795d7870f42) : 0) ^ (c >> 1);
            table[i] = c;
        }
        initialized = true;
    }

    uint64 crc = ~crc0;
    for( size_t idx = 0; idx < size; idx++ )
        crc = table[(uchar)crc ^ data[idx]] ^ (crc >> 8);

    return ~crc;
}

struct HashKey
{
    typedef uint64 part;
    HashKey(part _a, part _b) : a(_a), b(_b) {}
    part a, b;
};

inline bool operator == (const HashKey& h1, const HashKey& h2)
{
    return h1.a == h2.a && h1.b == h2.b;
}

inline bool operator < (const HashKey& h1, const HashKey& h2)
{
    return h1.a < h2.a || (h1.a == h2.a && h1.b < h2.b);
}


bool haveOpenCL()
{
#ifdef HAVE_OPENCL
    static bool g_isOpenCLInitialized = false;
    static bool g_isOpenCLAvailable = false;

    if (!g_isOpenCLInitialized)
    {
        try
        {
            cl_uint n = 0;
            g_isOpenCLAvailable = ::clGetPlatformIDs(0, NULL, &n) == CL_SUCCESS;
        }
        catch (...)
        {
            g_isOpenCLAvailable = false;
        }
        g_isOpenCLInitialized = true;
    }
    return g_isOpenCLAvailable;
#else
    return false;
#endif
}

bool useOpenCL()
{
    CoreTLSData* data = getCoreTlsData().get();
    if( data->useOpenCL < 0 )
    {
        try
        {
            data->useOpenCL = (int)haveOpenCL() && Device::getDefault().ptr() && Device::getDefault().available();
        }
        catch (...)
        {
            data->useOpenCL = 0;
        }
    }
    return data->useOpenCL > 0;
}

void setUseOpenCL(bool flag)
{
    if( haveOpenCL() )
    {
        CoreTLSData* data = getCoreTlsData().get();
        data->useOpenCL = (flag && Device::getDefault().ptr() != NULL) ? 1 : 0;
    }
}

#ifdef HAVE_CLAMDBLAS

class AmdBlasHelper
{
public:
    static AmdBlasHelper & getInstance()
    {
        static AmdBlasHelper amdBlas;
        return amdBlas;
    }

    bool isAvailable() const
    {
        return g_isAmdBlasAvailable;
    }

    ~AmdBlasHelper()
    {
        try
        {
            clAmdBlasTeardown();
        }
        catch (...) { }
    }

protected:
    AmdBlasHelper()
    {
        if (!g_isAmdBlasInitialized)
        {
            AutoLock lock(m);

            if (!g_isAmdBlasInitialized && haveOpenCL())
            {
                try
                {
                    g_isAmdBlasAvailable = clAmdBlasSetup() == clAmdBlasSuccess;
                }
                catch (...)
                {
                    g_isAmdBlasAvailable = false;
                }
            }
            else
                g_isAmdBlasAvailable = false;

            g_isAmdBlasInitialized = true;
        }
    }

private:
    static Mutex m;
    static bool g_isAmdBlasInitialized;
    static bool g_isAmdBlasAvailable;
};

bool AmdBlasHelper::g_isAmdBlasAvailable = false;
bool AmdBlasHelper::g_isAmdBlasInitialized = false;
Mutex AmdBlasHelper::m;

bool haveAmdBlas()
{
    return AmdBlasHelper::getInstance().isAvailable();
}

#else

bool haveAmdBlas()
{
    return false;
}

#endif

#ifdef HAVE_CLAMDFFT

class AmdFftHelper
{
public:
    static AmdFftHelper & getInstance()
    {
        static AmdFftHelper amdFft;
        return amdFft;
    }

    bool isAvailable() const
    {
        return g_isAmdFftAvailable;
    }

    ~AmdFftHelper()
    {
        try
        {
//            clAmdFftTeardown();
        }
        catch (...) { }
    }

protected:
    AmdFftHelper()
    {
        if (!g_isAmdFftInitialized)
        {
            AutoLock lock(m);

            if (!g_isAmdFftInitialized && haveOpenCL())
            {
                try
                {
                    cl_uint major, minor, patch;
                    CV_Assert(clAmdFftInitSetupData(&setupData) == CLFFT_SUCCESS);

                    // it throws exception in case AmdFft binaries are not found
                    CV_Assert(clAmdFftGetVersion(&major, &minor, &patch) == CLFFT_SUCCESS);
                    g_isAmdFftAvailable = true;
                }
                catch (const Exception &)
                {
                    g_isAmdFftAvailable = false;
                }
            }
            else
                g_isAmdFftAvailable = false;

            g_isAmdFftInitialized = true;
        }
    }

private:
    static clAmdFftSetupData setupData;
    static Mutex m;
    static bool g_isAmdFftInitialized;
    static bool g_isAmdFftAvailable;
};

clAmdFftSetupData AmdFftHelper::setupData;
bool AmdFftHelper::g_isAmdFftAvailable = false;
bool AmdFftHelper::g_isAmdFftInitialized = false;
Mutex AmdFftHelper::m;

bool haveAmdFft()
{
    return AmdFftHelper::getInstance().isAvailable();
}

#else

bool haveAmdFft()
{
    return false;
}

#endif

bool haveSVM()
{
#ifdef HAVE_OPENCL_SVM
    return true;
#else
    return false;
#endif
}

void finish()
{
    Queue::getDefault().finish();
}

#define IMPLEMENT_REFCOUNTABLE() \
    void addref() { CV_XADD(&refcount, 1); } \
    void release() { if( CV_XADD(&refcount, -1) == 1 && !cv::__termination) delete this; } \
    int refcount

/////////////////////////////////////////// Platform /////////////////////////////////////////////

struct Platform::Impl
{
    Impl()
    {
        refcount = 1;
        handle = 0;
        initialized = false;
    }

    ~Impl() {}

    void init()
    {
        if( !initialized )
        {
            //cl_uint num_entries
            cl_uint n = 0;
            if( clGetPlatformIDs(1, &handle, &n) != CL_SUCCESS || n == 0 )
                handle = 0;
            if( handle != 0 )
            {
                char buf[1000];
                size_t len = 0;
                CV_OclDbgAssert(clGetPlatformInfo(handle, CL_PLATFORM_VENDOR, sizeof(buf), buf, &len) == CL_SUCCESS);
                buf[len] = '\0';
                vendor = String(buf);
            }

            initialized = true;
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_platform_id handle;
    String vendor;
    bool initialized;
};

Platform::Platform()
{
    p = 0;
}

Platform::~Platform()
{
    if(p)
        p->release();
}

Platform::Platform(const Platform& pl)
{
    p = (Impl*)pl.p;
    if(p)
        p->addref();
}

Platform& Platform::operator = (const Platform& pl)
{
    Impl* newp = (Impl*)pl.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

void* Platform::ptr() const
{
    return p ? p->handle : 0;
}

Platform& Platform::getDefault()
{
    static Platform p;
    if( !p.p )
    {
        p.p = new Impl;
        p.p->init();
    }
    return p;
}

/////////////////////////////////////// Device ////////////////////////////////////////////

// deviceVersion has format
//   OpenCL<space><major_version.minor_version><space><vendor-specific information>
// by specification
//   http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clGetDeviceInfo.html
//   http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clGetDeviceInfo.html
static void parseDeviceVersion(const String &deviceVersion, int &major, int &minor)
{
    major = minor = 0;
    if (10 >= deviceVersion.length())
        return;
    const char *pstr = deviceVersion.c_str();
    if (0 != strncmp(pstr, "OpenCL ", 7))
        return;
    size_t ppos = deviceVersion.find('.', 7);
    if (String::npos == ppos)
        return;
    String temp = deviceVersion.substr(7, ppos - 7);
    major = atoi(temp.c_str());
    temp = deviceVersion.substr(ppos + 1);
    minor = atoi(temp.c_str());
}

struct Device::Impl
{
    Impl(void* d)
    {
        handle = (cl_device_id)d;
        refcount = 1;

        name_ = getStrProp(CL_DEVICE_NAME);
        version_ = getStrProp(CL_DEVICE_VERSION);
        doubleFPConfig_ = getProp<cl_device_fp_config, int>(CL_DEVICE_DOUBLE_FP_CONFIG);
        hostUnifiedMemory_ = getBoolProp(CL_DEVICE_HOST_UNIFIED_MEMORY);
        maxComputeUnits_ = getProp<cl_uint, int>(CL_DEVICE_MAX_COMPUTE_UNITS);
        maxWorkGroupSize_ = getProp<size_t, size_t>(CL_DEVICE_MAX_WORK_GROUP_SIZE);
        type_ = getProp<cl_device_type, int>(CL_DEVICE_TYPE);
        driverVersion_ = getStrProp(CL_DRIVER_VERSION);

        String deviceVersion_ = getStrProp(CL_DEVICE_VERSION);
        parseDeviceVersion(deviceVersion_, deviceVersionMajor_, deviceVersionMinor_);

        vendorName_ = getStrProp(CL_DEVICE_VENDOR);
        if (vendorName_ == "Advanced Micro Devices, Inc." ||
            vendorName_ == "AMD")
            vendorID_ = VENDOR_AMD;
        else if (vendorName_ == "Intel(R) Corporation" || vendorName_ == "Intel" || strstr(name_.c_str(), "Iris") != 0)
            vendorID_ = VENDOR_INTEL;
        else if (vendorName_ == "NVIDIA Corporation")
            vendorID_ = VENDOR_NVIDIA;
        else
            vendorID_ = UNKNOWN_VENDOR;
    }

    template<typename _TpCL, typename _TpOut>
    _TpOut getProp(cl_device_info prop) const
    {
        _TpCL temp=_TpCL();
        size_t sz = 0;

        return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) == CL_SUCCESS &&
            sz == sizeof(temp) ? _TpOut(temp) : _TpOut();
    }

    bool getBoolProp(cl_device_info prop) const
    {
        cl_bool temp = CL_FALSE;
        size_t sz = 0;

        return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) == CL_SUCCESS &&
            sz == sizeof(temp) ? temp != 0 : false;
    }

    String getStrProp(cl_device_info prop) const
    {
        char buf[1024];
        size_t sz=0;
        return clGetDeviceInfo(handle, prop, sizeof(buf)-16, buf, &sz) == CL_SUCCESS &&
            sz < sizeof(buf) ? String(buf) : String();
    }

    IMPLEMENT_REFCOUNTABLE();
    cl_device_id handle;

    String name_;
    String version_;
    int doubleFPConfig_;
    bool hostUnifiedMemory_;
    int maxComputeUnits_;
    size_t maxWorkGroupSize_;
    int type_;
    int deviceVersionMajor_;
    int deviceVersionMinor_;
    String driverVersion_;
    String vendorName_;
    int vendorID_;
};


Device::Device()
{
    p = 0;
}

Device::Device(void* d)
{
    p = 0;
    set(d);
}

Device::Device(const Device& d)
{
    p = d.p;
    if(p)
        p->addref();
}

Device& Device::operator = (const Device& d)
{
    Impl* newp = (Impl*)d.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Device::~Device()
{
    if(p)
        p->release();
}

void Device::set(void* d)
{
    if(p)
        p->release();
    p = new Impl(d);
}

void* Device::ptr() const
{
    return p ? p->handle : 0;
}

String Device::name() const
{ return p ? p->name_ : String(); }

String Device::extensions() const
{ return p ? p->getStrProp(CL_DEVICE_EXTENSIONS) : String(); }

String Device::version() const
{ return p ? p->version_ : String(); }

String Device::vendorName() const
{ return p ? p->vendorName_ : String(); }

int Device::vendorID() const
{ return p ? p->vendorID_ : 0; }

String Device::OpenCL_C_Version() const
{ return p ? p->getStrProp(CL_DEVICE_OPENCL_C_VERSION) : String(); }

String Device::OpenCLVersion() const
{ return p ? p->getStrProp(CL_DEVICE_EXTENSIONS) : String(); }

int Device::deviceVersionMajor() const
{ return p ? p->deviceVersionMajor_ : 0; }

int Device::deviceVersionMinor() const
{ return p ? p->deviceVersionMinor_ : 0; }

String Device::driverVersion() const
{ return p ? p->driverVersion_ : String(); }

int Device::type() const
{ return p ? p->type_ : 0; }

int Device::addressBits() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_ADDRESS_BITS) : 0; }

bool Device::available() const
{ return p ? p->getBoolProp(CL_DEVICE_AVAILABLE) : false; }

bool Device::compilerAvailable() const
{ return p ? p->getBoolProp(CL_DEVICE_COMPILER_AVAILABLE) : false; }

bool Device::linkerAvailable() const
#ifdef CL_VERSION_1_2
{ return p ? p->getBoolProp(CL_DEVICE_LINKER_AVAILABLE) : false; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif

int Device::doubleFPConfig() const
{ return p ? p->doubleFPConfig_ : 0; }

int Device::singleFPConfig() const
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_SINGLE_FP_CONFIG) : 0; }

int Device::halfFPConfig() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_HALF_FP_CONFIG) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif

bool Device::endianLittle() const
{ return p ? p->getBoolProp(CL_DEVICE_ENDIAN_LITTLE) : false; }

bool Device::errorCorrectionSupport() const
{ return p ? p->getBoolProp(CL_DEVICE_ERROR_CORRECTION_SUPPORT) : false; }

int Device::executionCapabilities() const
{ return p ? p->getProp<cl_device_exec_capabilities, int>(CL_DEVICE_EXECUTION_CAPABILITIES) : 0; }

size_t Device::globalMemCacheSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_CACHE_SIZE) : 0; }

int Device::globalMemCacheType() const
{ return p ? p->getProp<cl_device_mem_cache_type, int>(CL_DEVICE_GLOBAL_MEM_CACHE_TYPE) : 0; }

int Device::globalMemCacheLineSize() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE) : 0; }

size_t Device::globalMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_SIZE) : 0; }

size_t Device::localMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_LOCAL_MEM_SIZE) : 0; }

int Device::localMemType() const
{ return p ? p->getProp<cl_device_local_mem_type, int>(CL_DEVICE_LOCAL_MEM_TYPE) : 0; }

bool Device::hostUnifiedMemory() const
{ return p ? p->hostUnifiedMemory_ : false; }

bool Device::imageSupport() const
{ return p ? p->getBoolProp(CL_DEVICE_IMAGE_SUPPORT) : false; }

bool Device::imageFromBufferSupport() const
{
    bool ret = false;
    if (p)
    {
        size_t pos = p->getStrProp(CL_DEVICE_EXTENSIONS).find("cl_khr_image2d_from_buffer");
        if (pos != String::npos)
        {
            ret = true;
        }
    }
    return ret;
}

uint Device::imagePitchAlignment() const
{
#ifdef CL_DEVICE_IMAGE_PITCH_ALIGNMENT
    return p ? p->getProp<cl_uint, uint>(CL_DEVICE_IMAGE_PITCH_ALIGNMENT) : 0;
#else
    return 0;
#endif
}

uint Device::imageBaseAddressAlignment() const
{
#ifdef CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT
    return p ? p->getProp<cl_uint, uint>(CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT) : 0;
#else
    return 0;
#endif
}

size_t Device::image2DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_WIDTH) : 0; }

size_t Device::image2DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_HEIGHT) : 0; }

size_t Device::image3DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_WIDTH) : 0; }

size_t Device::image3DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_HEIGHT) : 0; }

size_t Device::image3DMaxDepth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_DEPTH) : 0; }

size_t Device::imageMaxBufferSize() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_BUFFER_SIZE) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif

size_t Device::imageMaxArraySize() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_ARRAY_SIZE) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif

int Device::maxClockFrequency() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CLOCK_FREQUENCY) : 0; }

int Device::maxComputeUnits() const
{ return p ? p->maxComputeUnits_ : 0; }

int Device::maxConstantArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CONSTANT_ARGS) : 0; }

size_t Device::maxConstantBufferSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE) : 0; }

size_t Device::maxMemAllocSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_MEM_ALLOC_SIZE) : 0; }

size_t Device::maxParameterSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_PARAMETER_SIZE) : 0; }

int Device::maxReadImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_READ_IMAGE_ARGS) : 0; }

int Device::maxWriteImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WRITE_IMAGE_ARGS) : 0; }

int Device::maxSamplers() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_SAMPLERS) : 0; }

size_t Device::maxWorkGroupSize() const
{ return p ? p->maxWorkGroupSize_ : 0; }

int Device::maxWorkItemDims() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS) : 0; }

void Device::maxWorkItemSizes(size_t* sizes) const
{
    if(p)
    {
        const int MAX_DIMS = 32;
        size_t retsz = 0;
        CV_OclDbgAssert(clGetDeviceInfo(p->handle, CL_DEVICE_MAX_WORK_ITEM_SIZES,
                MAX_DIMS*sizeof(sizes[0]), &sizes[0], &retsz) == CL_SUCCESS);
    }
}

int Device::memBaseAddrAlign() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MEM_BASE_ADDR_ALIGN) : 0; }

int Device::nativeVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR) : 0; }

int Device::nativeVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT) : 0; }

int Device::nativeVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_INT) : 0; }

int Device::nativeVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG) : 0; }

int Device::nativeVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT) : 0; }

int Device::nativeVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE) : 0; }

int Device::nativeVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF) : 0; }

int Device::preferredVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR) : 0; }

int Device::preferredVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT) : 0; }

int Device::preferredVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT) : 0; }

int Device::preferredVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG) : 0; }

int Device::preferredVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT) : 0; }

int Device::preferredVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE) : 0; }

int Device::preferredVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF) : 0; }

size_t Device::printfBufferSize() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PRINTF_BUFFER_SIZE) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif


size_t Device::profilingTimerResolution() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PROFILING_TIMER_RESOLUTION) : 0; }

const Device& Device::getDefault()
{
    const Context& ctx = Context::getDefault();
    int idx = getCoreTlsData().get()->device;
    const Device& device = ctx.device(idx);
    return device;
}

