root/src/mips/full-codegen-mips.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. EmitJumpIfNotSmi
  2. EmitJumpIfSmi
  3. EmitPatchInfo
  4. Generate
  5. ClearAccumulator
  6. EmitProfilingCounterDecrement
  7. EmitProfilingCounterReset
  8. EmitStackCheck
  9. EmitReturnSequence
  10. Plug
  11. Plug
  12. Plug
  13. Plug
  14. Plug
  15. Plug
  16. Plug
  17. Plug
  18. Plug
  19. Plug
  20. Plug
  21. Plug
  22. DropAndPlug
  23. DropAndPlug
  24. DropAndPlug
  25. DropAndPlug
  26. Plug
  27. Plug
  28. Plug
  29. Plug
  30. Plug
  31. Plug
  32. Plug
  33. Plug
  34. DoTest
  35. Split
  36. StackOperand
  37. VarOperand
  38. GetVar
  39. SetVar
  40. PrepareForBailoutBeforeSplit
  41. EmitDebugCheckDeclarationContext
  42. VisitVariableDeclaration
  43. VisitFunctionDeclaration
  44. VisitModuleDeclaration
  45. VisitImportDeclaration
  46. VisitExportDeclaration
  47. DeclareGlobals
  48. VisitSwitchStatement
  49. VisitForInStatement
  50. EmitNewClosure
  51. VisitVariableProxy
  52. EmitLoadGlobalCheckExtensions
  53. ContextSlotOperandCheckExtensions
  54. EmitDynamicLookupFastCase
  55. EmitVariableLoad
  56. VisitRegExpLiteral
  57. EmitAccessor
  58. VisitObjectLiteral
  59. VisitArrayLiteral
  60. VisitAssignment
  61. EmitNamedPropertyLoad
  62. EmitKeyedPropertyLoad
  63. EmitInlineSmiBinaryOp
  64. EmitBinaryOp
  65. EmitAssignment
  66. EmitVariableAssignment
  67. EmitNamedPropertyAssignment
  68. EmitKeyedPropertyAssignment
  69. VisitProperty
  70. CallIC
  71. EmitCallWithIC
  72. EmitKeyedCallWithIC
  73. EmitCallWithStub
  74. EmitResolvePossiblyDirectEval
  75. VisitCall
  76. VisitCallNew
  77. EmitIsSmi
  78. EmitIsNonNegativeSmi
  79. EmitIsObject
  80. EmitIsSpecObject
  81. EmitIsUndetectableObject
  82. EmitIsStringWrapperSafeForDefaultValueOf
  83. EmitIsFunction
  84. EmitIsArray
  85. EmitIsRegExp
  86. EmitIsConstructCall
  87. EmitObjectEquals
  88. EmitArguments
  89. EmitArgumentsLength
  90. EmitClassOf
  91. EmitLog
  92. EmitRandomHeapNumber
  93. EmitSubString
  94. EmitRegExpExec
  95. EmitValueOf
  96. EmitDateField
  97. EmitMathPow
  98. EmitSetValueOf
  99. EmitNumberToString
  100. EmitStringCharFromCode
  101. EmitStringCharCodeAt
  102. EmitStringCharAt
  103. EmitStringAdd
  104. EmitStringCompare
  105. EmitMathSin
  106. EmitMathCos
  107. EmitMathTan
  108. EmitMathLog
  109. EmitMathSqrt
  110. EmitCallFunction
  111. EmitRegExpConstructResult
  112. EmitGetFromCache
  113. EmitIsRegExpEquivalent
  114. EmitHasCachedArrayIndex
  115. EmitGetCachedArrayIndex
  116. EmitFastAsciiArrayJoin
  117. VisitCallRuntime
  118. VisitUnaryOperation
  119. EmitUnaryOperation
  120. VisitCountOperation
  121. VisitForTypeofValue
  122. EmitLiteralCompareTypeof
  123. VisitCompareOperation
  124. EmitLiteralCompareNil
  125. VisitThisFunction
  126. result_register
  127. context_register
  128. StoreToFrameField
  129. LoadContextField
  130. PushFunctionArgumentForContextAllocation
  131. EnterFinallyBlock
  132. ExitFinallyBlock
  133. Exit

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#if defined(V8_TARGET_ARCH_MIPS)

// Note on Mips implementation:
//
// The result_register() for mips is the 'v0' register, which is defined
// by the ABI to contain function return values. However, the first
// parameter to a function is defined to be 'a0'. So there are many
// places where we have to move a previous result in v0 to a0 for the
// next call: mov(a0, v0). This is not needed on the other architectures.

#include "code-stubs.h"
#include "codegen.h"
#include "compiler.h"
#include "debug.h"
#include "full-codegen.h"
#include "isolate-inl.h"
#include "parser.h"
#include "scopes.h"
#include "stub-cache.h"

#include "mips/code-stubs-mips.h"
#include "mips/macro-assembler-mips.h"

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm_)


// A patch site is a location in the code which it is possible to patch. This
// class has a number of methods to emit the code which is patchable and the
// method EmitPatchInfo to record a marker back to the patchable code. This
// marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy
// (raw 16 bit immediate value is used) is the delta from the pc to the first
// instruction of the patchable code.
// The marker instruction is effectively a NOP (dest is zero_reg) and will
// never be emitted by normal code.
class JumpPatchSite BASE_EMBEDDED {
 public:
  explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
#ifdef DEBUG
    info_emitted_ = false;
#endif
  }

  ~JumpPatchSite() {
    ASSERT(patch_site_.is_bound() == info_emitted_);
  }

  // When initially emitting this ensure that a jump is always generated to skip
  // the inlined smi code.
  void EmitJumpIfNotSmi(Register reg, Label* target) {
    ASSERT(!patch_site_.is_bound() && !info_emitted_);
    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
    __ bind(&patch_site_);
    __ andi(at, reg, 0);
    // Always taken before patched.
    __ Branch(target, eq, at, Operand(zero_reg));
  }

  // When initially emitting this ensure that a jump is never generated to skip
  // the inlined smi code.
  void EmitJumpIfSmi(Register reg, Label* target) {
    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
    ASSERT(!patch_site_.is_bound() && !info_emitted_);
    __ bind(&patch_site_);
    __ andi(at, reg, 0);
    // Never taken before patched.
    __ Branch(target, ne, at, Operand(zero_reg));
  }

  void EmitPatchInfo() {
    if (patch_site_.is_bound()) {
      int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
      Register reg = Register::from_code(delta_to_patch_site / kImm16Mask);
      __ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask);
#ifdef DEBUG
      info_emitted_ = true;
#endif
    } else {
      __ nop();  // Signals no inlined code.
    }
  }

 private:
  MacroAssembler* masm_;
  Label patch_site_;
#ifdef DEBUG
  bool info_emitted_;
#endif
};


// Generate code for a JS function.  On entry to the function the receiver
// and arguments have been pushed on the stack left to right.  The actual
// argument count matches the formal parameter count expected by the
// function.
//
// The live registers are:
//   o a1: the JS function object being called (i.e. ourselves)
//   o cp: our context
//   o fp: our caller's frame pointer
//   o sp: stack pointer
//   o ra: return address
//
// The function builds a JS frame.  Please see JavaScriptFrameConstants in
// frames-mips.h for its layout.
void FullCodeGenerator::Generate() {
  CompilationInfo* info = info_;
  handler_table_ =
      isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
  profiling_counter_ = isolate()->factory()->NewJSGlobalPropertyCell(
      Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget)));
  SetFunctionPosition(function());
  Comment cmnt(masm_, "[ function compiled by full code generator");

#ifdef DEBUG
  if (strlen(FLAG_stop_at) > 0 &&
      info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
    __ stop("stop-at");
  }
#endif

  // Strict mode functions and builtins need to replace the receiver
  // with undefined when called as functions (without an explicit
  // receiver object). t1 is zero for method calls and non-zero for
  // function calls.
  if (!info->is_classic_mode() || info->is_native()) {
    Label ok;
    __ Branch(&ok, eq, t1, Operand(zero_reg));
    int receiver_offset = info->scope()->num_parameters() * kPointerSize;
    __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
    __ sw(a2, MemOperand(sp, receiver_offset));
    __ bind(&ok);
  }

  // Open a frame scope to indicate that there is a frame on the stack.  The
  // MANUAL indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done below).
  FrameScope frame_scope(masm_, StackFrame::MANUAL);

  int locals_count = info->scope()->num_stack_slots();

  __ Push(ra, fp, cp, a1);
  if (locals_count > 0) {
    // Load undefined value here, so the value is ready for the loop
    // below.
    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
  }
  // Adjust fp to point to caller's fp.
  __ Addu(fp, sp, Operand(2 * kPointerSize));

  { Comment cmnt(masm_, "[ Allocate locals");
    for (int i = 0; i < locals_count; i++) {
      __ push(at);
    }
  }

  bool function_in_register = true;

  // Possibly allocate a local context.
  int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
  if (heap_slots > 0) {
    Comment cmnt(masm_, "[ Allocate local context");
    // Argument to NewContext is the function, which is in a1.
    __ push(a1);
    if (heap_slots <= FastNewContextStub::kMaximumSlots) {
      FastNewContextStub stub(heap_slots);
      __ CallStub(&stub);
    } else {
      __ CallRuntime(Runtime::kNewFunctionContext, 1);
    }
    function_in_register = false;
    // Context is returned in both v0 and cp.  It replaces the context
    // passed to us.  It's saved in the stack and kept live in cp.
    __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
    // Copy any necessary parameters into the context.
    int num_parameters = info->scope()->num_parameters();
    for (int i = 0; i < num_parameters; i++) {
      Variable* var = scope()->parameter(i);
      if (var->IsContextSlot()) {
        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
                                 (num_parameters - 1 - i) * kPointerSize;
        // Load parameter from stack.
        __ lw(a0, MemOperand(fp, parameter_offset));
        // Store it in the context.
        MemOperand target = ContextOperand(cp, var->index());
        __ sw(a0, target);

        // Update the write barrier.
        __ RecordWriteContextSlot(
            cp, target.offset(), a0, a3, kRAHasBeenSaved, kDontSaveFPRegs);
      }
    }
  }

  Variable* arguments = scope()->arguments();
  if (arguments != NULL) {
    // Function uses arguments object.
    Comment cmnt(masm_, "[ Allocate arguments object");
    if (!function_in_register) {
      // Load this again, if it's used by the local context below.
      __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
    } else {
      __ mov(a3, a1);
    }
    // Receiver is just before the parameters on the caller's stack.
    int num_parameters = info->scope()->num_parameters();
    int offset = num_parameters * kPointerSize;
    __ Addu(a2, fp,
           Operand(StandardFrameConstants::kCallerSPOffset + offset));
    __ li(a1, Operand(Smi::FromInt(num_parameters)));
    __ Push(a3, a2, a1);

    // Arguments to ArgumentsAccessStub:
    //   function, receiver address, parameter count.
    // The stub will rewrite receiever and parameter count if the previous
    // stack frame was an arguments adapter frame.
    ArgumentsAccessStub::Type type;
    if (!is_classic_mode()) {
      type = ArgumentsAccessStub::NEW_STRICT;
    } else if (function()->has_duplicate_parameters()) {
      type = ArgumentsAccessStub::NEW_NON_STRICT_SLOW;
    } else {
      type = ArgumentsAccessStub::NEW_NON_STRICT_FAST;
    }
    ArgumentsAccessStub stub(type);
    __ CallStub(&stub);

    SetVar(arguments, v0, a1, a2);
  }

  if (FLAG_trace) {
    __ CallRuntime(Runtime::kTraceEnter, 0);
  }

  // Visit the declarations and body unless there is an illegal
  // redeclaration.
  if (scope()->HasIllegalRedeclaration()) {
    Comment cmnt(masm_, "[ Declarations");
    scope()->VisitIllegalRedeclaration(this);

  } else {
    PrepareForBailoutForId(AstNode::kFunctionEntryId, NO_REGISTERS);
    { Comment cmnt(masm_, "[ Declarations");
      // For named function expressions, declare the function name as a
      // constant.
      if (scope()->is_function_scope() && scope()->function() != NULL) {
        VariableDeclaration* function = scope()->function();
        ASSERT(function->proxy()->var()->mode() == CONST ||
               function->proxy()->var()->mode() == CONST_HARMONY);
        ASSERT(function->proxy()->var()->location() != Variable::UNALLOCATED);
        VisitVariableDeclaration(function);
      }
      VisitDeclarations(scope()->declarations());
    }