////////////////////////////////////// Context ///////////////////////////////////////////////////

template <typename Functor, typename ObjectType>
inline cl_int getStringInfo(Functor f, ObjectType obj, cl_uint name, std::string& param)
{
    ::size_t required;
    cl_int err = f(obj, name, 0, NULL, &required);
    if (err != CL_SUCCESS)
        return err;

    param.clear();
    if (required > 0)
    {
        AutoBuffer<char> buf(required + 1);
        char* ptr = (char*)buf; // cleanup is not needed
        err = f(obj, name, required, ptr, NULL);
        if (err != CL_SUCCESS)
            return err;
        param = ptr;
    }

    return CL_SUCCESS;
}

static void split(const std::string &s, char delim, std::vector<std::string> &elems)
{
    elems.clear();
    if (s.size() == 0)
        return;
    std::istringstream ss(s);
    std::string item;
    while (!ss.eof())
    {
        std::getline(ss, item, delim);
        elems.push_back(item);
    }
}

// Layout: <Platform>:<CPU|GPU|ACCELERATOR|nothing=GPU/CPU>:<deviceName>
// Sample: AMD:GPU:
// Sample: AMD:GPU:Tahiti
// Sample: :GPU|CPU: = '' = ':' = '::'
static bool parseOpenCLDeviceConfiguration(const std::string& configurationStr,
        std::string& platform, std::vector<std::string>& deviceTypes, std::string& deviceNameOrID)
{
    std::vector<std::string> parts;
    split(configurationStr, ':', parts);
    if (parts.size() > 3)
    {
        std::cerr << "ERROR: Invalid configuration string for OpenCL device" << std::endl;
        return false;
    }
    if (parts.size() > 2)
        deviceNameOrID = parts[2];
    if (parts.size() > 1)
    {
        split(parts[1], '|', deviceTypes);
    }
    if (parts.size() > 0)
    {
        platform = parts[0];
    }
    return true;
}

#ifdef WINRT
static cl_device_id selectOpenCLDevice()
{
    return NULL;
}
#else
static cl_device_id selectOpenCLDevice()
{
    std::string platform, deviceName;
    std::vector<std::string> deviceTypes;

    const char* configuration = getenv("OPENCV_OPENCL_DEVICE");
    if (configuration &&
            (strcmp(configuration, "disabled") == 0 ||
             !parseOpenCLDeviceConfiguration(std::string(configuration), platform, deviceTypes, deviceName)
            ))
        return NULL;

    bool isID = false;
    int deviceID = -1;
    if (deviceName.length() == 1)
    // We limit ID range to 0..9, because we want to write:
    // - '2500' to mean i5-2500
    // - '8350' to mean AMD FX-8350
    // - '650' to mean GeForce 650
    // To extend ID range change condition to '> 0'
    {
        isID = true;
        for (size_t i = 0; i < deviceName.length(); i++)
        {
            if (!isdigit(deviceName[i]))
            {
                isID = false;
                break;
            }
        }
        if (isID)
        {
            deviceID = atoi(deviceName.c_str());
            if (deviceID < 0)
                return NULL;
        }
    }

    std::vector<cl_platform_id> platforms;
    {
        cl_uint numPlatforms = 0;
        CV_OclDbgAssert(clGetPlatformIDs(0, NULL, &numPlatforms) == CL_SUCCESS);

        if (numPlatforms == 0)
            return NULL;
        platforms.resize((size_t)numPlatforms);
        CV_OclDbgAssert(clGetPlatformIDs(numPlatforms, &platforms[0], &numPlatforms) == CL_SUCCESS);
        platforms.resize(numPlatforms);
    }

    int selectedPlatform = -1;
    if (platform.length() > 0)
    {
        for (size_t i = 0; i < platforms.size(); i++)
        {
            std::string name;
            CV_OclDbgAssert(getStringInfo(clGetPlatformInfo, platforms[i], CL_PLATFORM_NAME, name) == CL_SUCCESS);
            if (name.find(platform) != std::string::npos)
            {
                selectedPlatform = (int)i;
                break;
            }
        }
        if (selectedPlatform == -1)
        {
            std::cerr << "ERROR: Can't find OpenCL platform by name: " << platform << std::endl;
            goto not_found;
        }
    }
    if (deviceTypes.size() == 0)
    {
        if (!isID)
        {
            deviceTypes.push_back("GPU");
            if (configuration)
                deviceTypes.push_back("CPU");
        }
        else
            deviceTypes.push_back("ALL");
    }
    for (size_t t = 0; t < deviceTypes.size(); t++)
    {
        int deviceType = 0;
        std::string tempStrDeviceType = deviceTypes[t];
        std::transform( tempStrDeviceType.begin(), tempStrDeviceType.end(), tempStrDeviceType.begin(), tolower );

        if (tempStrDeviceType == "gpu" || tempStrDeviceType == "dgpu" || tempStrDeviceType == "igpu")
            deviceType = Device::TYPE_GPU;
        else if (tempStrDeviceType == "cpu")
            deviceType = Device::TYPE_CPU;
        else if (tempStrDeviceType == "accelerator")
            deviceType = Device::TYPE_ACCELERATOR;
        else if (tempStrDeviceType == "all")
            deviceType = Device::TYPE_ALL;
        else
        {
            std::cerr << "ERROR: Unsupported device type for OpenCL device (GPU, CPU, ACCELERATOR): " << deviceTypes[t] << std::endl;
            goto not_found;
        }

        std::vector<cl_device_id> devices; // TODO Use clReleaseDevice to cleanup
        for (int i = selectedPlatform >= 0 ? selectedPlatform : 0;
                (selectedPlatform >= 0 ? i == selectedPlatform : true) && (i < (int)platforms.size());
                i++)
        {
            cl_uint count = 0;
            cl_int status = clGetDeviceIDs(platforms[i], deviceType, 0, NULL, &count);
            CV_OclDbgAssert(status == CL_SUCCESS || status == CL_DEVICE_NOT_FOUND);
            if (count == 0)
                continue;
            size_t base = devices.size();
            devices.resize(base + count);
            status = clGetDeviceIDs(platforms[i], deviceType, count, &devices[base], &count);
            CV_OclDbgAssert(status == CL_SUCCESS || status == CL_DEVICE_NOT_FOUND);
        }

        for (size_t i = (isID ? deviceID : 0);
             (isID ? (i == (size_t)deviceID) : true) && (i < devices.size());
             i++)
        {
            std::string name;
            CV_OclDbgAssert(getStringInfo(clGetDeviceInfo, devices[i], CL_DEVICE_NAME, name) == CL_SUCCESS);
            cl_bool useGPU = true;
            if(tempStrDeviceType == "dgpu" || tempStrDeviceType == "igpu")
            {
                cl_bool isIGPU = CL_FALSE;
                clGetDeviceInfo(devices[i], CL_DEVICE_HOST_UNIFIED_MEMORY, sizeof(isIGPU), &isIGPU, NULL);
                useGPU = tempStrDeviceType == "dgpu" ? !isIGPU : isIGPU;
            }
            if ( (isID || name.find(deviceName) != std::string::npos) && useGPU)
            {
                // TODO check for OpenCL 1.1
                return devices[i];
            }
        }
    }

not_found:
    if (!configuration)
        return NULL; // suppress messages on stderr

    std::cerr << "ERROR: Requested OpenCL device not found, check configuration: " << (configuration == NULL ? "" : configuration) << std::endl
            << "    Platform: " << (platform.length() == 0 ? "any" : platform) << std::endl
            << "    Device types: ";
    for (size_t t = 0; t < deviceTypes.size(); t++)
        std::cerr << deviceTypes[t] << " ";

    std::cerr << std::endl << "    Device name: " << (deviceName.length() == 0 ? "any" : deviceName) << std::endl;
    return NULL;
}
#endif

#ifdef HAVE_OPENCL_SVM
namespace svm {

enum AllocatorFlags { // don't use first 16 bits
        OPENCL_SVM_COARSE_GRAIN_BUFFER = 1 << 16, // clSVMAlloc + SVM map/unmap
        OPENCL_SVM_FINE_GRAIN_BUFFER = 2 << 16, // clSVMAlloc
        OPENCL_SVM_FINE_GRAIN_SYSTEM = 3 << 16, // direct access
        OPENCL_SVM_BUFFER_MASK = 3 << 16,
        OPENCL_SVM_BUFFER_MAP = 4 << 16
};

static bool checkForceSVMUmatUsage()
{
    static bool initialized = false;
    static bool force = false;
    if (!initialized)
    {
        force = getBoolParameter("OPENCV_OPENCL_SVM_FORCE_UMAT_USAGE", false);
        initialized = true;
    }
    return force;
}
static bool checkDisableSVMUMatUsage()
{
    static bool initialized = false;
    static bool force = false;
    if (!initialized)
    {
        force = getBoolParameter("OPENCV_OPENCL_SVM_DISABLE_UMAT_USAGE", false);
        initialized = true;
    }
    return force;
}
static bool checkDisableSVM()
{
    static bool initialized = false;
    static bool force = false;
    if (!initialized)
    {
        force = getBoolParameter("OPENCV_OPENCL_SVM_DISABLE", false);
        initialized = true;
    }
    return force;
}
// see SVMCapabilities
static unsigned int getSVMCapabilitiesMask()
{
    static bool initialized = false;
    static unsigned int mask = 0;
    if (!initialized)
    {
        const char* envValue = getenv("OPENCV_OPENCL_SVM_CAPABILITIES_MASK");
        if (envValue == NULL)
        {
            return ~0U; // all bits 1
        }
        mask = atoi(envValue);
        initialized = true;
    }
    return mask;
}
} // namespace
#endif

struct Context::Impl
{
    static Context::Impl* get(Context& context) { return context.p; }

    void __init()
    {
        refcount = 1;
        handle = 0;
#ifdef HAVE_OPENCL_SVM
        svmInitialized = false;
#endif
    }

    Impl()
    {
        __init();
    }

    void setDefault()
    {
        CV_Assert(handle == NULL);

        cl_device_id d = selectOpenCLDevice();

        if (d == NULL)
            return;

        cl_platform_id pl = NULL;
        CV_OclDbgAssert(clGetDeviceInfo(d, CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &pl, NULL) == CL_SUCCESS);

        cl_context_properties prop[] =
        {
            CL_CONTEXT_PLATFORM, (cl_context_properties)pl,
            0
        };

        // !!! in the current implementation force the number of devices to 1 !!!
        cl_uint nd = 1;
        cl_int status;

        handle = clCreateContext(prop, nd, &d, 0, 0, &status);

        bool ok = handle != 0 && status == CL_SUCCESS;
        if( ok )
        {
            devices.resize(nd);
            devices[0].set(d);
        }
        else
            handle = NULL;
    }

    Impl(int dtype0)
    {
        __init();

        cl_int retval = 0;
        cl_platform_id pl = (cl_platform_id)Platform::getDefault().ptr();
        cl_context_properties prop[] =
        {
            CL_CONTEXT_PLATFORM, (cl_context_properties)pl,
            0
        };

        cl_uint i, nd0 = 0, nd = 0;
        int dtype = dtype0 & 15;
        CV_OclDbgAssert(clGetDeviceIDs( pl, dtype, 0, 0, &nd0 ) == CL_SUCCESS);

        AutoBuffer<void*> dlistbuf(nd0*2+1);
        cl_device_id* dlist = (cl_device_id*)(void**)dlistbuf;
        cl_device_id* dlist_new = dlist + nd0;
        CV_OclDbgAssert(clGetDeviceIDs( pl, dtype, nd0, dlist, &nd0 ) == CL_SUCCESS);
        String name0;

        for(i = 0; i < nd0; i++)
        {
            Device d(dlist[i]);
            if( !d.available() || !d.compilerAvailable() )
                continue;
            if( dtype0 == Device::TYPE_DGPU && d.hostUnifiedMemory() )
                continue;
            if( dtype0 == Device::TYPE_IGPU && !d.hostUnifiedMemory() )
                continue;
            String name = d.name();
            if( nd != 0 && name != name0 )
                continue;
            name0 = name;
            dlist_new[nd++] = dlist[i];
        }

        if(nd == 0)
            return;

        // !!! in the current implementation force the number of devices to 1 !!!
        nd = 1;

        handle = clCreateContext(prop, nd, dlist_new, 0, 0, &retval);
        bool ok = handle != 0 && retval == CL_SUCCESS;
        if( ok )
        {
            devices.resize(nd);
            for( i = 0; i < nd; i++ )
                devices[i].set(dlist_new[i]);
        }
    }

    ~Impl()
    {
        if(handle)
        {
            clReleaseContext(handle);
            handle = NULL;
        }
        devices.clear();
    }

    Program getProg(const ProgramSource& src,
                    const String& buildflags, String& errmsg)
    {
        String prefix = Program::getPrefix(buildflags);
        HashKey k(src.hash(), crc64((const uchar*)prefix.c_str(), prefix.size()));
        phash_t::iterator it = phash.find(k);
        if( it != phash.end() )
            return it->second;
        //String filename = format("%08x%08x_%08x%08x.clb2",
        Program prog(src, buildflags, errmsg);
        if(prog.ptr())
            phash.insert(std::pair<HashKey,Program>(k, prog));
        return prog;
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_context handle;
    std::vector<Device> devices;

    typedef ProgramSource::hash_t hash_t;

    struct HashKey
    {
        HashKey(hash_t _a, hash_t _b) : a(_a), b(_b) {}
        bool operator < (const HashKey& k) const { return a < k.a || (a == k.a && b < k.b); }
        bool operator == (const HashKey& k) const { return a == k.a && b == k.b; }
        bool operator != (const HashKey& k) const { return a != k.a || b != k.b; }
        hash_t a, b;
    };
    typedef std::map<HashKey, Program> phash_t;
    phash_t phash;