    { Comment cmnt(masm_, "[ Stack check");
      PrepareForBailoutForId(AstNode::kDeclarationsId, NO_REGISTERS);
      Label ok;
      __ LoadRoot(t0, Heap::kStackLimitRootIndex);
      __ Branch(&ok, hs, sp, Operand(t0));
      StackCheckStub stub;
      __ CallStub(&stub);
      __ bind(&ok);
    }

    { Comment cmnt(masm_, "[ Body");
      ASSERT(loop_depth() == 0);
      VisitStatements(function()->body());
      ASSERT(loop_depth() == 0);
    }
  }

  // Always emit a 'return undefined' in case control fell off the end of
  // the body.
  { Comment cmnt(masm_, "[ return <undefined>;");
    __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
  }
  EmitReturnSequence();
}


void FullCodeGenerator::ClearAccumulator() {
  ASSERT(Smi::FromInt(0) == 0);
  __ mov(v0, zero_reg);
}


void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
  __ li(a2, Operand(profiling_counter_));
  __ lw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
  __ Subu(a3, a3, Operand(Smi::FromInt(delta)));
  __ sw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
}


void FullCodeGenerator::EmitProfilingCounterReset() {
  int reset_value = FLAG_interrupt_budget;
  if (info_->ShouldSelfOptimize() && !FLAG_retry_self_opt) {
    // Self-optimization is a one-off thing: if it fails, don't try again.
    reset_value = Smi::kMaxValue;
  }
  if (isolate()->IsDebuggerActive()) {
    // Detect debug break requests as soon as possible.
    reset_value = FLAG_interrupt_budget >> 4;
  }
  __ li(a2, Operand(profiling_counter_));
  __ li(a3, Operand(Smi::FromInt(reset_value)));
  __ sw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
}


static const int kMaxBackEdgeWeight = 127;
static const int kBackEdgeDistanceDivisor = 142;


void FullCodeGenerator::EmitStackCheck(IterationStatement* stmt,
                                       Label* back_edge_target) {
  // The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need
  // to make sure it is constant. Branch may emit a skip-or-jump sequence
  // instead of the normal Branch. It seems that the "skip" part of that
  // sequence is about as long as this Branch would be so it is safe to ignore
  // that.
  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
  Comment cmnt(masm_, "[ Stack check");
  Label ok;
  if (FLAG_count_based_interrupts) {
    int weight = 1;
    if (FLAG_weighted_back_edges) {
      ASSERT(back_edge_target->is_bound());
      int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
      weight = Min(kMaxBackEdgeWeight,
                   Max(1, distance / kBackEdgeDistanceDivisor));
    }
    EmitProfilingCounterDecrement(weight);
    __ slt(at, a3, zero_reg);
    __ beq(at, zero_reg, &ok);
    // CallStub will emit a li t9 first, so it is safe to use the delay slot.
    InterruptStub stub;
    __ CallStub(&stub);
  } else {
    __ LoadRoot(t0, Heap::kStackLimitRootIndex);
    __ sltu(at, sp, t0);
    __ beq(at, zero_reg, &ok);
    // CallStub will emit a li t9 first, so it is safe to use the delay slot.
    StackCheckStub stub;
    __ CallStub(&stub);
  }
  // Record a mapping of this PC offset to the OSR id.  This is used to find
  // the AST id from the unoptimized code in order to use it as a key into
  // the deoptimization input data found in the optimized code.
  RecordStackCheck(stmt->OsrEntryId());
  if (FLAG_count_based_interrupts) {
    EmitProfilingCounterReset();
  }

  __ bind(&ok);
  PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
  // Record a mapping of the OSR id to this PC.  This is used if the OSR
  // entry becomes the target of a bailout.  We don't expect it to be, but
  // we want it to work if it is.
  PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
}


void FullCodeGenerator::EmitReturnSequence() {
  Comment cmnt(masm_, "[ Return sequence");
  if (return_label_.is_bound()) {
    __ Branch(&return_label_);
  } else {
    __ bind(&return_label_);
    if (FLAG_trace) {
      // Push the return value on the stack as the parameter.
      // Runtime::TraceExit returns its parameter in v0.
      __ push(v0);
      __ CallRuntime(Runtime::kTraceExit, 1);
    }
    if (FLAG_interrupt_at_exit || FLAG_self_optimization) {
      // Pretend that the exit is a backwards jump to the entry.
      int weight = 1;
      if (info_->ShouldSelfOptimize()) {
        weight = FLAG_interrupt_budget / FLAG_self_opt_count;
      } else if (FLAG_weighted_back_edges) {
        int distance = masm_->pc_offset();
        weight = Min(kMaxBackEdgeWeight,
                     Max(1, distance / kBackEdgeDistanceDivisor));
      }
      EmitProfilingCounterDecrement(weight);
      Label ok;
      __ Branch(&ok, ge, a3, Operand(zero_reg));
      __ push(v0);
      if (info_->ShouldSelfOptimize() && FLAG_direct_self_opt) {
        __ lw(a2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
        __ push(a2);
        __ CallRuntime(Runtime::kOptimizeFunctionOnNextCall, 1);
      } else {
        InterruptStub stub;
        __ CallStub(&stub);
      }
      __ pop(v0);
      EmitProfilingCounterReset();
      __ bind(&ok);
    }

#ifdef DEBUG
    // Add a label for checking the size of the code used for returning.
    Label check_exit_codesize;
    masm_->bind(&check_exit_codesize);
#endif
    // Make sure that the constant pool is not emitted inside of the return
    // sequence.
    { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
      // Here we use masm_-> instead of the __ macro to avoid the code coverage
      // tool from instrumenting as we rely on the code size here.
      int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
      CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
      __ RecordJSReturn();
      masm_->mov(sp, fp);
      masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit()));
      masm_->Addu(sp, sp, Operand(sp_delta));
      masm_->Jump(ra);
    }