#ifdef HAVE_OPENCL_SVM
    bool svmInitialized;
    bool svmAvailable;
    bool svmEnabled;
    svm::SVMCapabilities svmCapabilities;
    svm::SVMFunctions svmFunctions;

    void svmInit()
    {
        CV_Assert(handle != NULL);
        const Device& device = devices[0];
        cl_device_svm_capabilities deviceCaps = 0;
        CV_Assert(((void)0, CL_DEVICE_SVM_CAPABILITIES == CL_DEVICE_SVM_CAPABILITIES_AMD)); // Check assumption
        cl_int status = clGetDeviceInfo((cl_device_id)device.ptr(), CL_DEVICE_SVM_CAPABILITIES, sizeof(deviceCaps), &deviceCaps, NULL);
        if (status != CL_SUCCESS)
        {
            CV_OPENCL_SVM_TRACE_ERROR_P("CL_DEVICE_SVM_CAPABILITIES via clGetDeviceInfo failed: %d\n", status);
            goto noSVM;
        }
        CV_OPENCL_SVM_TRACE_P("CL_DEVICE_SVM_CAPABILITIES returned: 0x%x\n", (int)deviceCaps);
        CV_Assert(((void)0, CL_DEVICE_SVM_COARSE_GRAIN_BUFFER == CL_DEVICE_SVM_COARSE_GRAIN_BUFFER_AMD)); // Check assumption
        svmCapabilities.value_ =
                ((deviceCaps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER) ? svm::SVMCapabilities::SVM_COARSE_GRAIN_BUFFER : 0) |
                ((deviceCaps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER) ? svm::SVMCapabilities::SVM_FINE_GRAIN_BUFFER : 0) |
                ((deviceCaps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM) ? svm::SVMCapabilities::SVM_FINE_GRAIN_SYSTEM : 0) |
                ((deviceCaps & CL_DEVICE_SVM_ATOMICS) ? svm::SVMCapabilities::SVM_ATOMICS : 0);
        svmCapabilities.value_ &= svm::getSVMCapabilitiesMask();
        if (svmCapabilities.value_ == 0)
        {
            CV_OPENCL_SVM_TRACE_ERROR_P("svmCapabilities is empty\n");
            goto noSVM;
        }
        try
        {
            // Try OpenCL 2.0
            CV_OPENCL_SVM_TRACE_P("Try SVM from OpenCL 2.0 ...\n");
            void* ptr = clSVMAlloc(handle, CL_MEM_READ_WRITE, 100, 0);
            if (!ptr)
            {
                CV_OPENCL_SVM_TRACE_ERROR_P("clSVMAlloc returned NULL...\n");
                CV_ErrorNoReturn(Error::StsBadArg, "clSVMAlloc returned NULL");
            }
            try
            {
                bool error = false;
                cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
                if (CL_SUCCESS != clEnqueueSVMMap(q, CL_TRUE, CL_MAP_WRITE, ptr, 100, 0, NULL, NULL))
                {
                    CV_OPENCL_SVM_TRACE_ERROR_P("clEnqueueSVMMap failed...\n");
                    CV_ErrorNoReturn(Error::StsBadArg, "clEnqueueSVMMap FAILED");
                }
                clFinish(q);
                try
                {
                    ((int*)ptr)[0] = 100;
                }
                catch (...)
                {
                    CV_OPENCL_SVM_TRACE_ERROR_P("SVM buffer access test FAILED\n");
                    error = true;
                }
                if (CL_SUCCESS != clEnqueueSVMUnmap(q, ptr, 0, NULL, NULL))
                {
                    CV_OPENCL_SVM_TRACE_ERROR_P("clEnqueueSVMUnmap failed...\n");
                    CV_ErrorNoReturn(Error::StsBadArg, "clEnqueueSVMUnmap FAILED");
                }
                clFinish(q);
                if (error)
                {
                    CV_ErrorNoReturn(Error::StsBadArg, "OpenCL SVM buffer access test was FAILED");
                }
            }
            catch (...)
            {
                CV_OPENCL_SVM_TRACE_ERROR_P("OpenCL SVM buffer access test was FAILED\n");
                clSVMFree(handle, ptr);
                throw;
            }
            clSVMFree(handle, ptr);
            svmFunctions.fn_clSVMAlloc = clSVMAlloc;
            svmFunctions.fn_clSVMFree = clSVMFree;
            svmFunctions.fn_clSetKernelArgSVMPointer = clSetKernelArgSVMPointer;
            //svmFunctions.fn_clSetKernelExecInfo = clSetKernelExecInfo;
            //svmFunctions.fn_clEnqueueSVMFree = clEnqueueSVMFree;
            svmFunctions.fn_clEnqueueSVMMemcpy = clEnqueueSVMMemcpy;
            svmFunctions.fn_clEnqueueSVMMemFill = clEnqueueSVMMemFill;
            svmFunctions.fn_clEnqueueSVMMap = clEnqueueSVMMap;
            svmFunctions.fn_clEnqueueSVMUnmap = clEnqueueSVMUnmap;
        }
        catch (...)
        {
            CV_OPENCL_SVM_TRACE_P("clSVMAlloc failed, trying HSA extension...\n");
            try
            {
                // Try HSA extension
                String extensions = device.extensions();
                if (extensions.find("cl_amd_svm") == String::npos)
                {
                    CV_OPENCL_SVM_TRACE_P("Device extension doesn't have cl_amd_svm: %s\n", extensions.c_str());
                    goto noSVM;
                }
                cl_platform_id p = NULL;
                status = clGetDeviceInfo((cl_device_id)device.ptr(), CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &p, NULL);
                CV_Assert(status == CL_SUCCESS);
                svmFunctions.fn_clSVMAlloc = (clSVMAllocAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSVMAllocAMD");
                svmFunctions.fn_clSVMFree = (clSVMFreeAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSVMFreeAMD");
                svmFunctions.fn_clSetKernelArgSVMPointer = (clSetKernelArgSVMPointerAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSetKernelArgSVMPointerAMD");
                //svmFunctions.fn_clSetKernelExecInfo = (clSetKernelExecInfoAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSetKernelExecInfoAMD");
                //svmFunctions.fn_clEnqueueSVMFree = (clEnqueueSVMFreeAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMFreeAMD");
                svmFunctions.fn_clEnqueueSVMMemcpy = (clEnqueueSVMMemcpyAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMemcpyAMD");
                svmFunctions.fn_clEnqueueSVMMemFill = (clEnqueueSVMMemFillAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMemFillAMD");
                svmFunctions.fn_clEnqueueSVMMap = (clEnqueueSVMMapAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMapAMD");
                svmFunctions.fn_clEnqueueSVMUnmap = (clEnqueueSVMUnmapAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMUnmapAMD");
                CV_Assert(svmFunctions.isValid());
            }
            catch (...)
            {
                CV_OPENCL_SVM_TRACE_P("Something is totally wrong\n");
                goto noSVM;
            }
        }

        svmAvailable = true;
        svmEnabled = !svm::checkDisableSVM();
        svmInitialized = true;
        CV_OPENCL_SVM_TRACE_P("OpenCV OpenCL SVM support initialized\n");
        return;
    noSVM:
        CV_OPENCL_SVM_TRACE_P("OpenCL SVM is not detected\n");
        svmAvailable = false;
        svmEnabled = false;
        svmCapabilities.value_ = 0;
        svmInitialized = true;
        svmFunctions.fn_clSVMAlloc = NULL;
        return;
    }
#endif
};


Context::Context()
{
    p = 0;
}

Context::Context(int dtype)
{
    p = 0;
    create(dtype);
}

bool Context::create()
{
    if( !haveOpenCL() )
        return false;
    if(p)
        p->release();
    p = new Impl();
    if(!p->handle)
    {
        delete p;
        p = 0;
    }
    return p != 0;
}

bool Context::create(int dtype0)
{
    if( !haveOpenCL() )
        return false;
    if(p)
        p->release();
    p = new Impl(dtype0);
    if(!p->handle)
    {
        delete p;
        p = 0;
    }
    return p != 0;
}

Context::~Context()
{
    if (p)
    {
        p->release();
        p = NULL;
    }
}

Context::Context(const Context& c)
{
    p = (Impl*)c.p;
    if(p)
        p->addref();
}

Context& Context::operator = (const Context& c)
{
    Impl* newp = (Impl*)c.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

void* Context::ptr() const
{
    return p == NULL ? NULL : p->handle;
}

size_t Context::ndevices() const
{
    return p ? p->devices.size() : 0;
}

const Device& Context::device(size_t idx) const
{
    static Device dummy;
    return !p || idx >= p->devices.size() ? dummy : p->devices[idx];
}

Context& Context::getDefault(bool initialize)
{
    static Context* ctx = new Context();
    if(!ctx->p && haveOpenCL())
    {
        if (!ctx->p)
            ctx->p = new Impl();
        if (initialize)
        {
            // do not create new Context right away.
            // First, try to retrieve existing context of the same type.
            // In its turn, Platform::getContext() may call Context::create()
            // if there is no such context.
            if (ctx->p->handle == NULL)
                ctx->p->setDefault();
        }
    }

    return *ctx;
}

Program Context::getProg(const ProgramSource& prog,
                         const String& buildopts, String& errmsg)
{
    return p ? p->getProg(prog, buildopts, errmsg) : Program();
}



#ifdef HAVE_OPENCL_SVM
bool Context::useSVM() const
{
    Context::Impl* i = p;
    CV_Assert(i);
    if (!i->svmInitialized)
        i->svmInit();
    return i->svmEnabled;
}
void Context::setUseSVM(bool enabled)
{
    Context::Impl* i = p;
    CV_Assert(i);
    if (!i->svmInitialized)
        i->svmInit();
    if (enabled && !i->svmAvailable)
    {
        CV_ErrorNoReturn(Error::StsError, "OpenCL Shared Virtual Memory (SVM) is not supported by OpenCL device");
    }
    i->svmEnabled = enabled;
}
#else
bool Context::useSVM() const { return false; }
void Context::setUseSVM(bool enabled) { CV_Assert(!enabled); }
#endif

#ifdef HAVE_OPENCL_SVM
namespace svm {

const SVMCapabilities getSVMCapabilitites(const ocl::Context& context)
{
    Context::Impl* i = context.p;
    CV_Assert(i);
    if (!i->svmInitialized)
        i->svmInit();
    return i->svmCapabilities;
}

CV_EXPORTS const SVMFunctions* getSVMFunctions(const ocl::Context& context)
{
    Context::Impl* i = context.p;
    CV_Assert(i);
    CV_Assert(i->svmInitialized); // getSVMCapabilitites() must be called first
    CV_Assert(i->svmFunctions.fn_clSVMAlloc != NULL);
    return &i->svmFunctions;
}

CV_EXPORTS bool useSVM(UMatUsageFlags usageFlags)
{
    if (checkForceSVMUmatUsage())
        return true;
    if (checkDisableSVMUMatUsage())
        return false;
    if ((usageFlags & USAGE_ALLOCATE_SHARED_MEMORY) != 0)
        return true;
    return false; // don't use SVM by default
}

} // namespace cv::ocl::svm
#endif // HAVE_OPENCL_SVM



void initializeContextFromHandle(Context& ctx, void* platform, void* _context, void* _device)
{
    cl_context context = (cl_context)_context;
    cl_device_id device = (cl_device_id)_device;

    // cleanup old context
    Context::Impl * impl = ctx.p;
    if (impl->handle)
    {
        CV_OclDbgAssert(clReleaseContext(impl->handle) == CL_SUCCESS);
    }
    impl->devices.clear();

    impl->handle = context;
    impl->devices.resize(1);
    impl->devices[0].set(device);

    Platform& p = Platform::getDefault();
    Platform::Impl* pImpl = p.p;
    pImpl->handle = (cl_platform_id)platform;
}

/////////////////////////////////////////// Queue /////////////////////////////////////////////

struct Queue::Impl
{
    Impl(const Context& c, const Device& d)
    {
        refcount = 1;
        const Context* pc = &c;
        cl_context ch = (cl_context)pc->ptr();
        if( !ch )
        {
            pc = &Context::getDefault();
            ch = (cl_context)pc->ptr();
        }
        cl_device_id dh = (cl_device_id)d.ptr();
        if( !dh )
            dh = (cl_device_id)pc->device(0).ptr();
        cl_int retval = 0;
        handle = clCreateCommandQueue(ch, dh, 0, &retval);
        CV_OclDbgAssert(retval == CL_SUCCESS);
    }

    ~Impl()
    {
#ifdef _WIN32
        if (!cv::__termination)
#endif
        {
            if(handle)
            {
                clFinish(handle);
                clReleaseCommandQueue(handle);
                handle = NULL;
            }
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_command_queue handle;
};

Queue::Queue()
{
    p = 0;
}

Queue::Queue(const Context& c, const Device& d)
{
    p = 0;
    create(c, d);
}

Queue::Queue(const Queue& q)
{
    p = q.p;
    if(p)
        p->addref();
}

Queue& Queue::operator = (const Queue& q)
{
    Impl* newp = (Impl*)q.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Queue::~Queue()
{
    if(p)
        p->release();
}

bool Queue::create(const Context& c, const Device& d)
{
    if(p)
        p->release();
    p = new Impl(c, d);
    return p->handle != 0;
}

void Queue::finish()
{
    if(p && p->handle)
    {
        CV_OclDbgAssert(clFinish(p->handle) == CL_SUCCESS);
    }
}

void* Queue::ptr() const
{
    return p ? p->handle : 0;
}

Queue& Queue::getDefault()
{
    Queue& q = getCoreTlsData().get()->oclQueue;
    if( !q.p && haveOpenCL() )
        q.create(Context::getDefault());
    return q;
}

static cl_command_queue getQueue(const Queue& q)
{
    cl_command_queue qq = (cl_command_queue)q.ptr();
    if(!qq)
        qq = (cl_command_queue)Queue::getDefault().ptr();
    return qq;
}

/////////////////////////////////////////// KernelArg /////////////////////////////////////////////

KernelArg::KernelArg()
    : flags(0), m(0), obj(0), sz(0), wscale(1), iwscale(1)
{
}

KernelArg::KernelArg(int _flags, UMat* _m, int _wscale, int _iwscale, const void* _obj, size_t _sz)
    : flags(_flags), m(_m), obj(_obj), sz(_sz), wscale(_wscale), iwscale(_iwscale)
{
}

KernelArg KernelArg::Constant(const Mat& m)
{
    CV_Assert(m.isContinuous());
    return KernelArg(CONSTANT, 0, 0, 0, m.ptr(), m.total()*m.elemSize());
}

/////////////////////////////////////////// Kernel /////////////////////////////////////////////

struct Kernel::Impl
{
    Impl(const char* kname, const Program& prog) :
        refcount(1), e(0), nu(0)
    {
        cl_program ph = (cl_program)prog.ptr();
        cl_int retval = 0;
        handle = ph != 0 ?
            clCreateKernel(ph, kname, &retval) : 0;
        CV_OclDbgAssert(retval == CL_SUCCESS);
        for( int i = 0; i < MAX_ARRS; i++ )
            u[i] = 0;
        haveTempDstUMats = false;
    }

    void cleanupUMats()
    {
        for( int i = 0; i < MAX_ARRS; i++ )
            if( u[i] )
            {
                if( CV_XADD(&u[i]->urefcount, -1) == 1 )
                    u[i]->currAllocator->deallocate(u[i]);
                u[i] = 0;
            }
        nu = 0;
        haveTempDstUMats = false;
    }

    void addUMat(const UMat& m, bool dst)
    {
        CV_Assert(nu < MAX_ARRS && m.u && m.u->urefcount > 0);
        u[nu] = m.u;
        CV_XADD(&m.u->urefcount, 1);
        nu++;
        if(dst && m.u->tempUMat())
            haveTempDstUMats = true;
    }

    void addImage(const Image2D& image)
    {
        images.push_back(image);
    }

    void finit()
    {
        cleanupUMats();
        images.clear();
        if(e) { clReleaseEvent(e); e = 0; }
        release();
    }

    ~Impl()
    {
        if(handle)
            clReleaseKernel(handle);
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_kernel handle;
    cl_event e;
    enum { MAX_ARRS = 16 };
    UMatData* u[MAX_ARRS];
    int nu;
    std::list<Image2D> images;
    bool haveTempDstUMats;
};

}}

extern "C"
{
static void CL_CALLBACK oclCleanupCallback(cl_event, cl_int, void *p)
{
    ((cv::ocl::Kernel::Impl*)p)->finit();
}

}

namespace cv { namespace ocl {

Kernel::Kernel()
{
    p = 0;
}

Kernel::Kernel(const char* kname, const Program& prog)
{
    p = 0;
    create(kname, prog);
}

Kernel::Kernel(const char* kname, const ProgramSource& src,
               const String& buildopts, String* errmsg)
{
    p = 0;
    create(kname, src, buildopts, errmsg);
}