#ifdef DEBUG
    // Check that the size of the code used for returning is large enough
    // for the debugger's requirements.
    ASSERT(Assembler::kJSReturnSequenceInstructions <=
           masm_->InstructionsGeneratedSince(&check_exit_codesize));
#endif
  }
}


void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
  ASSERT(var->IsStackAllocated() || var->IsContextSlot());
}


void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
  ASSERT(var->IsStackAllocated() || var->IsContextSlot());
  codegen()->GetVar(result_register(), var);
}


void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
  ASSERT(var->IsStackAllocated() || var->IsContextSlot());
  codegen()->GetVar(result_register(), var);
  __ push(result_register());
}


void FullCodeGenerator::TestContext::Plug(Variable* var) const {
  // For simplicity we always test the accumulator register.
  codegen()->GetVar(result_register(), var);
  codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
  codegen()->DoTest(this);
}


void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
}


void FullCodeGenerator::AccumulatorValueContext::Plug(
    Heap::RootListIndex index) const {
  __ LoadRoot(result_register(), index);
}


void FullCodeGenerator::StackValueContext::Plug(
    Heap::RootListIndex index) const {
  __ LoadRoot(result_register(), index);
  __ push(result_register());
}


void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
  codegen()->PrepareForBailoutBeforeSplit(condition(),
                                          true,
                                          true_label_,
                                          false_label_);
  if (index == Heap::kUndefinedValueRootIndex ||
      index == Heap::kNullValueRootIndex ||
      index == Heap::kFalseValueRootIndex) {
    if (false_label_ != fall_through_) __ Branch(false_label_);
  } else if (index == Heap::kTrueValueRootIndex) {
    if (true_label_ != fall_through_) __ Branch(true_label_);
  } else {
    __ LoadRoot(result_register(), index);
    codegen()->DoTest(this);
  }
}


void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
}


void FullCodeGenerator::AccumulatorValueContext::Plug(
    Handle<Object> lit) const {
  __ li(result_register(), Operand(lit));
}


void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
  // Immediates cannot be pushed directly.
  __ li(result_register(), Operand(lit));
  __ push(result_register());
}


void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
  codegen()->PrepareForBailoutBeforeSplit(condition(),
                                          true,
                                          true_label_,
                                          false_label_);
  ASSERT(!lit->IsUndetectableObject());  // There are no undetectable literals.
  if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
    if (false_label_ != fall_through_) __ Branch(false_label_);
  } else if (lit->IsTrue() || lit->IsJSObject()) {
    if (true_label_ != fall_through_) __ Branch(true_label_);
  } else if (lit->IsString()) {
    if (String::cast(*lit)->length() == 0) {
      if (false_label_ != fall_through_) __ Branch(false_label_);
    } else {
      if (true_label_ != fall_through_) __ Branch(true_label_);
    }
  } else if (lit->IsSmi()) {
    if (Smi::cast(*lit)->value() == 0) {
      if (false_label_ != fall_through_) __ Branch(false_label_);
    } else {
      if (true_label_ != fall_through_) __ Branch(true_label_);
    }
  } else {
    // For simplicity we always test the accumulator register.
    __ li(result_register(), Operand(lit));
    codegen()->DoTest(this);
  }
}


void FullCodeGenerator::EffectContext::DropAndPlug(int count,
                                                   Register reg) const {
  ASSERT(count > 0);
  __ Drop(count);
}


void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
    int count,
    Register reg) const {
  ASSERT(count > 0);
  __ Drop(count);
  __ Move(result_register(), reg);
}


void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
                                                       Register reg) const {
  ASSERT(count > 0);
  if (count > 1) __ Drop(count - 1);
  __ sw(reg, MemOperand(sp, 0));
}


void FullCodeGenerator::TestContext::DropAndPlug(int count,
                                                 Register reg) const {
  ASSERT(count > 0);
  // For simplicity we always test the accumulator register.
  __ Drop(count);
  __ Move(result_register(), reg);
  codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
  codegen()->DoTest(this);
}


void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
                                            Label* materialize_false) const {
  ASSERT(materialize_true == materialize_false);
  __ bind(materialize_true);
}


void FullCodeGenerator::AccumulatorValueContext::Plug(
    Label* materialize_true,
    Label* materialize_false) const {
  Label done;
  __ bind(materialize_true);
  __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
  __ Branch(&done);
  __ bind(materialize_false);
  __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
  __ bind(&done);
}


void FullCodeGenerator::StackValueContext::Plug(
    Label* materialize_true,
    Label* materialize_false) const {
  Label done;
  __ bind(materialize_true);
  __ LoadRoot(at, Heap::kTrueValueRootIndex);
  __ push(at);
  __ Branch(&done);
  __ bind(materialize_false);
  __ LoadRoot(at, Heap::kFalseValueRootIndex);
  __ push(at);
  __ bind(&done);
}


void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
                                          Label* materialize_false) const {
  ASSERT(materialize_true == true_label_);
  ASSERT(materialize_false == false_label_);
}


void FullCodeGenerator::EffectContext::Plug(bool flag) const {
}


void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
  Heap::RootListIndex value_root_index =
      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
  __ LoadRoot(result_register(), value_root_index);
}


void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
  Heap::RootListIndex value_root_index =
      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
  __ LoadRoot(at, value_root_index);
  __ push(at);
}


void FullCodeGenerator::TestContext::Plug(bool flag) const {
  codegen()->PrepareForBailoutBeforeSplit(condition(),
                                          true,
                                          true_label_,
                                          false_label_);
  if (flag) {
    if (true_label_ != fall_through_) __ Branch(true_label_);
  } else {
    if (false_label_ != fall_through_) __ Branch(false_label_);
  }
}


void FullCodeGenerator::DoTest(Expression* condition,
                               Label* if_true,
                               Label* if_false,
                               Label* fall_through) {
  if (CpuFeatures::IsSupported(FPU)) {
    ToBooleanStub stub(result_register());
    __ CallStub(&stub);
    __ mov(at, zero_reg);
  } else {
    // Call the runtime to find the boolean value of the source and then
    // translate it into control flow to the pair of labels.
    __ push(result_register());
    __ CallRuntime(Runtime::kToBool, 1);
    __ LoadRoot(at, Heap::kFalseValueRootIndex);
  }
  Split(ne, v0, Operand(at), if_true, if_false, fall_through);
}


void FullCodeGenerator::Split(Condition cc,
                              Register lhs,
                              const Operand&  rhs,
                              Label* if_true,
                              Label* if_false,
                              Label* fall_through) {
  if (if_false == fall_through) {
    __ Branch(if_true, cc, lhs, rhs);
  } else if (if_true == fall_through) {
    __ Branch(if_false, NegateCondition(cc), lhs, rhs);
  } else {
    __ Branch(if_true, cc, lhs, rhs);
    __ Branch(if_false);
  }
}