Kernel::Kernel(const Kernel& k)
{
    p = k.p;
    if(p)
        p->addref();
}

Kernel& Kernel::operator = (const Kernel& k)
{
    Impl* newp = (Impl*)k.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Kernel::~Kernel()
{
    if(p)
        p->release();
}

bool Kernel::create(const char* kname, const Program& prog)
{
    if(p)
        p->release();
    p = new Impl(kname, prog);
    if(p->handle == 0)
    {
        p->release();
        p = 0;
    }
#ifdef CV_OPENCL_RUN_ASSERT // check kernel compilation fails
    CV_Assert(p);
#endif
    return p != 0;
}

bool Kernel::create(const char* kname, const ProgramSource& src,
                    const String& buildopts, String* errmsg)
{
    if(p)
    {
        p->release();
        p = 0;
    }
    String tempmsg;
    if( !errmsg ) errmsg = &tempmsg;
    const Program& prog = Context::getDefault().getProg(src, buildopts, *errmsg);
    return create(kname, prog);
}

void* Kernel::ptr() const
{
    return p ? p->handle : 0;
}

bool Kernel::empty() const
{
    return ptr() == 0;
}

int Kernel::set(int i, const void* value, size_t sz)
{
    if (!p || !p->handle)
        return -1;
    if (i < 0)
        return i;
    if( i == 0 )
        p->cleanupUMats();

    cl_int retval = clSetKernelArg(p->handle, (cl_uint)i, sz, value);
    CV_OclDbgAssert(retval == CL_SUCCESS);
    if (retval != CL_SUCCESS)
        return -1;
    return i+1;
}

int Kernel::set(int i, const Image2D& image2D)
{
    p->addImage(image2D);
    cl_mem h = (cl_mem)image2D.ptr();
    return set(i, &h, sizeof(h));
}

int Kernel::set(int i, const UMat& m)
{
    return set(i, KernelArg(KernelArg::READ_WRITE, (UMat*)&m, 0, 0));
}

int Kernel::set(int i, const KernelArg& arg)
{
    if( !p || !p->handle )
        return -1;
    if (i < 0)
        return i;
    if( i == 0 )
        p->cleanupUMats();
    if( arg.m )
    {
        int accessFlags = ((arg.flags & KernelArg::READ_ONLY) ? ACCESS_READ : 0) +
                          ((arg.flags & KernelArg::WRITE_ONLY) ? ACCESS_WRITE : 0);
        bool ptronly = (arg.flags & KernelArg::PTR_ONLY) != 0;
        cl_mem h = (cl_mem)arg.m->handle(accessFlags);

        if (!h)
        {
            p->release();
            p = 0;
            return -1;
        }

#ifdef HAVE_OPENCL_SVM
        if ((arg.m->u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
        {
            const Context& ctx = Context::getDefault();
            const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
            uchar*& svmDataPtr = (uchar*&)arg.m->u->handle;
            CV_OPENCL_SVM_TRACE_P("clSetKernelArgSVMPointer: %p\n", svmDataPtr);
#if 1 // TODO
            cl_int status = svmFns->fn_clSetKernelArgSVMPointer(p->handle, (cl_uint)i, svmDataPtr);
#else
            cl_int status = svmFns->fn_clSetKernelArgSVMPointer(p->handle, (cl_uint)i, &svmDataPtr);
#endif
            CV_Assert(status == CL_SUCCESS);
        }
        else
#endif
        {
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, sizeof(h), &h) == CL_SUCCESS);
        }

        if (ptronly)
        {
            i++;
        }
        else if( arg.m->dims <= 2 )
        {
            UMat2D u2d(*arg.m);
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u2d.step), &u2d.step) == CL_SUCCESS);
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u2d.offset), &u2d.offset) == CL_SUCCESS);
            i += 3;

            if( !(arg.flags & KernelArg::NO_SIZE) )
            {
                int cols = u2d.cols*arg.wscale/arg.iwscale;
                CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, sizeof(u2d.rows), &u2d.rows) == CL_SUCCESS);
                CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(cols), &cols) == CL_SUCCESS);
                i += 2;
            }
        }
        else
        {
            UMat3D u3d(*arg.m);
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.slicestep), &u3d.slicestep) == CL_SUCCESS);
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.step), &u3d.step) == CL_SUCCESS);
            CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+3), sizeof(u3d.offset), &u3d.offset) == CL_SUCCESS);
            i += 4;
            if( !(arg.flags & KernelArg::NO_SIZE) )
            {
                int cols = u3d.cols*arg.wscale/arg.iwscale;
                CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, sizeof(u3d.slices), &u3d.rows) == CL_SUCCESS);
                CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.rows), &u3d.rows) == CL_SUCCESS);
                CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.cols), &cols) == CL_SUCCESS);
                i += 3;
            }
        }
        p->addUMat(*arg.m, (accessFlags & ACCESS_WRITE) != 0);
        return i;
    }
    CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, arg.sz, arg.obj) == CL_SUCCESS);
    return i+1;
}


bool Kernel::run(int dims, size_t _globalsize[], size_t _localsize[],
                 bool sync, const Queue& q)
{
    if(!p || !p->handle || p->e != 0)
        return false;

    cl_command_queue qq = getQueue(q);
    size_t offset[CV_MAX_DIM] = {0}, globalsize[CV_MAX_DIM] = {1,1,1};
    size_t total = 1;
    CV_Assert(_globalsize != 0);
    for (int i = 0; i < dims; i++)
    {
        size_t val = _localsize ? _localsize[i] :
            dims == 1 ? 64 : dims == 2 ? (i == 0 ? 256 : 8) : dims == 3 ? (8>>(int)(i>0)) : 1;
        CV_Assert( val > 0 );
        total *= _globalsize[i];
        globalsize[i] = ((_globalsize[i] + val - 1)/val)*val;
    }
    if( total == 0 )
        return true;
    if( p->haveTempDstUMats )
        sync = true;
    cl_int retval = clEnqueueNDRangeKernel(qq, p->handle, (cl_uint)dims,
                                           offset, globalsize, _localsize, 0, 0,
                                           sync ? 0 : &p->e);
#if CV_OPENCL_SHOW_RUN_ERRORS
    if (retval != CL_SUCCESS)
    {
        printf("OpenCL program returns error: %d\n", retval);
        fflush(stdout);
    }
#endif
    if( sync || retval != CL_SUCCESS )
    {
        CV_OclDbgAssert(clFinish(qq) == CL_SUCCESS);
        p->cleanupUMats();
    }
    else
    {
        p->addref();
        CV_OclDbgAssert(clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p) == CL_SUCCESS);
    }
    return retval == CL_SUCCESS;
}

bool Kernel::runTask(bool sync, const Queue& q)
{
    if(!p || !p->handle || p->e != 0)
        return false;

    cl_command_queue qq = getQueue(q);
    cl_int retval = clEnqueueTask(qq, p->handle, 0, 0, sync ? 0 : &p->e);
    if( sync || retval != CL_SUCCESS )
    {
        CV_OclDbgAssert(clFinish(qq) == CL_SUCCESS);
        p->cleanupUMats();
    }
    else
    {
        p->addref();
        CV_OclDbgAssert(clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p) == CL_SUCCESS);
    }
    return retval == CL_SUCCESS;
}


size_t Kernel::workGroupSize() const
{
    if(!p || !p->handle)
        return 0;
    size_t val = 0, retsz = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_WORK_GROUP_SIZE,
                                    sizeof(val), &val, &retsz) == CL_SUCCESS ? val : 0;
}

size_t Kernel::preferedWorkGroupSizeMultiple() const
{
    if(!p || !p->handle)
        return 0;
    size_t val = 0, retsz = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE,
                                    sizeof(val), &val, &retsz) == CL_SUCCESS ? val : 0;
}

bool Kernel::compileWorkGroupSize(size_t wsz[]) const
{
    if(!p || !p->handle || !wsz)
        return 0;
    size_t retsz = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_COMPILE_WORK_GROUP_SIZE,
                                    sizeof(wsz[0])*3, wsz, &retsz) == CL_SUCCESS;
}

size_t Kernel::localMemSize() const
{
    if(!p || !p->handle)
        return 0;
    size_t retsz = 0;
    cl_ulong val = 0;
    cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
    return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_LOCAL_MEM_SIZE,
                                    sizeof(val), &val, &retsz) == CL_SUCCESS ? (size_t)val : 0;
}

/////////////////////////////////////////// Program /////////////////////////////////////////////

struct Program::Impl
{
    Impl(const ProgramSource& _src,
         const String& _buildflags, String& errmsg)
    {
        refcount = 1;
        const Context& ctx = Context::getDefault();
        src = _src;
        buildflags = _buildflags;
        const String& srcstr = src.source();
        const char* srcptr = srcstr.c_str();
        size_t srclen = srcstr.size();
        cl_int retval = 0;

        handle = clCreateProgramWithSource((cl_context)ctx.ptr(), 1, &srcptr, &srclen, &retval);
        if( handle && retval == CL_SUCCESS )
        {
            int i, n = (int)ctx.ndevices();
            AutoBuffer<void*> deviceListBuf(n+1);
            void** deviceList = deviceListBuf;
            for( i = 0; i < n; i++ )
                deviceList[i] = ctx.device(i).ptr();

            Device device = Device::getDefault();
            if (device.isAMD())
                buildflags += " -D AMD_DEVICE";
            else if (device.isIntel())
                buildflags += " -D INTEL_DEVICE";

            retval = clBuildProgram(handle, n,
                                    (const cl_device_id*)deviceList,
                                    buildflags.c_str(), 0, 0);
#if !CV_OPENCL_ALWAYS_SHOW_BUILD_LOG
            if( retval != CL_SUCCESS )
#endif
            {
                size_t retsz = 0;
                cl_int buildInfo_retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
                                               CL_PROGRAM_BUILD_LOG, 0, 0, &retsz);
                if (buildInfo_retval == CL_SUCCESS && retsz > 1)
                {
                    AutoBuffer<char> bufbuf(retsz + 16);
                    char* buf = bufbuf;
                    buildInfo_retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
                                                   CL_PROGRAM_BUILD_LOG, retsz+1, buf, &retsz);
                    if (buildInfo_retval == CL_SUCCESS)
                    {
                        // TODO It is useful to see kernel name & program file name also
                        errmsg = String(buf);
                        printf("OpenCL program build log: %s\n%s\n", buildflags.c_str(), errmsg.c_str());
                        fflush(stdout);
                    }
                }
                if (retval != CL_SUCCESS && handle)
                {
                    clReleaseProgram(handle);
                    handle = NULL;
                }
            }
        }
    }

    Impl(const String& _buf, const String& _buildflags)
    {
        refcount = 1;
        handle = 0;
        buildflags = _buildflags;
        if(_buf.empty())
            return;
        String prefix0 = Program::getPrefix(buildflags);
        const Context& ctx = Context::getDefault();
        const Device& dev = Device::getDefault();
        const char* pos0 = _buf.c_str();
        const char* pos1 = strchr(pos0, '\n');
        if(!pos1)
            return;
        const char* pos2 = strchr(pos1+1, '\n');
        if(!pos2)
            return;
        const char* pos3 = strchr(pos2+1, '\n');
        if(!pos3)
            return;
        size_t prefixlen = (pos3 - pos0)+1;
        String prefix(pos0, prefixlen);
        if( prefix != prefix0 )
            return;
        const uchar* bin = (uchar*)(pos3+1);
        void* devid = dev.ptr();
        size_t codelen = _buf.length() - prefixlen;
        cl_int binstatus = 0, retval = 0;
        handle = clCreateProgramWithBinary((cl_context)ctx.ptr(), 1, (cl_device_id*)&devid,
                                           &codelen, &bin, &binstatus, &retval);
        CV_OclDbgAssert(retval == CL_SUCCESS);
    }

    String store()
    {
        if(!handle)
            return String();
        size_t progsz = 0, retsz = 0;
        String prefix = Program::getPrefix(buildflags);
        size_t prefixlen = prefix.length();
        if(clGetProgramInfo(handle, CL_PROGRAM_BINARY_SIZES, sizeof(progsz), &progsz, &retsz) != CL_SUCCESS)
            return String();
        AutoBuffer<uchar> bufbuf(prefixlen + progsz + 16);
        uchar* buf = bufbuf;
        memcpy(buf, prefix.c_str(), prefixlen);
        buf += prefixlen;
        if(clGetProgramInfo(handle, CL_PROGRAM_BINARIES, sizeof(buf), &buf, &retsz) != CL_SUCCESS)
            return String();
        buf[progsz] = (uchar)'\0';
        return String((const char*)(uchar*)bufbuf, prefixlen + progsz);
    }

    ~Impl()
    {
        if( handle )
        {
#ifdef _WIN32
            if (!cv::__termination)
#endif
            {
                clReleaseProgram(handle);
            }
            handle = NULL;
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    ProgramSource src;
    String buildflags;
    cl_program handle;
};


Program::Program() { p = 0; }

Program::Program(const ProgramSource& src,
        const String& buildflags, String& errmsg)
{
    p = 0;
    create(src, buildflags, errmsg);
}

Program::Program(const Program& prog)
{
    p = prog.p;
    if(p)
        p->addref();
}

Program& Program::operator = (const Program& prog)
{
    Impl* newp = (Impl*)prog.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

Program::~Program()
{
    if(p)
        p->release();
}

bool Program::create(const ProgramSource& src,
            const String& buildflags, String& errmsg)
{
    if(p)
        p->release();
    p = new Impl(src, buildflags, errmsg);
    if(!p->handle)
    {
        p->release();
        p = 0;
    }
    return p != 0;
}

const ProgramSource& Program::source() const
{
    static ProgramSource dummy;
    return p ? p->src : dummy;
}

void* Program::ptr() const
{
    return p ? p->handle : 0;
}

bool Program::read(const String& bin, const String& buildflags)
{
    if(p)
        p->release();
    p = new Impl(bin, buildflags);
    return p->handle != 0;
}

bool Program::write(String& bin) const
{
    if(!p)
        return false;
    bin = p->store();
    return !bin.empty();
}

String Program::getPrefix() const
{
    if(!p)
        return String();
    return getPrefix(p->buildflags);
}

String Program::getPrefix(const String& buildflags)
{
    const Context& ctx = Context::getDefault();
    const Device& dev = ctx.device(0);
    return format("name=%s\ndriver=%s\nbuildflags=%s\n",
                  dev.name().c_str(), dev.driverVersion().c_str(), buildflags.c_str());
}

///////////////////////////////////////// ProgramSource ///////////////////////////////////////////////

struct ProgramSource::Impl
{
    Impl(const char* _src)
    {
        init(String(_src));
    }
    Impl(const String& _src)
    {
        init(_src);
    }
    void init(const String& _src)
    {
        refcount = 1;
        src = _src;
        h = crc64((uchar*)src.c_str(), src.size());
    }

    IMPLEMENT_REFCOUNTABLE();
    String src;
    ProgramSource::hash_t h;
};


ProgramSource::ProgramSource()
{
    p = 0;
}

ProgramSource::ProgramSource(const char* prog)
{
    p = new Impl(prog);
}

ProgramSource::ProgramSource(const String& prog)
{
    p = new Impl(prog);
}

ProgramSource::~ProgramSource()
{
    if(p)
        p->release();
}

ProgramSource::ProgramSource(const ProgramSource& prog)
{
    p = prog.p;
    if(p)
        p->addref();
}

ProgramSource& ProgramSource::operator = (const ProgramSource& prog)
{
    Impl* newp = (Impl*)prog.p;
    if(newp)
        newp->addref();
    if(p)
        p->release();
    p = newp;
    return *this;
}

const String& ProgramSource::source() const
{
    static String dummy;
    return p ? p->src : dummy;
}

ProgramSource::hash_t ProgramSource::hash() const
{
    return p ? p->h : 0;
}

//////////////////////////////////////////// OpenCLAllocator //////////////////////////////////////////////////

template<typename T>
class OpenCLBufferPool
{
protected:
    ~OpenCLBufferPool() { }
public:
    virtual T allocate(size_t size) = 0;
    virtual void release(T buffer) = 0;
};

template <typename Derived, typename BufferEntry, typename T>
class OpenCLBufferPoolBaseImpl : public BufferPoolController, public OpenCLBufferPool<T>
{
private:
    inline Derived& derived() { return *static_cast<Derived*>(this); }
protected:
    Mutex mutex_;

    size_t currentReservedSize;
    size_t maxReservedSize;

    std::list<BufferEntry> allocatedEntries_; // Allocated and used entries
    std::list<BufferEntry> reservedEntries_; // LRU order. Allocated, but not used entries

    // synchronized
    bool _findAndRemoveEntryFromAllocatedList(CV_OUT BufferEntry& entry, T buffer)
    {
        typename std::list<BufferEntry>::iterator i = allocatedEntries_.begin();
        for (; i != allocatedEntries_.end(); ++i)
        {
            BufferEntry& e = *i;
            if (e.clBuffer_ == buffer)
            {
                entry = e;
                allocatedEntries_.erase(i);
                return true;
            }
        }
        return false;
    }

    // synchronized
    bool _findAndRemoveEntryFromReservedList(CV_OUT BufferEntry& entry, const size_t size)
    {
        if (reservedEntries_.empty())
            return false;
        typename std::list<BufferEntry>::iterator i = reservedEntries_.begin();
        typename std::list<BufferEntry>::iterator result_pos = reservedEntries_.end();
        BufferEntry result;
        size_t minDiff = (size_t)(-1);
        for (; i != reservedEntries_.end(); ++i)
        {
            BufferEntry& e = *i;
            if (e.capacity_ >= size)
            {
                size_t diff = e.capacity_ - size;
                if (diff < size / 8 && (result_pos == reservedEntries_.end() || diff < minDiff))
                {
                    minDiff = diff;
                    result_pos = i;
                    result = e;
                    if (diff == 0)
                        break;
                }
            }
        }
        if (result_pos != reservedEntries_.end())
        {
            //CV_DbgAssert(result == *result_pos);
            reservedEntries_.erase(result_pos);
            entry = result;
            currentReservedSize -= entry.capacity_;
            allocatedEntries_.push_back(entry);
            return true;
        }
        return false;
    }

    // synchronized
    void _checkSizeOfReservedEntries()
    {
        while (currentReservedSize > maxReservedSize)
        {
            CV_DbgAssert(!reservedEntries_.empty());
            const BufferEntry& entry = reservedEntries_.back();
            CV_DbgAssert(currentReservedSize >= entry.capacity_);
            currentReservedSize -= entry.capacity_;
            derived()._releaseBufferEntry(entry);
            reservedEntries_.pop_back();
        }
    }

    inline size_t _allocationGranularity(size_t size)
    {
        // heuristic values
        if (size < 1024)
            return 16;
        else if (size < 64*1024)
            return 64;
        else if (size < 1024*1024)
            return 4096;
        else if (size < 16*1024*1024)
            return 64*1024;
        else
            return 1024*1024;
    }

public:
    OpenCLBufferPoolBaseImpl()
        : currentReservedSize(0),
          maxReservedSize(0)
    {
        // nothing
    }
    virtual ~OpenCLBufferPoolBaseImpl()
    {
        freeAllReservedBuffers();
        CV_Assert(reservedEntries_.empty());
    }
public:
    virtual T allocate(size_t size)
    {
        AutoLock locker(mutex_);
        BufferEntry entry;
        if (maxReservedSize > 0 && _findAndRemoveEntryFromReservedList(entry, size))
        {
            CV_DbgAssert(size <= entry.capacity_);
            LOG_BUFFER_POOL("Reuse reserved buffer: %p\n", entry.clBuffer_);
        }
        else
        {
            derived()._allocateBufferEntry(entry, size);
        }
        return entry.clBuffer_;
    }
    virtual void release(T buffer)
    {
        AutoLock locker(mutex_);
        BufferEntry entry;
        CV_Assert(_findAndRemoveEntryFromAllocatedList(entry, buffer));
        if (maxReservedSize == 0 || entry.capacity_ > maxReservedSize / 8)
        {
            derived()._releaseBufferEntry(entry);
        }
        else
        {
            reservedEntries_.push_front(entry);
            currentReservedSize += entry.capacity_;
            _checkSizeOfReservedEntries();
        }
    }

    virtual size_t getReservedSize() const { return currentReservedSize; }
    virtual size_t getMaxReservedSize() const { return maxReservedSize; }
    virtual void setMaxReservedSize(size_t size)
    {
        AutoLock locker(mutex_);
        size_t oldMaxReservedSize = maxReservedSize;
        maxReservedSize = size;
        if (maxReservedSize < oldMaxReservedSize)
        {
            typename std::list<BufferEntry>::iterator i = reservedEntries_.begin();
            for (; i != reservedEntries_.end();)
            {
                const BufferEntry& entry = *i;
                if (entry.capacity_ > maxReservedSize / 8)
                {
                    CV_DbgAssert(currentReservedSize >= entry.capacity_);
                    currentReservedSize -= entry.capacity_;
                    derived()._releaseBufferEntry(entry);
                    i = reservedEntries_.erase(i);
                    continue;
                }
                ++i;
            }
            _checkSizeOfReservedEntries();
        }
    }
    virtual void freeAllReservedBuffers()
    {
        AutoLock locker(mutex_);
        typename std::list<BufferEntry>::const_iterator i = reservedEntries_.begin();
        for (; i != reservedEntries_.end(); ++i)
        {
            const BufferEntry& entry = *i;
            derived()._releaseBufferEntry(entry);
        }
        reservedEntries_.clear();
        currentReservedSize = 0;
    }
};

struct CLBufferEntry
{
    cl_mem clBuffer_;
    size_t capacity_;
    CLBufferEntry() : clBuffer_((cl_mem)NULL), capacity_(0) { }
};

class OpenCLBufferPoolImpl : public OpenCLBufferPoolBaseImpl<OpenCLBufferPoolImpl, CLBufferEntry, cl_mem>
{
public:
    typedef struct CLBufferEntry BufferEntry;
protected:
    int createFlags_;
public:
    OpenCLBufferPoolImpl(int createFlags = 0)
        : createFlags_(createFlags)
    {
    }

    void _allocateBufferEntry(BufferEntry& entry, size_t size)
    {
        CV_DbgAssert(entry.clBuffer_ == NULL);
        entry.capacity_ = alignSize(size, (int)_allocationGranularity(size));
        Context& ctx = Context::getDefault();
        cl_int retval = CL_SUCCESS;
        entry.clBuffer_ = clCreateBuffer((cl_context)ctx.ptr(), CL_MEM_READ_WRITE|createFlags_, entry.capacity_, 0, &retval);
        CV_Assert(retval == CL_SUCCESS);
        CV_Assert(entry.clBuffer_ != NULL);
        if(retval == CL_SUCCESS)
        {
            CV_IMPL_ADD(CV_IMPL_OCL);
        }
        LOG_BUFFER_POOL("OpenCL allocate %lld (0x%llx) bytes: %p\n",
                (long long)entry.capacity_, (long long)entry.capacity_, entry.clBuffer_);
        allocatedEntries_.push_back(entry);
    }

    void _releaseBufferEntry(const BufferEntry& entry)
    {
        CV_Assert(entry.capacity_ != 0);
        CV_Assert(entry.clBuffer_ != NULL);
        LOG_BUFFER_POOL("OpenCL release buffer: %p, %lld (0x%llx) bytes\n",
                entry.clBuffer_, (long long)entry.capacity_, (long long)entry.capacity_);
        clReleaseMemObject(entry.clBuffer_);
    }
};

#ifdef HAVE_OPENCL_SVM
struct CLSVMBufferEntry
{
    void* clBuffer_;
    size_t capacity_;
    CLSVMBufferEntry() : clBuffer_(NULL), capacity_(0) { }
};
class OpenCLSVMBufferPoolImpl : public OpenCLBufferPoolBaseImpl<OpenCLSVMBufferPoolImpl, CLSVMBufferEntry, void*>
{
public:
    typedef struct CLSVMBufferEntry BufferEntry;
public:
    OpenCLSVMBufferPoolImpl()
    {
    }

    void _allocateBufferEntry(BufferEntry& entry, size_t size)
    {
        CV_DbgAssert(entry.clBuffer_ == NULL);
        entry.capacity_ = alignSize(size, (int)_allocationGranularity(size));

        Context& ctx = Context::getDefault();
        const svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
        bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();
        cl_svm_mem_flags memFlags = CL_MEM_READ_WRITE |
                (isFineGrainBuffer ? CL_MEM_SVM_FINE_GRAIN_BUFFER : 0);

        const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
        CV_DbgAssert(svmFns->isValid());

        CV_OPENCL_SVM_TRACE_P("clSVMAlloc: %d\n", (int)entry.capacity_);
        void *buf = svmFns->fn_clSVMAlloc((cl_context)ctx.ptr(), memFlags, entry.capacity_, 0);
        CV_Assert(buf);

        entry.clBuffer_ = buf;
        {
            CV_IMPL_ADD(CV_IMPL_OCL);
        }
        LOG_BUFFER_POOL("OpenCL SVM allocate %lld (0x%llx) bytes: %p\n",
                (long long)entry.capacity_, (long long)entry.capacity_, entry.clBuffer_);
        allocatedEntries_.push_back(entry);
    }

    void _releaseBufferEntry(const BufferEntry& entry)
    {
        CV_Assert(entry.capacity_ != 0);
        CV_Assert(entry.clBuffer_ != NULL);
        LOG_BUFFER_POOL("OpenCL release SVM buffer: %p, %lld (0x%llx) bytes\n",
                entry.clBuffer_, (long long)entry.capacity_, (long long)entry.capacity_);
        Context& ctx = Context::getDefault();
        const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
        CV_DbgAssert(svmFns->isValid());
        CV_OPENCL_SVM_TRACE_P("clSVMFree: %p\n",  entry.clBuffer_);
        svmFns->fn_clSVMFree((cl_context)ctx.ptr(), entry.clBuffer_);
    }
};
#endif



#if defined _MSC_VER
#pragma warning(disable:4127) // conditional expression is constant
#endif
template <bool readAccess, bool writeAccess>
class AlignedDataPtr
{
protected:
    const size_t size_;
    uchar* const originPtr_;
    const size_t alignment_;
    uchar* ptr_;
    uchar* allocatedPtr_;

public:
    AlignedDataPtr(uchar* ptr, size_t size, size_t alignment)
        : size_(size), originPtr_(ptr), alignment_(alignment), ptr_(ptr), allocatedPtr_(NULL)
    {
        CV_DbgAssert((alignment & (alignment - 1)) == 0); // check for 2^n
        if (((size_t)ptr_ & (alignment - 1)) != 0)
        {
            allocatedPtr_ = new uchar[size_ + alignment - 1];
            ptr_ = (uchar*)(((uintptr_t)allocatedPtr_ + (alignment - 1)) & ~(alignment - 1));
            if (readAccess)
            {
                memcpy(ptr_, originPtr_, size_);
            }
        }
    }

    uchar* getAlignedPtr() const
    {
        CV_DbgAssert(((size_t)ptr_ & (alignment_ - 1)) == 0);
        return ptr_;
    }

    ~AlignedDataPtr()
    {
        if (allocatedPtr_)
        {
            if (writeAccess)
            {
                memcpy(originPtr_, ptr_, size_);
            }
            delete[] allocatedPtr_;
            allocatedPtr_ = NULL;
        }
        ptr_ = NULL;
    }
private:
    AlignedDataPtr(const AlignedDataPtr&); // disabled
    AlignedDataPtr& operator=(const AlignedDataPtr&); // disabled
};
#if defined _MSC_VER
#pragma warning(default:4127) // conditional expression is constant
#endif

#ifndef CV_OPENCL_DATA_PTR_ALIGNMENT
#define CV_OPENCL_DATA_PTR_ALIGNMENT 16
#endif

class OpenCLAllocator : public MatAllocator
{
    mutable OpenCLBufferPoolImpl bufferPool;
    mutable OpenCLBufferPoolImpl bufferPoolHostPtr;
#ifdef  HAVE_OPENCL_SVM
    mutable OpenCLSVMBufferPoolImpl bufferPoolSVM;
#endif

    enum AllocatorFlags
    {
        ALLOCATOR_FLAGS_BUFFER_POOL_USED = 1 << 0,
        ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED = 1 << 1
#ifdef HAVE_OPENCL_SVM
        ,ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED = 1 << 2
#endif
    };
public:
    OpenCLAllocator()
        : bufferPool(0),
          bufferPoolHostPtr(CL_MEM_ALLOC_HOST_PTR)
    {
        size_t defaultPoolSize, poolSize;
        defaultPoolSize = ocl::Device::getDefault().isIntel() ? 1 << 27 : 0;
        poolSize = getConfigurationParameterForSize("OPENCV_OPENCL_BUFFERPOOL_LIMIT", defaultPoolSize);
        bufferPool.setMaxReservedSize(poolSize);
        poolSize = getConfigurationParameterForSize("OPENCV_OPENCL_HOST_PTR_BUFFERPOOL_LIMIT", defaultPoolSize);
        bufferPoolHostPtr.setMaxReservedSize(poolSize);
#ifdef HAVE_OPENCL_SVM
        poolSize = getConfigurationParameterForSize("OPENCV_OPENCL_SVM_BUFFERPOOL_LIMIT", defaultPoolSize);
        bufferPoolSVM.setMaxReservedSize(poolSize);
#endif

        matStdAllocator = Mat::getStdAllocator();
    }

    UMatData* defaultAllocate(int dims, const int* sizes, int type, void* data, size_t* step,
            int flags, UMatUsageFlags usageFlags) const
    {
        UMatData* u = matStdAllocator->allocate(dims, sizes, type, data, step, flags, usageFlags);
        return u;
    }

    void getBestFlags(const Context& ctx, int /*flags*/, UMatUsageFlags usageFlags, int& createFlags, int& flags0) const
    {
        const Device& dev = ctx.device(0);
        createFlags = 0;
        if ((usageFlags & USAGE_ALLOCATE_HOST_MEMORY) != 0)
            createFlags |= CL_MEM_ALLOC_HOST_PTR;

        if( dev.hostUnifiedMemory() )
            flags0 = 0;
        else
            flags0 = UMatData::COPY_ON_MAP;
    }

    UMatData* allocate(int dims, const int* sizes, int type,
                       void* data, size_t* step, int flags, UMatUsageFlags usageFlags) const
    {
        if(!useOpenCL())
            return defaultAllocate(dims, sizes, type, data, step, flags, usageFlags);
        CV_Assert(data == 0);
        size_t total = CV_ELEM_SIZE(type);
        for( int i = dims-1; i >= 0; i-- )
        {
            if( step )
                step[i] = total;
            total *= sizes[i];
        }

        Context& ctx = Context::getDefault();

        int createFlags = 0, flags0 = 0;
        getBestFlags(ctx, flags, usageFlags, createFlags, flags0);

        void* handle = NULL;
        int allocatorFlags = 0;

#ifdef HAVE_OPENCL_SVM
        const svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
        if (ctx.useSVM() && svm::useSVM(usageFlags) && !svmCaps.isNoSVMSupport())
        {
            allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED;
            handle = bufferPoolSVM.allocate(total);

            // this property is constant, so single buffer pool can be used here
            bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();
            allocatorFlags |= isFineGrainBuffer ? svm::OPENCL_SVM_FINE_GRAIN_BUFFER : svm::OPENCL_SVM_COARSE_GRAIN_BUFFER;
        }
        else
#endif
        if (createFlags == 0)
        {
            allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_USED;
            handle = bufferPool.allocate(total);
        }
        else if (createFlags == CL_MEM_ALLOC_HOST_PTR)
        {
            allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED;
            handle = bufferPoolHostPtr.allocate(total);
        }
        else
        {
            CV_Assert(handle != NULL); // Unsupported, throw
        }

        if (!handle)
            return defaultAllocate(dims, sizes, type, data, step, flags, usageFlags);

        UMatData* u = new UMatData(this);
        u->data = 0;
        u->size = total;
        u->handle = handle;
        u->flags = flags0;
        u->allocatorFlags_ = allocatorFlags;
        CV_DbgAssert(!u->tempUMat()); // for bufferPool.release() consistency in deallocate()
        return u;
    }

    bool allocate(UMatData* u, int accessFlags, UMatUsageFlags usageFlags) const
    {
        if(!u)
            return false;

        UMatDataAutoLock lock(u);

        if(u->handle == 0)
        {
            CV_Assert(u->origdata != 0);
            Context& ctx = Context::getDefault();
            int createFlags = 0, flags0 = 0;
            getBestFlags(ctx, accessFlags, usageFlags, createFlags, flags0);

            cl_context ctx_handle = (cl_context)ctx.ptr();
            int allocatorFlags = 0;
            int tempUMatFlags = 0;
            void* handle = NULL;
            cl_int retval = CL_SUCCESS;