MemOperand FullCodeGenerator::StackOperand(Variable* var) {
  ASSERT(var->IsStackAllocated());
  // Offset is negative because higher indexes are at lower addresses.
  int offset = -var->index() * kPointerSize;
  // Adjust by a (parameter or local) base offset.
  if (var->IsParameter()) {
    offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
  } else {
    offset += JavaScriptFrameConstants::kLocal0Offset;
  }
  return MemOperand(fp, offset);
}


MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
  ASSERT(var->IsContextSlot() || var->IsStackAllocated());
  if (var->IsContextSlot()) {
    int context_chain_length = scope()->ContextChainLength(var->scope());
    __ LoadContext(scratch, context_chain_length);
    return ContextOperand(scratch, var->index());
  } else {
    return StackOperand(var);
  }
}


void FullCodeGenerator::GetVar(Register dest, Variable* var) {
  // Use destination as scratch.
  MemOperand location = VarOperand(var, dest);
  __ lw(dest, location);
}


void FullCodeGenerator::SetVar(Variable* var,
                               Register src,
                               Register scratch0,
                               Register scratch1) {
  ASSERT(var->IsContextSlot() || var->IsStackAllocated());
  ASSERT(!scratch0.is(src));
  ASSERT(!scratch0.is(scratch1));
  ASSERT(!scratch1.is(src));
  MemOperand location = VarOperand(var, scratch0);
  __ sw(src, location);
  // Emit the write barrier code if the location is in the heap.
  if (var->IsContextSlot()) {
    __ RecordWriteContextSlot(scratch0,
                              location.offset(),
                              src,
                              scratch1,
                              kRAHasBeenSaved,
                              kDontSaveFPRegs);
  }
}


void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
                                                     bool should_normalize,
                                                     Label* if_true,
                                                     Label* if_false) {
  // Only prepare for bailouts before splits if we're in a test
  // context. Otherwise, we let the Visit function deal with the
  // preparation to avoid preparing with the same AST id twice.
  if (!context()->IsTest() || !info_->IsOptimizable()) return;

  Label skip;
  if (should_normalize) __ Branch(&skip);
  PrepareForBailout(expr, TOS_REG);
  if (should_normalize) {
    __ LoadRoot(t0, Heap::kTrueValueRootIndex);
    Split(eq, a0, Operand(t0), if_true, if_false, NULL);
    __ bind(&skip);
  }
}


void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
  // The variable in the declaration always resides in the current function
  // context.
  ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
  if (FLAG_debug_code) {
    // Check that we're not inside a with or catch context.
    __ lw(a1, FieldMemOperand(cp, HeapObject::kMapOffset));
    __ LoadRoot(t0, Heap::kWithContextMapRootIndex);
    __ Check(ne, "Declaration in with context.",
        a1, Operand(t0));
    __ LoadRoot(t0, Heap::kCatchContextMapRootIndex);
    __ Check(ne, "Declaration in catch context.",
        a1, Operand(t0));
  }
}


void FullCodeGenerator::VisitVariableDeclaration(
    VariableDeclaration* declaration) {
  // If it was not possible to allocate the variable at compile time, we
  // need to "declare" it at runtime to make sure it actually exists in the
  // local context.
  VariableProxy* proxy = declaration->proxy();
  VariableMode mode = declaration->mode();
  Variable* variable = proxy->var();
  bool hole_init = mode == CONST || mode == CONST_HARMONY || mode == LET;
  switch (variable->location()) {
    case Variable::UNALLOCATED:
      globals_->Add(variable->name(), zone());
      globals_->Add(variable->binding_needs_init()
                        ? isolate()->factory()->the_hole_value()
                        : isolate()->factory()->undefined_value(),
                    zone());
      break;

    case Variable::PARAMETER:
    case Variable::LOCAL:
      if (hole_init) {
        Comment cmnt(masm_, "[ VariableDeclaration");
        __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
        __ sw(t0, StackOperand(variable));
      }
      break;

      case Variable::CONTEXT:
      if (hole_init) {
        Comment cmnt(masm_, "[ VariableDeclaration");
        EmitDebugCheckDeclarationContext(variable);
          __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
          __ sw(at, ContextOperand(cp, variable->index()));
          // No write barrier since the_hole_value is in old space.
          PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
      }
      break;

    case Variable::LOOKUP: {
      Comment cmnt(masm_, "[ VariableDeclaration");
      __ li(a2, Operand(variable->name()));
      // Declaration nodes are always introduced in one of four modes.
      ASSERT(mode == VAR || mode == LET ||
             mode == CONST || mode == CONST_HARMONY);
      PropertyAttributes attr = (mode == CONST || mode == CONST_HARMONY)
        ? READ_ONLY : NONE;
      __ li(a1, Operand(Smi::FromInt(attr)));
      // Push initial value, if any.
      // Note: For variables we must not push an initial value (such as
      // 'undefined') because we may have a (legal) redeclaration and we
      // must not destroy the current value.
      if (hole_init) {
        __ LoadRoot(a0, Heap::kTheHoleValueRootIndex);
        __ Push(cp, a2, a1, a0);
      } else {
        ASSERT(Smi::FromInt(0) == 0);
        __ mov(a0, zero_reg);  // Smi::FromInt(0) indicates no initial value.
        __ Push(cp, a2, a1, a0);
      }
      __ CallRuntime(Runtime::kDeclareContextSlot, 4);
      break;
    }
  }
}


void FullCodeGenerator::VisitFunctionDeclaration(
    FunctionDeclaration* declaration) {
  VariableProxy* proxy = declaration->proxy();
  Variable* variable = proxy->var();
  switch (variable->location()) {
    case Variable::UNALLOCATED: {
      globals_->Add(variable->name(), zone());
      Handle<SharedFunctionInfo> function =
          Compiler::BuildFunctionInfo(declaration->fun(), script());
      // Check for stack-overflow exception.
      if (function.is_null()) return SetStackOverflow();
      globals_->Add(function, zone());
      break;
    }

    case Variable::PARAMETER:
    case Variable::LOCAL: {
      Comment cmnt(masm_, "[ FunctionDeclaration");
      VisitForAccumulatorValue(declaration->fun());
      __ sw(result_register(), StackOperand(variable));
      break;
    }