#ifdef HAVE_OPENCL_SVM
            svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
            bool useSVM = ctx.useSVM() && svm::useSVM(usageFlags);
            if (useSVM && svmCaps.isSupportFineGrainSystem())
            {
                allocatorFlags = svm::OPENCL_SVM_FINE_GRAIN_SYSTEM;
                tempUMatFlags = UMatData::TEMP_UMAT;
                handle = u->origdata;
                CV_OPENCL_SVM_TRACE_P("Use fine grain system: %d (%p)\n", (int)u->size, handle);
            }
            else if (useSVM && (svmCaps.isSupportFineGrainBuffer() || svmCaps.isSupportCoarseGrainBuffer()))
            {
                if (!(accessFlags & ACCESS_FAST)) // memcpy used
                {
                    bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();

                    cl_svm_mem_flags memFlags = createFlags |
                            (isFineGrainBuffer ? CL_MEM_SVM_FINE_GRAIN_BUFFER : 0);

                    const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                    CV_DbgAssert(svmFns->isValid());

                    CV_OPENCL_SVM_TRACE_P("clSVMAlloc + copy: %d\n", (int)u->size);
                    handle = svmFns->fn_clSVMAlloc((cl_context)ctx.ptr(), memFlags, u->size, 0);
                    CV_Assert(handle);

                    cl_command_queue q = NULL;
                    if (!isFineGrainBuffer)
                    {
                        q = (cl_command_queue)Queue::getDefault().ptr();
                        CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", handle, (int)u->size);
                        cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_TRUE, CL_MAP_WRITE,
                                handle, u->size,
                                0, NULL, NULL);
                        CV_Assert(status == CL_SUCCESS);

                    }
                    memcpy(handle, u->origdata, u->size);
                    if (!isFineGrainBuffer)
                    {
                        CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", handle);
                        cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, handle, 0, NULL, NULL);
                        CV_Assert(status == CL_SUCCESS);
                    }

                    tempUMatFlags = UMatData::TEMP_UMAT | UMatData::TEMP_COPIED_UMAT;
                    allocatorFlags |= isFineGrainBuffer ? svm::OPENCL_SVM_FINE_GRAIN_BUFFER
                                                : svm::OPENCL_SVM_COARSE_GRAIN_BUFFER;
                }
            }
            else
#endif
            {
                tempUMatFlags = UMatData::TEMP_UMAT;
                handle = clCreateBuffer(ctx_handle, CL_MEM_USE_HOST_PTR|createFlags,
                                           u->size, u->origdata, &retval);
                if((!handle || retval < 0) && !(accessFlags & ACCESS_FAST))
                {
                    handle = clCreateBuffer(ctx_handle, CL_MEM_COPY_HOST_PTR|CL_MEM_READ_WRITE|createFlags,
                                               u->size, u->origdata, &retval);
                    tempUMatFlags |= UMatData::TEMP_COPIED_UMAT;
                }
            }
            if(!handle || retval != CL_SUCCESS)
                return false;
            u->handle = handle;
            u->prevAllocator = u->currAllocator;
            u->currAllocator = this;
            u->flags |= tempUMatFlags;
            u->allocatorFlags_ = allocatorFlags;
        }
        if(accessFlags & ACCESS_WRITE)
            u->markHostCopyObsolete(true);
        return true;
    }

    /*void sync(UMatData* u) const
    {
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
        UMatDataAutoLock lock(u);

        if( u->hostCopyObsolete() && u->handle && u->refcount > 0 && u->origdata)
        {
            if( u->tempCopiedUMat() )
            {
                clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                    u->size, u->origdata, 0, 0, 0);
            }
            else
            {
                cl_int retval = 0;
                void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                (CL_MAP_READ | CL_MAP_WRITE),
                                                0, u->size, 0, 0, 0, &retval);
                clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0);
                clFinish(q);
            }
            u->markHostCopyObsolete(false);
        }
        else if( u->copyOnMap() && u->deviceCopyObsolete() && u->data )
        {
            clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                 u->size, u->data, 0, 0, 0);
        }
    }*/

    void deallocate(UMatData* u) const
    {
        if(!u)
            return;

        CV_Assert(u->urefcount >= 0);
        CV_Assert(u->refcount >= 0);

        CV_Assert(u->handle != 0 && u->urefcount == 0);
        if(u->tempUMat())
        {
//            UMatDataAutoLock lock(u);

            if( u->hostCopyObsolete() && u->refcount > 0 )
            {
#ifdef HAVE_OPENCL_SVM
                if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
                {
                    Context& ctx = Context::getDefault();
                    const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                    CV_DbgAssert(svmFns->isValid());

                    if( u->tempCopiedUMat() )
                    {
                        CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
                                (u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER);
                        bool isFineGrainBuffer = (u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER;
                        cl_command_queue q = NULL;
                        if (!isFineGrainBuffer)
                        {
                            CV_DbgAssert(((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0));
                            q = (cl_command_queue)Queue::getDefault().ptr();
                            CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
                            cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ,
                                    u->handle, u->size,
                                    0, NULL, NULL);
                            CV_Assert(status == CL_SUCCESS);
                        }
                        clFinish(q);
                        memcpy(u->origdata, u->handle, u->size);
                        if (!isFineGrainBuffer)
                        {
                            CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
                            cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle, 0, NULL, NULL);
                            CV_Assert(status == CL_SUCCESS);
                        }
                    }
                    else
                    {
                        CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM);
                        // nothing
                    }
                }
                else
#endif
                {
                    cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
                    if( u->tempCopiedUMat() )
                    {
                        AlignedDataPtr<false, true> alignedPtr(u->origdata, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
                        CV_OclDbgAssert(clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                            u->size, alignedPtr.getAlignedPtr(), 0, 0, 0) == CL_SUCCESS);
                    }
                    else
                    {
                        // TODO Is it really needed for clCreateBuffer with CL_MEM_USE_HOST_PTR?
                        cl_int retval = 0;
                        void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                        (CL_MAP_READ | CL_MAP_WRITE),
                                                        0, u->size, 0, 0, 0, &retval);
                        CV_OclDbgAssert(retval == CL_SUCCESS);
                        CV_OclDbgAssert(clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0) == CL_SUCCESS);
                        CV_OclDbgAssert(clFinish(q) == CL_SUCCESS);
                    }
                }
                u->markHostCopyObsolete(false);
            }
#ifdef HAVE_OPENCL_SVM
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
            {
                if( u->tempCopiedUMat() )
                {
                    Context& ctx = Context::getDefault();
                    const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                    CV_DbgAssert(svmFns->isValid());

                    CV_OPENCL_SVM_TRACE_P("clSVMFree: %p\n", u->handle);
                    svmFns->fn_clSVMFree((cl_context)ctx.ptr(), u->handle);
                }
            }
            else
#endif
            {
                clReleaseMemObject((cl_mem)u->handle);
            }
            u->handle = 0;
            u->currAllocator = u->prevAllocator;
            if(u->data && u->copyOnMap() && !(u->flags & UMatData::USER_ALLOCATED))
                fastFree(u->data);
            u->data = u->origdata;
            if(u->refcount == 0)
                u->currAllocator->deallocate(u);
        }
        else
        {
            CV_Assert(u->refcount == 0);
            if(u->data && u->copyOnMap() && !(u->flags & UMatData::USER_ALLOCATED))
            {
                fastFree(u->data);
                u->data = 0;
            }
            if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_USED)
            {
                bufferPool.release((cl_mem)u->handle);
            }
            else if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED)
            {
                bufferPoolHostPtr.release((cl_mem)u->handle);
            }
#ifdef HAVE_OPENCL_SVM
            else if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED)
            {
                if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
                {
                    //nothing
                }
                else if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
                        (u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
                {
                    Context& ctx = Context::getDefault();
                    const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                    CV_DbgAssert(svmFns->isValid());
                    cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

                    if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) != 0)
                    {
                        CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
                        cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle, 0, NULL, NULL);
                        CV_Assert(status == CL_SUCCESS);
                    }
                }
                bufferPoolSVM.release((void*)u->handle);
            }
#endif
            else
            {
                clReleaseMemObject((cl_mem)u->handle);
            }
            u->handle = 0;
            delete u;
        }
    }

    void map(UMatData* u, int accessFlags) const
    {
        if(!u)
            return;

        CV_Assert( u->handle != 0 );

        UMatDataAutoLock autolock(u);

        if(accessFlags & ACCESS_WRITE)
            u->markDeviceCopyObsolete(true);

        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        // FIXIT Workaround for UMat synchronization issue
        // if( u->refcount == 0 )
        {
            if( !u->copyOnMap() )
            {
                // TODO
                // because there can be other map requests for the same UMat with different access flags,
                // we use the universal (read-write) access mode.
#ifdef HAVE_OPENCL_SVM
                if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
                {
                    if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
                    {
                        Context& ctx = Context::getDefault();
                        const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                        CV_DbgAssert(svmFns->isValid());

                        if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0)
                        {
                            CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
                            cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ | CL_MAP_WRITE,
                                    u->handle, u->size,
                                    0, NULL, NULL);
                            CV_Assert(status == CL_SUCCESS);
                            u->allocatorFlags_ |= svm::OPENCL_SVM_BUFFER_MAP;
                        }
                    }
                    clFinish(q);
                    u->data = (uchar*)u->handle;
                    u->markHostCopyObsolete(false);
                    u->markDeviceMemMapped(true);
                    return;
                }
#endif
                if (u->data) // FIXIT Workaround for UMat synchronization issue
                {
                    //CV_Assert(u->hostCopyObsolete() == false);
                    return;
                }

                cl_int retval = 0;
                u->data = (uchar*)clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                                     (CL_MAP_READ | CL_MAP_WRITE),
                                                     0, u->size, 0, 0, 0, &retval);
                if(u->data && retval == CL_SUCCESS)
                {
                    u->markHostCopyObsolete(false);
                    u->markDeviceMemMapped(true);
                    return;
                }

                // TODO Is it really a good idea and was it tested well?
                // if map failed, switch to copy-on-map mode for the particular buffer
                u->flags |= UMatData::COPY_ON_MAP;
            }

            if(!u->data)
            {
                u->data = (uchar*)fastMalloc(u->size);
                u->markHostCopyObsolete(true);
            }
        }

        if( (accessFlags & ACCESS_READ) != 0 && u->hostCopyObsolete() )
        {
            AlignedDataPtr<false, true> alignedPtr(u->data, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
#ifdef HAVE_OPENCL_SVM
            CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == 0);
#endif
            CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                           u->size, alignedPtr.getAlignedPtr(), 0, 0, 0) == CL_SUCCESS );
            u->markHostCopyObsolete(false);
        }
    }

    void unmap(UMatData* u) const
    {
        if(!u)
            return;


        CV_Assert(u->handle != 0);

        UMatDataAutoLock autolock(u);

        // FIXIT Workaround for UMat synchronization issue
        if(u->refcount > 0)
            return;

        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
        cl_int retval = 0;
        if( !u->copyOnMap() && u->deviceMemMapped() )
        {
            CV_Assert(u->data != NULL);
            u->markDeviceMemMapped(false);
#ifdef HAVE_OPENCL_SVM
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
            {
                if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
                {
                    Context& ctx = Context::getDefault();
                    const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                    CV_DbgAssert(svmFns->isValid());

                    CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) != 0);
                    {
                        CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
                        cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
                                0, NULL, NULL);
                        CV_Assert(status == CL_SUCCESS);
                        clFinish(q);
                        u->allocatorFlags_ &= ~svm::OPENCL_SVM_BUFFER_MAP;
                    }
                }
                u->data = 0;
                u->markDeviceCopyObsolete(false);
                u->markHostCopyObsolete(false);
                return;
            }
#endif
            CV_Assert( (retval = clEnqueueUnmapMemObject(q,
                                (cl_mem)u->handle, u->data, 0, 0, 0)) == CL_SUCCESS );
            if (Device::getDefault().isAMD())
            {
                // required for multithreaded applications (see stitching test)
                CV_OclDbgAssert(clFinish(q) == CL_SUCCESS);
            }
            u->data = 0;
        }
        else if( u->copyOnMap() && u->deviceCopyObsolete() )
        {
            AlignedDataPtr<true, false> alignedPtr(u->data, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
#ifdef HAVE_OPENCL_SVM
            CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == 0);
#endif
            CV_Assert( (retval = clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
                                u->size, alignedPtr.getAlignedPtr(), 0, 0, 0)) == CL_SUCCESS );
        }
        u->markDeviceCopyObsolete(false);
        u->markHostCopyObsolete(false);
    }

    bool checkContinuous(int dims, const size_t sz[],
                         const size_t srcofs[], const size_t srcstep[],
                         const size_t dstofs[], const size_t dststep[],
                         size_t& total, size_t new_sz[],
                         size_t& srcrawofs, size_t new_srcofs[], size_t new_srcstep[],
                         size_t& dstrawofs, size_t new_dstofs[], size_t new_dststep[]) const
    {
        bool iscontinuous = true;
        srcrawofs = srcofs ? srcofs[dims-1] : 0;
        dstrawofs = dstofs ? dstofs[dims-1] : 0;
        total = sz[dims-1];
        for( int i = dims-2; i >= 0; i-- )
        {
            if( i >= 0 && (total != srcstep[i] || total != dststep[i]) )
                iscontinuous = false;
            total *= sz[i];
            if( srcofs )
                srcrawofs += srcofs[i]*srcstep[i];
            if( dstofs )
                dstrawofs += dstofs[i]*dststep[i];
        }

        if( !iscontinuous )
        {
            // OpenCL uses {x, y, z} order while OpenCV uses {z, y, x} order.
            if( dims == 2 )
            {
                new_sz[0] = sz[1]; new_sz[1] = sz[0]; new_sz[2] = 1;
                // we assume that new_... arrays are initialized by caller
                // with 0's, so there is no else branch
                if( srcofs )
                {
                    new_srcofs[0] = srcofs[1];
                    new_srcofs[1] = srcofs[0];
                    new_srcofs[2] = 0;
                }

                if( dstofs )
                {
                    new_dstofs[0] = dstofs[1];
                    new_dstofs[1] = dstofs[0];
                    new_dstofs[2] = 0;
                }

                new_srcstep[0] = srcstep[0]; new_srcstep[1] = 0;
                new_dststep[0] = dststep[0]; new_dststep[1] = 0;
            }
            else
            {
                // we could check for dims == 3 here,
                // but from user perspective this one is more informative
                CV_Assert(dims <= 3);
                new_sz[0] = sz[2]; new_sz[1] = sz[1]; new_sz[2] = sz[0];
                if( srcofs )
                {
                    new_srcofs[0] = srcofs[2];
                    new_srcofs[1] = srcofs[1];
                    new_srcofs[2] = srcofs[0];
                }

                if( dstofs )
                {
                    new_dstofs[0] = dstofs[2];
                    new_dstofs[1] = dstofs[1];
                    new_dstofs[2] = dstofs[0];
                }

                new_srcstep[0] = srcstep[1]; new_srcstep[1] = srcstep[0];
                new_dststep[0] = dststep[1]; new_dststep[1] = dststep[0];
            }
        }
        return iscontinuous;
    }

    void download(UMatData* u, void* dstptr, int dims, const size_t sz[],
                  const size_t srcofs[], const size_t srcstep[],
                  const size_t dststep[]) const
    {
        if(!u)
            return;
        UMatDataAutoLock autolock(u);

        if( u->data && !u->hostCopyObsolete() )
        {
            Mat::getStdAllocator()->download(u, dstptr, dims, sz, srcofs, srcstep, dststep);
            return;
        }
        CV_Assert( u->handle != 0 );

        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, 0, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);

#ifdef HAVE_OPENCL_SVM
        if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
        {
            CV_DbgAssert(u->data == NULL || u->data == u->handle);
            Context& ctx = Context::getDefault();
            const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
            CV_DbgAssert(svmFns->isValid());

            CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0);
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
            {
                CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
                cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ,
                        u->handle, u->size,
                        0, NULL, NULL);
                CV_Assert(status == CL_SUCCESS);
            }
            clFinish(q);
            if( iscontinuous )
            {
                memcpy(dstptr, (uchar*)u->handle + srcrawofs, total);
            }
            else
            {
                // This code is from MatAllocator::download()
                int isz[CV_MAX_DIM];
                uchar* srcptr = (uchar*)u->handle;
                for( int i = 0; i < dims; i++ )
                {
                    CV_Assert( sz[i] <= (size_t)INT_MAX );
                    if( sz[i] == 0 )
                    return;
                    if( srcofs )
                    srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1);
                    isz[i] = (int)sz[i];
                }

                Mat src(dims, isz, CV_8U, srcptr, srcstep);
                Mat dst(dims, isz, CV_8U, dstptr, dststep);

                const Mat* arrays[] = { &src, &dst };
                uchar* ptrs[2];
                NAryMatIterator it(arrays, ptrs, 2);
                size_t j, planesz = it.size;

                for( j = 0; j < it.nplanes; j++, ++it )
                    memcpy(ptrs[1], ptrs[0], planesz);
            }
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
            {
                CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
                cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
                        0, NULL, NULL);
                CV_Assert(status == CL_SUCCESS);
                clFinish(q);
            }
        }
        else
#endif
        {
            AlignedDataPtr<false, true> alignedPtr((uchar*)dstptr, sz[0] * dststep[0], CV_OPENCL_DATA_PTR_ALIGNMENT);
            if( iscontinuous )
            {
                CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE,
                                               srcrawofs, total, alignedPtr.getAlignedPtr(), 0, 0, 0) >= 0 );
            }
            else
            {
                CV_Assert( clEnqueueReadBufferRect(q, (cl_mem)u->handle, CL_TRUE,
                                new_srcofs, new_dstofs, new_sz, new_srcstep[0], new_srcstep[1],
                                new_dststep[0], new_dststep[1], alignedPtr.getAlignedPtr(), 0, 0, 0) >= 0 );
            }
        }
    }

    void upload(UMatData* u, const void* srcptr, int dims, const size_t sz[],
                const size_t dstofs[], const size_t dststep[],
                const size_t srcstep[]) const
    {
        if(!u)
            return;

        // there should be no user-visible CPU copies of the UMat which we are going to copy to
        CV_Assert(u->refcount == 0 || u->tempUMat());

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, 0, srcstep, dstofs, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);

        UMatDataAutoLock autolock(u);

        // if there is cached CPU copy of the GPU matrix,
        // we could use it as a destination.
        // we can do it in 2 cases:
        //    1. we overwrite the whole content
        //    2. we overwrite part of the matrix, but the GPU copy is out-of-date
        if( u->data && (u->hostCopyObsolete() < u->deviceCopyObsolete() || total == u->size))
        {
            Mat::getStdAllocator()->upload(u, srcptr, dims, sz, dstofs, dststep, srcstep);
            u->markHostCopyObsolete(false);
            u->markDeviceCopyObsolete(true);
            return;
        }

        CV_Assert( u->handle != 0 );
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

#ifdef HAVE_OPENCL_SVM
        if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
        {
            CV_DbgAssert(u->data == NULL || u->data == u->handle);
            Context& ctx = Context::getDefault();
            const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
            CV_DbgAssert(svmFns->isValid());

            CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0);
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
            {
                CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
                cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_WRITE,
                        u->handle, u->size,
                        0, NULL, NULL);
                CV_Assert(status == CL_SUCCESS);
            }
            clFinish(q);
            if( iscontinuous )
            {
                memcpy((uchar*)u->handle + dstrawofs, srcptr, total);
            }
            else
            {
                // This code is from MatAllocator::upload()
                int isz[CV_MAX_DIM];
                uchar* dstptr = (uchar*)u->handle;
                for( int i = 0; i < dims; i++ )
                {
                    CV_Assert( sz[i] <= (size_t)INT_MAX );
                    if( sz[i] == 0 )
                    return;
                    if( dstofs )
                    dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1);
                    isz[i] = (int)sz[i];
                }

                Mat src(dims, isz, CV_8U, (void*)srcptr, srcstep);
                Mat dst(dims, isz, CV_8U, dstptr, dststep);

                const Mat* arrays[] = { &src, &dst };
                uchar* ptrs[2];
                NAryMatIterator it(arrays, ptrs, 2);
                size_t j, planesz = it.size;

                for( j = 0; j < it.nplanes; j++, ++it )
                    memcpy(ptrs[1], ptrs[0], planesz);
            }
            if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
            {
                CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
                cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
                        0, NULL, NULL);
                CV_Assert(status == CL_SUCCESS);
                clFinish(q);
            }
        }
        else
#endif
        {
            AlignedDataPtr<true, false> alignedPtr((uchar*)srcptr, sz[0] * srcstep[0], CV_OPENCL_DATA_PTR_ALIGNMENT);
            if( iscontinuous )
            {
                CV_Assert( clEnqueueWriteBuffer(q, (cl_mem)u->handle,
                    CL_TRUE, dstrawofs, total, alignedPtr.getAlignedPtr(), 0, 0, 0) >= 0 );
            }
            else
            {
                CV_Assert( clEnqueueWriteBufferRect(q, (cl_mem)u->handle, CL_TRUE,
                    new_dstofs, new_srcofs, new_sz, new_dststep[0], new_dststep[1],
                    new_srcstep[0], new_srcstep[1], alignedPtr.getAlignedPtr(), 0, 0, 0) >= 0 );
            }
        }
        u->markHostCopyObsolete(true);
#ifdef HAVE_OPENCL_SVM
        if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
                (u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
        {
            // nothing
        }
        else
#endif
        {
            u->markHostCopyObsolete(true);
        }
        u->markDeviceCopyObsolete(false);
    }

    void copy(UMatData* src, UMatData* dst, int dims, const size_t sz[],
              const size_t srcofs[], const size_t srcstep[],
              const size_t dstofs[], const size_t dststep[], bool _sync) const
    {
        if(!src || !dst)
            return;

        size_t total = 0, new_sz[] = {0, 0, 0};
        size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
        size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};

        bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, dstofs, dststep,
                                            total, new_sz,
                                            srcrawofs, new_srcofs, new_srcstep,
                                            dstrawofs, new_dstofs, new_dststep);

        UMatDataAutoLock src_autolock(src);
        UMatDataAutoLock dst_autolock(dst);

        if( !src->handle || (src->data && src->hostCopyObsolete() < src->deviceCopyObsolete()) )
        {
            upload(dst, src->data + srcrawofs, dims, sz, dstofs, dststep, srcstep);
            return;
        }
        if( !dst->handle || (dst->data && dst->hostCopyObsolete() < dst->deviceCopyObsolete()) )
        {
            download(src, dst->data + dstrawofs, dims, sz, srcofs, srcstep, dststep);
            dst->markHostCopyObsolete(false);
#ifdef HAVE_OPENCL_SVM
            if ((dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
                    (dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
            {
                // nothing
            }
            else
#endif
            {
                dst->markDeviceCopyObsolete(true);
            }
            return;
        }

        // there should be no user-visible CPU copies of the UMat which we are going to copy to
        CV_Assert(dst->refcount == 0);
        cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();

        cl_int retval = CL_SUCCESS;
#ifdef HAVE_OPENCL_SVM
        if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0 ||
                (dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
        {
            if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0 &&
                            (dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
            {
                Context& ctx = Context::getDefault();
                const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
                CV_DbgAssert(svmFns->isValid());

                if( iscontinuous )
                {
                    CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMemcpy: %p <-- %p (%d)\n",
                            (uchar*)dst->handle + dstrawofs, (uchar*)src->handle + srcrawofs, (int)total);
                    cl_int status = svmFns->fn_clEnqueueSVMMemcpy(q, CL_TRUE,
                            (uchar*)dst->handle + dstrawofs, (uchar*)src->handle + srcrawofs,
                            total, 0, NULL, NULL);
                    CV_Assert(status == CL_SUCCESS);
                }
                else
                {
                    clFinish(q);
                    // This code is from MatAllocator::download()/upload()
                    int isz[CV_MAX_DIM];
                    uchar* srcptr = (uchar*)src->handle;
                    for( int i = 0; i < dims; i++ )
                    {
                        CV_Assert( sz[i] <= (size_t)INT_MAX );
                        if( sz[i] == 0 )
                        return;
                        if( srcofs )
                        srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1);
                        isz[i] = (int)sz[i];
                    }
                    Mat m_src(dims, isz, CV_8U, srcptr, srcstep);

                    uchar* dstptr = (uchar*)dst->handle;
                    for( int i = 0; i < dims; i++ )
                    {
                        if( dstofs )
                        dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1);
                    }
                    Mat m_dst(dims, isz, CV_8U, dstptr, dststep);

                    const Mat* arrays[] = { &m_src, &m_dst };
                    uchar* ptrs[2];
                    NAryMatIterator it(arrays, ptrs, 2);
                    size_t j, planesz = it.size;

                    for( j = 0; j < it.nplanes; j++, ++it )
                        memcpy(ptrs[1], ptrs[0], planesz);
                }
            }
            else
            {
                if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
                {
                    map(src, ACCESS_READ);
                    upload(dst, src->data + srcrawofs, dims, sz, dstofs, dststep, srcstep);
                    unmap(src);
                }
                else
                {
                    map(dst, ACCESS_WRITE);
                    download(src, dst->data + dstrawofs, dims, sz, srcofs, srcstep, dststep);
                    unmap(dst);
                }
            }
        }
        else
#endif
        {
            if( iscontinuous )
            {
                CV_Assert( (retval = clEnqueueCopyBuffer(q, (cl_mem)src->handle, (cl_mem)dst->handle,
                                               srcrawofs, dstrawofs, total, 0, 0, 0)) == CL_SUCCESS );
            }
            else
            {
                CV_Assert( (retval = clEnqueueCopyBufferRect(q, (cl_mem)src->handle, (cl_mem)dst->handle,
                                                   new_srcofs, new_dstofs, new_sz,
                                                   new_srcstep[0], new_srcstep[1],
                                                   new_dststep[0], new_dststep[1],
                                                   0, 0, 0)) == CL_SUCCESS );
            }
        }
        if (retval == CL_SUCCESS)
        {
            CV_IMPL_ADD(CV_IMPL_OCL)
        }

#ifdef HAVE_OPENCL_SVM
        if ((dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
                (dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
        {
            // nothing
        }
        else
#endif
        {
            dst->markHostCopyObsolete(true);
        }
        dst->markDeviceCopyObsolete(false);

        if( _sync )
        {
            CV_OclDbgAssert(clFinish(q) == CL_SUCCESS);
        }
    }

    BufferPoolController* getBufferPoolController(const char* id) const {
#ifdef HAVE_OPENCL_SVM
        if ((svm::checkForceSVMUmatUsage() && (id == NULL || strcmp(id, "OCL") == 0)) || (id != NULL && strcmp(id, "SVM") == 0))
        {
            return &bufferPoolSVM;
        }
#endif
        if (id != NULL && strcmp(id, "HOST_ALLOC") == 0)
        {
            return &bufferPoolHostPtr;
        }
        if (id != NULL && strcmp(id, "OCL") != 0)
        {
            CV_ErrorNoReturn(cv::Error::StsBadArg, "getBufferPoolController(): unknown BufferPool ID\n");
        }
        return &bufferPool;
    }

    MatAllocator* matStdAllocator;
};

MatAllocator* getOpenCLAllocator()
{
    static MatAllocator * allocator = new OpenCLAllocator();
    return allocator;
}

///////////////////////////////////////////// Utility functions /////////////////////////////////////////////////

static void getDevices(std::vector<cl_device_id>& devices, cl_platform_id platform)
{
    cl_uint numDevices = 0;
    CV_OclDbgAssert(clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL,
                                0, NULL, &numDevices) == CL_SUCCESS);

    if (numDevices == 0)
    {
        devices.clear();
        return;
    }

    devices.resize((size_t)numDevices);
    CV_OclDbgAssert(clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL,
                                numDevices, &devices[0], &numDevices) == CL_SUCCESS);
}

struct PlatformInfo::Impl
{
    Impl(void* id)
    {
        refcount = 1;
        handle = *(cl_platform_id*)id;
        getDevices(devices, handle);
    }

    String getStrProp(cl_device_info prop) const
    {
        char buf[1024];
        size_t sz=0;
        return clGetPlatformInfo(handle, prop, sizeof(buf)-16, buf, &sz) == CL_SUCCESS &&
            sz < sizeof(buf) ? String(buf) : String();
    }

    IMPLEMENT_REFCOUNTABLE();
    std::vector<cl_device_id> devices;
    cl_platform_id handle;
};

PlatformInfo::PlatformInfo()
{
    p = 0;
}

PlatformInfo::PlatformInfo(void* platform_id)
{
    p = new Impl(platform_id);
}

PlatformInfo::~PlatformInfo()
{
    if(p)
        p->release();
}

PlatformInfo::PlatformInfo(const PlatformInfo& i)
{
    if (i.p)
        i.p->addref();
    p = i.p;
}

PlatformInfo& PlatformInfo::operator =(const PlatformInfo& i)
{
    if (i.p != p)
    {
        if (i.p)
            i.p->addref();
        if (p)
            p->release();
        p = i.p;
    }
    return *this;
}

int PlatformInfo::deviceNumber() const
{
    return p ? (int)p->devices.size() : 0;
}

void PlatformInfo::getDevice(Device& device, int d) const
{
    CV_Assert(p && d < (int)p->devices.size() );
    if(p)
        device.set(p->devices[d]);
}

String PlatformInfo::name() const
{
    return p ? p->getStrProp(CL_PLATFORM_NAME) : String();
}

String PlatformInfo::vendor() const
{
    return p ? p->getStrProp(CL_PLATFORM_VENDOR) : String();
}

String PlatformInfo::version() const
{
    return p ? p->getStrProp(CL_PLATFORM_VERSION) : String();
}

static void getPlatforms(std::vector<cl_platform_id>& platforms)
{
    cl_uint numPlatforms = 0;
    CV_OclDbgAssert(clGetPlatformIDs(0, NULL, &numPlatforms) == CL_SUCCESS);

    if (numPlatforms == 0)
    {
        platforms.clear();
        return;
    }

    platforms.resize((size_t)numPlatforms);
    CV_OclDbgAssert(clGetPlatformIDs(numPlatforms, &platforms[0], &numPlatforms) == CL_SUCCESS);
}

void getPlatfomsInfo(std::vector<PlatformInfo>& platformsInfo)
{
    std::vector<cl_platform_id> platforms;
    getPlatforms(platforms);

    for (size_t i = 0; i < platforms.size(); i++)
        platformsInfo.push_back( PlatformInfo((void*)&platforms[i]) );
}

const char* typeToStr(int type)
{
    static const char* tab[]=
    {
        "uchar", "uchar2", "uchar3", "uchar4", 0, 0, 0, "uchar8", 0, 0, 0, 0, 0, 0, 0, "uchar16",
        "char", "char2", "char3", "char4", 0, 0, 0, "char8", 0, 0, 0, 0, 0, 0, 0, "char16",
        "ushort", "ushort2", "ushort3", "ushort4",0, 0, 0, "ushort8", 0, 0, 0, 0, 0, 0, 0, "ushort16",
        "short", "short2", "short3", "short4", 0, 0, 0, "short8", 0, 0, 0, 0, 0, 0, 0, "short16",
        "int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
        "float", "float2", "float3", "float4", 0, 0, 0, "float8", 0, 0, 0, 0, 0, 0, 0, "float16",
        "double", "double2", "double3", "double4", 0, 0, 0, "double8", 0, 0, 0, 0, 0, 0, 0, "double16",
        "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?"
    };
    int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
    return cn > 16 ? "?" : tab[depth*16 + cn-1];
}

const char* memopTypeToStr(int type)
{
    static const char* tab[] =
    {
        "uchar", "uchar2", "uchar3", "uchar4", 0, 0, 0, "uchar8", 0, 0, 0, 0, 0, 0, 0, "uchar16",
        "char", "char2", "char3", "char4", 0, 0, 0, "char8", 0, 0, 0, 0, 0, 0, 0, "char16",
        "ushort", "ushort2", "ushort3", "ushort4",0, 0, 0, "ushort8", 0, 0, 0, 0, 0, 0, 0, "ushort16",
        "short", "short2", "short3", "short4", 0, 0, 0, "short8", 0, 0, 0, 0, 0, 0, 0, "short16",
        "int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
        "int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
        "ulong", "ulong2", "ulong3", "ulong4", 0, 0, 0, "ulong8", 0, 0, 0, 0, 0, 0, 0, "ulong16",
        "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?"
    };
    int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
    return cn > 16 ? "?" : tab[depth*16 + cn-1];
}