    case Variable::CONTEXT: {
      Comment cmnt(masm_, "[ FunctionDeclaration");
      EmitDebugCheckDeclarationContext(variable);
      VisitForAccumulatorValue(declaration->fun());
      __ sw(result_register(), ContextOperand(cp, variable->index()));
      int offset = Context::SlotOffset(variable->index());
      // We know that we have written a function, which is not a smi.
      __ RecordWriteContextSlot(cp,
                                offset,
                                result_register(),
                                a2,
                                kRAHasBeenSaved,
                                kDontSaveFPRegs,
                                EMIT_REMEMBERED_SET,
                                OMIT_SMI_CHECK);
      PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
      break;
    }

    case Variable::LOOKUP: {
      Comment cmnt(masm_, "[ FunctionDeclaration");
      __ li(a2, Operand(variable->name()));
      __ li(a1, Operand(Smi::FromInt(NONE)));
      __ Push(cp, a2, a1);
      // Push initial value for function declaration.
      VisitForStackValue(declaration->fun());
      __ CallRuntime(Runtime::kDeclareContextSlot, 4);
      break;
    }
  }
}


void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
  VariableProxy* proxy = declaration->proxy();
  Variable* variable = proxy->var();
  Handle<JSModule> instance = declaration->module()->interface()->Instance();
  ASSERT(!instance.is_null());

  switch (variable->location()) {
    case Variable::UNALLOCATED: {
      Comment cmnt(masm_, "[ ModuleDeclaration");
      globals_->Add(variable->name(), zone());
      globals_->Add(instance, zone());
      Visit(declaration->module());
      break;
    }

    case Variable::CONTEXT: {
      Comment cmnt(masm_, "[ ModuleDeclaration");
      EmitDebugCheckDeclarationContext(variable);
      __ li(a1, Operand(instance));
      __ sw(a1, ContextOperand(cp, variable->index()));
      Visit(declaration->module());
      break;
    }

    case Variable::PARAMETER:
    case Variable::LOCAL:
    case Variable::LOOKUP:
      UNREACHABLE();
  }
}


void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
  VariableProxy* proxy = declaration->proxy();
  Variable* variable = proxy->var();
  switch (variable->location()) {
    case Variable::UNALLOCATED:
      // TODO(rossberg)
      break;

    case Variable::CONTEXT: {
      Comment cmnt(masm_, "[ ImportDeclaration");
      EmitDebugCheckDeclarationContext(variable);
      // TODO(rossberg)
      break;
    }

    case Variable::PARAMETER:
    case Variable::LOCAL:
    case Variable::LOOKUP:
      UNREACHABLE();
  }
}


void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
  // TODO(rossberg)
}


void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
  // Call the runtime to declare the globals.
  // The context is the first argument.
  __ li(a1, Operand(pairs));
  __ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags())));
  __ Push(cp, a1, a0);
  __ CallRuntime(Runtime::kDeclareGlobals, 3);
  // Return value is ignored.
}


void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
  Comment cmnt(masm_, "[ SwitchStatement");
  Breakable nested_statement(this, stmt);
  SetStatementPosition(stmt);

  // Keep the switch value on the stack until a case matches.
  VisitForStackValue(stmt->tag());
  PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);

  ZoneList<CaseClause*>* clauses = stmt->cases();
  CaseClause* default_clause = NULL;  // Can occur anywhere in the list.

  Label next_test;  // Recycled for each test.
  // Compile all the tests with branches to their bodies.
  for (int i = 0; i < clauses->length(); i++) {
    CaseClause* clause = clauses->at(i);
    clause->body_target()->Unuse();

    // The default is not a test, but remember it as final fall through.
    if (clause->is_default()) {
      default_clause = clause;
      continue;
    }

    Comment cmnt(masm_, "[ Case comparison");
    __ bind(&next_test);
    next_test.Unuse();

    // Compile the label expression.
    VisitForAccumulatorValue(clause->label());
    __ mov(a0, result_register());  // CompareStub requires args in a0, a1.

    // Perform the comparison as if via '==='.
    __ lw(a1, MemOperand(sp, 0));  // Switch value.
    bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
    JumpPatchSite patch_site(masm_);
    if (inline_smi_code) {
      Label slow_case;
      __ or_(a2, a1, a0);
      patch_site.EmitJumpIfNotSmi(a2, &slow_case);

      __ Branch(&next_test, ne, a1, Operand(a0));
      __ Drop(1);  // Switch value is no longer needed.
      __ Branch(clause->body_target());

      __ bind(&slow_case);
    }

    // Record position before stub call for type feedback.
    SetSourcePosition(clause->position());
    Handle<Code> ic = CompareIC::GetUninitialized(Token::EQ_STRICT);
    CallIC(ic, RelocInfo::CODE_TARGET, clause->CompareId());
    patch_site.EmitPatchInfo();

    __ Branch(&next_test, ne, v0, Operand(zero_reg));
    __ Drop(1);  // Switch value is no longer needed.
    __ Branch(clause->body_target());
  }

  // Discard the test value and jump to the default if present, otherwise to
  // the end of the statement.
  __ bind(&next_test);
  __ Drop(1);  // Switch value is no longer needed.
  if (default_clause == NULL) {
    __ Branch(nested_statement.break_label());
  } else {
    __ Branch(default_clause->body_target());
  }

  // Compile all the case bodies.
  for (int i = 0; i < clauses->length(); i++) {
    Comment cmnt(masm_, "[ Case body");
    CaseClause* clause = clauses->at(i);
    __ bind(clause->body_target());
    PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
    VisitStatements(clause->statements());
  }

  __ bind(nested_statement.break_label());
  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
}


void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
  Comment cmnt(masm_, "[ ForInStatement");
  SetStatementPosition(stmt);

  Label loop, exit;
  ForIn loop_statement(this, stmt);
  increment_loop_depth();

  // Get the object to enumerate over. Both SpiderMonkey and JSC
  // ignore null and undefined in contrast to the specification; see
  // ECMA-262 section 12.6.4.
  VisitForAccumulatorValue(stmt->enumerable());
  __ mov(a0, result_register());  // Result as param to InvokeBuiltin below.
  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
  __ Branch(&exit, eq, a0, Operand(at));
  Register null_value = t1;
  __ LoadRoot(null_value, Heap::kNullValueRootIndex);
  __ Branch(&exit, eq, a0, Operand(null_value));
  PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
  __ mov(a0, v0);
  // Convert the object to a JS object.
  Label convert, done_convert;
  __ JumpIfSmi(a0, &convert);
  __ GetObjectType(a0, a1, a1);
  __ Branch(&done_convert, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
  __ bind(&convert);
  __ push(a0);
  __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
  __ mov(a0, v0);
  __ bind(&done_convert);
  __ push(a0);

  // Check for proxies.
  Label call_runtime;
  STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
  __ GetObjectType(a0, a1, a1);
  __ Branch(&call_runtime, le, a1, Operand(LAST_JS_PROXY_TYPE));

  // Check cache validity in generated code. This is a fast case for
  // the JSObject::IsSimpleEnum cache validity checks. If we cannot
  // guarantee cache validity, call the runtime system to check cache
  // validity or get the property names in a fixed array.
  __ CheckEnumCache(null_value, &call_runtime);

  // The enum cache is valid.  Load the map of the object being
  // iterated over and use the cache for the iteration.
  Label use_cache;
  __ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset));
  __ Branch(&use_cache);

  // Get the set of properties to enumerate.
  __ bind(&call_runtime);
  __ push(a0);  // Duplicate the enumerable object on the stack.
  __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);

  // If we got a map from the runtime call, we can do a fast
  // modification check. Otherwise, we got a fixed array, and we have
  // to do a slow check.
  Label fixed_array;
  __ mov(a2, v0);
  __ lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
  __ LoadRoot(at, Heap::kMetaMapRootIndex);
  __ Branch(&fixed_array, ne, a1, Operand(at));

  // We got a map in register v0. Get the enumeration cache from it.
  __ bind(&use_cache);
  __ LoadInstanceDescriptors(v0, a1, a2);
  __ lw(a1, FieldMemOperand(a1, DescriptorArray::kLastAddedOffset));
  __ lw(a2, FieldMemOperand(a1, DescriptorArray::kEnumCacheBridgeCacheOffset));

  // Set up the four remaining stack slots.
  __ push(v0);  // Map.
  __ lw(a1, FieldMemOperand(a2, FixedArray::kLengthOffset));
  __ li(a0, Operand(Smi::FromInt(0)));
  // Push enumeration cache, enumeration cache length (as smi) and zero.
  __ Push(a2, a1, a0);
  __ jmp(&loop);

  // We got a fixed array in register v0. Iterate through that.
  Label non_proxy;
  __ bind(&fixed_array);

  Handle<JSGlobalPropertyCell> cell =
      isolate()->factory()->NewJSGlobalPropertyCell(
          Handle<Object>(
              Smi::FromInt(TypeFeedbackCells::kForInFastCaseMarker)));
  RecordTypeFeedbackCell(stmt->PrepareId(), cell);
  __ LoadHeapObject(a1, cell);
  __ li(a2, Operand(Smi::FromInt(TypeFeedbackCells::kForInSlowCaseMarker)));
  __ sw(a2, FieldMemOperand(a1, JSGlobalPropertyCell::kValueOffset));

  __ li(a1, Operand(Smi::FromInt(1)));  // Smi indicates slow check
  __ lw(a2, MemOperand(sp, 0 * kPointerSize));  // Get enumerated object
  STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
  __ GetObjectType(a2, a3, a3);
  __ Branch(&non_proxy, gt, a3, Operand(LAST_JS_PROXY_TYPE));
  __ li(a1, Operand(Smi::FromInt(0)));  // Zero indicates proxy
  __ bind(&non_proxy);
  __ Push(a1, v0);  // Smi and array
  __ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset));
  __ li(a0, Operand(Smi::FromInt(0)));
  __ Push(a1, a0);  // Fixed array length (as smi) and initial index.

  // Generate code for doing the condition check.
  PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
  __ bind(&loop);
  // Load the current count to a0, load the length to a1.
  __ lw(a0, MemOperand(sp, 0 * kPointerSize));
  __ lw(a1, MemOperand(sp, 1 * kPointerSize));
  __ Branch(loop_statement.break_label(), hs, a0, Operand(a1));

  // Get the current entry of the array into register a3.
  __ lw(a2, MemOperand(sp, 2 * kPointerSize));
  __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
  __ addu(t0, a2, t0);  // Array base + scaled (smi) index.
  __ lw(a3, MemOperand(t0));  // Current entry.

  // Get the expected map from the stack or a smi in the
  // permanent slow case into register a2.
  __ lw(a2, MemOperand(sp, 3 * kPointerSize));

  // Check if the expected map still matches that of the enumerable.
  // If not, we may have to filter the key.
  Label update_each;
  __ lw(a1, MemOperand(sp, 4 * kPointerSize));
  __ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset));
  __ Branch(&update_each, eq, t0, Operand(a2));

  // For proxies, no filtering is done.
  // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
  ASSERT_EQ(Smi::FromInt(0), 0);
  __ Branch(&update_each, eq, a2, Operand(zero_reg));

  // Convert the entry to a string or (smi) 0 if it isn't a property
  // any more. If the property has been removed while iterating, we
  // just skip it.
  __ push(a1);  // Enumerable.
  __ push(a3);  // Current entry.
  __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
  __ mov(a3, result_register());
  __ Branch(loop_statement.continue_label(), eq, a3, Operand(zero_reg));

  // Update the 'each' property or variable from the possibly filtered
  // entry in register a3.
  __ bind(&update_each);
  __ mov(result_register(), a3);
  // Perform the assignment as if via '='.
  { EffectContext context(this);
    EmitAssignment(stmt->each());
  }

  // Generate code for the body of the loop.
  Visit(stmt->body());

  // Generate code for the going to the next element by incrementing
  // the index (smi) stored on top of the stack.
  __ bind(loop_statement.continue_label());
  __ pop(a0);
  __ Addu(a0, a0, Operand(Smi::FromInt(1)));
  __ push(a0);

  EmitStackCheck(stmt, &loop);
  __ Branch(&loop);

  // Remove the pointers stored on the stack.
  __ bind(loop_statement.break_label());
  __ Drop(5);