const char* vecopTypeToStr(int type)
{
    static const char* tab[] =
    {
        "uchar", "short", "uchar3", "int", 0, 0, 0, "int2", 0, 0, 0, 0, 0, 0, 0, "int4",
        "char", "short", "char3", "int", 0, 0, 0, "int2", 0, 0, 0, 0, 0, 0, 0, "int4",
        "ushort", "int", "ushort3", "int2",0, 0, 0, "int4", 0, 0, 0, 0, 0, 0, 0, "int8",
        "short", "int", "short3", "int2", 0, 0, 0, "int4", 0, 0, 0, 0, 0, 0, 0, "int8",
        "int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
        "int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
        "ulong", "ulong2", "ulong3", "ulong4", 0, 0, 0, "ulong8", 0, 0, 0, 0, 0, 0, 0, "ulong16",
        "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?"
    };
    int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
    return cn > 16 ? "?" : tab[depth*16 + cn-1];
}

const char* convertTypeStr(int sdepth, int ddepth, int cn, char* buf)
{
    if( sdepth == ddepth )
        return "noconvert";
    const char *typestr = typeToStr(CV_MAKETYPE(ddepth, cn));
    if( ddepth >= CV_32F ||
        (ddepth == CV_32S && sdepth < CV_32S) ||
        (ddepth == CV_16S && sdepth <= CV_8S) ||
        (ddepth == CV_16U && sdepth == CV_8U))
    {
        sprintf(buf, "convert_%s", typestr);
    }
    else if( sdepth >= CV_32F )
        sprintf(buf, "convert_%s%s_rte", typestr, (ddepth < CV_32S ? "_sat" : ""));
    else
        sprintf(buf, "convert_%s_sat", typestr);

    return buf;
}

template <typename T>
static std::string kerToStr(const Mat & k)
{
    int width = k.cols - 1, depth = k.depth();
    const T * const data = k.ptr<T>();

    std::ostringstream stream;
    stream.precision(10);

    if (depth <= CV_8S)
    {
        for (int i = 0; i < width; ++i)
            stream << "DIG(" << (int)data[i] << ")";
        stream << "DIG(" << (int)data[width] << ")";
    }
    else if (depth == CV_32F)
    {
        stream.setf(std::ios_base::showpoint);
        for (int i = 0; i < width; ++i)
            stream << "DIG(" << data[i] << "f)";
        stream << "DIG(" << data[width] << "f)";
    }
    else
    {
        for (int i = 0; i < width; ++i)
            stream << "DIG(" << data[i] << ")";
        stream << "DIG(" << data[width] << ")";
    }

    return stream.str();
}

String kernelToStr(InputArray _kernel, int ddepth, const char * name)
{
    Mat kernel = _kernel.getMat().reshape(1, 1);

    int depth = kernel.depth();
    if (ddepth < 0)
        ddepth = depth;

    if (ddepth != depth)
        kernel.convertTo(kernel, ddepth);

    typedef std::string (* func_t)(const Mat &);
    static const func_t funcs[] = { kerToStr<uchar>, kerToStr<char>, kerToStr<ushort>, kerToStr<short>,
                                    kerToStr<int>, kerToStr<float>, kerToStr<double>, 0 };
    const func_t func = funcs[ddepth];
    CV_Assert(func != 0);

    return cv::format(" -D %s=%s", name ? name : "COEFF", func(kernel).c_str());
}

#define PROCESS_SRC(src) \
    do \
    { \
        if (!src.empty()) \
        { \
            CV_Assert(src.isMat() || src.isUMat()); \
            Size csize = src.size(); \
            int ctype = src.type(), ccn = CV_MAT_CN(ctype), cdepth = CV_MAT_DEPTH(ctype), \
                ckercn = vectorWidths[cdepth], cwidth = ccn * csize.width; \
            if (cwidth < ckercn || ckercn <= 0) \
                return 1; \
            cols.push_back(cwidth); \
            if (strat == OCL_VECTOR_OWN && ctype != ref_type) \
                return 1; \
            offsets.push_back(src.offset()); \
            steps.push_back(src.step()); \
            dividers.push_back(ckercn * CV_ELEM_SIZE1(ctype)); \
            kercns.push_back(ckercn); \
        } \
    } \
    while ((void)0, 0)

int predictOptimalVectorWidth(InputArray src1, InputArray src2, InputArray src3,
                              InputArray src4, InputArray src5, InputArray src6,
                              InputArray src7, InputArray src8, InputArray src9,
                              OclVectorStrategy strat)
{
    const ocl::Device & d = ocl::Device::getDefault();

    int vectorWidths[] = { d.preferredVectorWidthChar(), d.preferredVectorWidthChar(),
        d.preferredVectorWidthShort(), d.preferredVectorWidthShort(),
        d.preferredVectorWidthInt(), d.preferredVectorWidthFloat(),
        d.preferredVectorWidthDouble(), -1 };

    // if the device says don't use vectors
    if (vectorWidths[0] == 1)
    {
        // it's heuristic
        vectorWidths[CV_8U] = vectorWidths[CV_8S] = 4;
        vectorWidths[CV_16U] = vectorWidths[CV_16S] = 2;
        vectorWidths[CV_32S] = vectorWidths[CV_32F] = vectorWidths[CV_64F] = 1;
    }

    return checkOptimalVectorWidth(vectorWidths, src1, src2, src3, src4, src5, src6, src7, src8, src9, strat);
}

int checkOptimalVectorWidth(const int *vectorWidths,
                            InputArray src1, InputArray src2, InputArray src3,
                            InputArray src4, InputArray src5, InputArray src6,
                            InputArray src7, InputArray src8, InputArray src9,
                            OclVectorStrategy strat)
{
    CV_Assert(vectorWidths);

    int ref_type = src1.type();

    std::vector<size_t> offsets, steps, cols;
    std::vector<int> dividers, kercns;
    PROCESS_SRC(src1);
    PROCESS_SRC(src2);
    PROCESS_SRC(src3);
    PROCESS_SRC(src4);
    PROCESS_SRC(src5);
    PROCESS_SRC(src6);
    PROCESS_SRC(src7);
    PROCESS_SRC(src8);
    PROCESS_SRC(src9);

    size_t size = offsets.size();

    for (size_t i = 0; i < size; ++i)
        while (offsets[i] % dividers[i] != 0 || steps[i] % dividers[i] != 0 || cols[i] % kercns[i] != 0)
            dividers[i] >>= 1, kercns[i] >>= 1;

    // default strategy
    int kercn = *std::min_element(kercns.begin(), kercns.end());

    return kercn;
}

int predictOptimalVectorWidthMax(InputArray src1, InputArray src2, InputArray src3,
                                 InputArray src4, InputArray src5, InputArray src6,
                                 InputArray src7, InputArray src8, InputArray src9)
{
    return predictOptimalVectorWidth(src1, src2, src3, src4, src5, src6, src7, src8, src9, OCL_VECTOR_MAX);
}

#undef PROCESS_SRC


// TODO Make this as a method of OpenCL "BuildOptions" class
void buildOptionsAddMatrixDescription(String& buildOptions, const String& name, InputArray _m)
{
    if (!buildOptions.empty())
        buildOptions += " ";
    int type = _m.type(), depth = CV_MAT_DEPTH(type);
    buildOptions += format(
            "-D %s_T=%s -D %s_T1=%s -D %s_CN=%d -D %s_TSIZE=%d -D %s_T1SIZE=%d -D %s_DEPTH=%d",
            name.c_str(), ocl::typeToStr(type),
            name.c_str(), ocl::typeToStr(CV_MAKE_TYPE(depth, 1)),
            name.c_str(), (int)CV_MAT_CN(type),
            name.c_str(), (int)CV_ELEM_SIZE(type),
            name.c_str(), (int)CV_ELEM_SIZE1(type),
            name.c_str(), (int)depth
            );
}


struct Image2D::Impl
{
    Impl(const UMat &src, bool norm, bool alias)
    {
        handle = 0;
        refcount = 1;
        init(src, norm, alias);
    }

    ~Impl()
    {
        if (handle)
            clReleaseMemObject(handle);
    }

    static cl_image_format getImageFormat(int depth, int cn, bool norm)
    {
        cl_image_format format;
        static const int channelTypes[] = { CL_UNSIGNED_INT8, CL_SIGNED_INT8, CL_UNSIGNED_INT16,
                                       CL_SIGNED_INT16, CL_SIGNED_INT32, CL_FLOAT, -1, -1 };
        static const int channelTypesNorm[] = { CL_UNORM_INT8, CL_SNORM_INT8, CL_UNORM_INT16,
                                                CL_SNORM_INT16, -1, -1, -1, -1 };
        static const int channelOrders[] = { -1, CL_R, CL_RG, -1, CL_RGBA };

        int channelType = norm ? channelTypesNorm[depth] : channelTypes[depth];
        int channelOrder = channelOrders[cn];
        format.image_channel_data_type = (cl_channel_type)channelType;
        format.image_channel_order = (cl_channel_order)channelOrder;
        return format;
    }

    static bool isFormatSupported(cl_image_format format)
    {
        if (!haveOpenCL())
            CV_Error(Error::OpenCLApiCallError, "OpenCL runtime not found!");

        cl_context context = (cl_context)Context::getDefault().ptr();
        // Figure out how many formats are supported by this context.
        cl_uint numFormats = 0;
        cl_int err = clGetSupportedImageFormats(context, CL_MEM_READ_WRITE,
                                                CL_MEM_OBJECT_IMAGE2D, numFormats,
                                                NULL, &numFormats);
        AutoBuffer<cl_image_format> formats(numFormats);
        err = clGetSupportedImageFormats(context, CL_MEM_READ_WRITE,
                                         CL_MEM_OBJECT_IMAGE2D, numFormats,
                                         formats, NULL);
        CV_OclDbgAssert(err == CL_SUCCESS);
        for (cl_uint i = 0; i < numFormats; ++i)
        {
            if (!memcmp(&formats[i], &format, sizeof(format)))
            {
                return true;
            }
        }
        return false;
    }

    void init(const UMat &src, bool norm, bool alias)
    {
        if (!haveOpenCL())
            CV_Error(Error::OpenCLApiCallError, "OpenCL runtime not found!");

        CV_Assert(!src.empty());
        CV_Assert(ocl::Device::getDefault().imageSupport());

        int err, depth = src.depth(), cn = src.channels();
        CV_Assert(cn <= 4);
        cl_image_format format = getImageFormat(depth, cn, norm);

        if (!isFormatSupported(format))
            CV_Error(Error::OpenCLApiCallError, "Image format is not supported");

        if (alias && !src.handle(ACCESS_RW))
            CV_Error(Error::OpenCLApiCallError, "Incorrect UMat, handle is null");

        cl_context context = (cl_context)Context::getDefault().ptr();
        cl_command_queue queue = (cl_command_queue)Queue::getDefault().ptr();

#ifdef CL_VERSION_1_2
        // this enables backwards portability to
        // run on OpenCL 1.1 platform if library binaries are compiled with OpenCL 1.2 support
        const Device & d = ocl::Device::getDefault();
        int minor = d.deviceVersionMinor(), major = d.deviceVersionMajor();
        CV_Assert(!alias || canCreateAlias(src));
        if (1 < major || (1 == major && 2 <= minor))
        {
            cl_image_desc desc;
            desc.image_type       = CL_MEM_OBJECT_IMAGE2D;
            desc.image_width      = src.cols;
            desc.image_height     = src.rows;
            desc.image_depth      = 0;
            desc.image_array_size = 1;
            desc.image_row_pitch  = alias ? src.step[0] : 0;
            desc.image_slice_pitch = 0;
            desc.buffer           = alias ? (cl_mem)src.handle(ACCESS_RW) : 0;
            desc.num_mip_levels   = 0;
            desc.num_samples      = 0;
            handle = clCreateImage(context, CL_MEM_READ_WRITE, &format, &desc, NULL, &err);
        }
        else
#endif
        {
            CV_SUPPRESS_DEPRECATED_START
            CV_Assert(!alias);  // This is an OpenCL 1.2 extension
            handle = clCreateImage2D(context, CL_MEM_READ_WRITE, &format, src.cols, src.rows, 0, NULL, &err);
            CV_SUPPRESS_DEPRECATED_END
        }
        CV_OclDbgAssert(err == CL_SUCCESS);

        size_t origin[] = { 0, 0, 0 };
        size_t region[] = { static_cast<size_t>(src.cols), static_cast<size_t>(src.rows), 1 };

        cl_mem devData;
        if (!alias && !src.isContinuous())
        {
            devData = clCreateBuffer(context, CL_MEM_READ_ONLY, src.cols * src.rows * src.elemSize(), NULL, &err);
            CV_OclDbgAssert(err == CL_SUCCESS);

            const size_t roi[3] = {static_cast<size_t>(src.cols) * src.elemSize(), static_cast<size_t>(src.rows), 1};
            CV_Assert(clEnqueueCopyBufferRect(queue, (cl_mem)src.handle(ACCESS_READ), devData, origin, origin,
                roi, src.step, 0, src.cols * src.elemSize(), 0, 0, NULL, NULL) == CL_SUCCESS);
            CV_OclDbgAssert(clFlush(queue) == CL_SUCCESS);
        }
        else
        {
            devData = (cl_mem)src.handle(ACCESS_READ);
        }
        CV_Assert(devData != NULL);

        if (!alias)
        {
            CV_OclDbgAssert(clEnqueueCopyBufferToImage(queue, devData, handle, 0, origin, region, 0, NULL, 0) == CL_SUCCESS);
            if (!src.isContinuous())
            {
                CV_OclDbgAssert(clFlush(queue) == CL_SUCCESS);
                CV_OclDbgAssert(clReleaseMemObject(devData) == CL_SUCCESS);
            }
        }
    }

    IMPLEMENT_REFCOUNTABLE();

    cl_mem handle;
};

Image2D::Image2D()
{
    p = NULL;
}

Image2D::Image2D(const UMat &src, bool norm, bool alias)
{
    p = new Impl(src, norm, alias);
}

bool Image2D::canCreateAlias(const UMat &m)
{
    bool ret = false;
    const Device & d = ocl::Device::getDefault();
    if (d.imageFromBufferSupport() && !m.empty())
    {
        // This is the required pitch alignment in pixels
        uint pitchAlign = d.imagePitchAlignment();
        if (pitchAlign && !(m.step % (pitchAlign * m.elemSize())))
        {
            // We don't currently handle the case where the buffer was created
            // with CL_MEM_USE_HOST_PTR
            if (!m.u->tempUMat())
            {
                ret = true;
            }
        }
    }
    return ret;
}

bool Image2D::isFormatSupported(int depth, int cn, bool norm)
{
    cl_image_format format = Impl::getImageFormat(depth, cn, norm);

    return Impl::isFormatSupported(format);
}

Image2D::Image2D(const Image2D & i)
{
    p = i.p;
    if (p)
        p->addref();
}

Image2D & Image2D::operator = (const Image2D & i)
{
    if (i.p != p)
    {
        if (i.p)
            i.p->addref();
        if (p)
            p->release();
        p = i.p;
    }
    return *this;
}

Image2D::~Image2D()
{
    if (p)
        p->release();
}

void* Image2D::ptr() const
{
    return p ? p->handle : 0;
}

bool internal::isPerformanceCheckBypassed()
{
    static bool initialized = false;
    static bool value = false;
    if (!initialized)
    {
        value = getBoolParameter("OPENCV_OPENCL_PERF_CHECK_BYPASS", false);
        initialized = true;
    }
    return value;
}

bool internal::isCLBuffer(UMat& u)
{
    void* h = u.handle(ACCESS_RW);
    if (!h)
        return true;
    CV_DbgAssert(u.u->currAllocator == getOpenCLAllocator());
#if 1
    if ((u.u->allocatorFlags_ & 0xffff0000) != 0) // OpenCL SVM flags are stored here
        return false;
#else
    cl_mem_object_type type = 0;
    cl_int ret = clGetMemObjectInfo((cl_mem)h, CL_MEM_TYPE, sizeof(type), &type, NULL);
    if (ret != CL_SUCCESS || type != CL_MEM_OBJECT_BUFFER)
        return false;
#endif
    return true;
}

}}

/* [<][>][^][v][top][bottom][index][help] */