  // Exit and decrement the loop depth.
  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
  __ bind(&exit);
  decrement_loop_depth();
}


void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
                                       bool pretenure) {
  // Use the fast case closure allocation code that allocates in new
  // space for nested functions that don't need literals cloning. If
  // we're running with the --always-opt or the --prepare-always-opt
  // flag, we need to use the runtime function so that the new function
  // we are creating here gets a chance to have its code optimized and
  // doesn't just get a copy of the existing unoptimized code.
  if (!FLAG_always_opt &&
      !FLAG_prepare_always_opt &&
      !pretenure &&
      scope()->is_function_scope() &&
      info->num_literals() == 0) {
    FastNewClosureStub stub(info->language_mode());
    __ li(a0, Operand(info));
    __ push(a0);
    __ CallStub(&stub);
  } else {
    __ li(a0, Operand(info));
    __ LoadRoot(a1, pretenure ? Heap::kTrueValueRootIndex
                              : Heap::kFalseValueRootIndex);
    __ Push(cp, a0, a1);
    __ CallRuntime(Runtime::kNewClosure, 3);
  }
  context()->Plug(v0);
}


void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
  Comment cmnt(masm_, "[ VariableProxy");
  EmitVariableLoad(expr);
}


void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var,
                                                      TypeofState typeof_state,
                                                      Label* slow) {
  Register current = cp;
  Register next = a1;
  Register temp = a2;

  Scope* s = scope();
  while (s != NULL) {
    if (s->num_heap_slots() > 0) {
      if (s->calls_non_strict_eval()) {
        // Check that extension is NULL.
        __ lw(temp, ContextOperand(current, Context::EXTENSION_INDEX));
        __ Branch(slow, ne, temp, Operand(zero_reg));
      }
      // Load next context in chain.
      __ lw(next, ContextOperand(current, Context::PREVIOUS_INDEX));
      // Walk the rest of the chain without clobbering cp.
      current = next;
    }
    // If no outer scope calls eval, we do not need to check more
    // context extensions.
    if (!s->outer_scope_calls_non_strict_eval() || s->is_eval_scope()) break;
    s = s->outer_scope();
  }

  if (s->is_eval_scope()) {
    Label loop, fast;
    if (!current.is(next)) {
      __ Move(next, current);
    }
    __ bind(&loop);
    // Terminate at global context.
    __ lw(temp, FieldMemOperand(next, HeapObject::kMapOffset));
    __ LoadRoot(t0, Heap::kGlobalContextMapRootIndex);
    __ Branch(&fast, eq, temp, Operand(t0));
    // Check that extension is NULL.
    __ lw(temp, ContextOperand(next, Context::EXTENSION_INDEX));
    __ Branch(slow, ne, temp, Operand(zero_reg));
    // Load next context in chain.
    __ lw(next, ContextOperand(next, Context::PREVIOUS_INDEX));
    __ Branch(&loop);
    __ bind(&fast);
  }

  __ lw(a0, GlobalObjectOperand());
  __ li(a2, Operand(var->name()));
  RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
      ? RelocInfo::CODE_TARGET
      : RelocInfo::CODE_TARGET_CONTEXT;
  Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
  CallIC(ic, mode);
}


MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
                                                                Label* slow) {
  ASSERT(var->IsContextSlot());
  Register context = cp;
  Register next = a3;
  Register temp = t0;

  for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
    if (s->num_heap_slots() > 0) {
      if (s->calls_non_strict_eval()) {
        // Check that extension is NULL.
        __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
        __ Branch(slow, ne, temp, Operand(zero_reg));
      }
      __ lw(next, ContextOperand(context, Context::PREVIOUS_INDEX));
      // Walk the rest of the chain without clobbering cp.
      context = next;
    }
  }
  // Check that last extension is NULL.
  __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
  __ Branch(slow, ne, temp, Operand(zero_reg));

  // This function is used only for loads, not stores, so it's safe to
  // return an cp-based operand (the write barrier cannot be allowed to
  // destroy the cp register).
  return ContextOperand(context, var->index());
}


void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var,
                                                  TypeofState typeof_state,
                                                  Label* slow,
                                                  Label* done) {
  // Generate fast-case code for variables that might be shadowed by
  // eval-introduced variables.  Eval is used a lot without
  // introducing variables.  In those cases, we do not want to
  // perform a runtime call for all variables in the scope
  // containing the eval.
  if (var->mode() == DYNAMIC_GLOBAL) {
    EmitLoadGlobalCheckExtensions(var, typeof_state, slow);
    __ Branch(done);
  } else if (var->mode() == DYNAMIC_LOCAL) {
    Variable* local = var->local_if_not_shadowed();
    __ lw(v0, ContextSlotOperandCheckExtensions(local, slow));
    if (local->mode() == CONST ||
        local->mode() == CONST_HARMONY ||
        local->mode() == LET) {
      __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
      __ subu(at, v0, at);  // Sub as compare: at == 0 on eq.
      if (local->mode() == CONST) {
        __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
        __ Movz(v0, a0, at);  // Conditional move: return Undefined if TheHole.
      } else {  // LET || CONST_HARMONY
        __ Branch(done, ne, at, Operand(zero_reg));
        __ li(a0, Operand(var->name()));
        __ push(a0);
        __ CallRuntime(Runtime::kThrowReferenceError, 1);
      }
    }
    __ Branch(done);
  }
}


void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
  // Record position before possible IC call.
  SetSourcePosition(proxy->position());
  Variable* var = proxy->var();

  // Three cases: global variables, lookup variables, and all other types of
  // variables.
  switch (var->location()) {
    case Variable::UNALLOCATED: {
      Comment cmnt(masm_, "Global variable");
      // Use inline caching. Variable name is passed in a2 and the global
      // object (receiver) in a0.
      __ lw(a0, GlobalObjectOperand());
      __ li(a2, Operand(var->name()));
      Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
      CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
      context()->Plug(v0);
      break;
    }

    case Variable::PARAMETER:
    case Variable::LOCAL:
    case Variable::CONTEXT: {
      Comment cmnt(masm_, var->IsContextSlot()
                              ? "Context variable"
                              : "Stack variable");
      if (var->binding_needs_init()) {
        // var->scope() may be NULL when the proxy is located in eval code and
        // refers to a potential outside binding. Currently those bindings are
        // always looked up dynamically, i.e. in that case
        //     var->location() == LOOKUP.
        // always holds.
        ASSERT(var->scope() != NULL);

        // Check if the binding really needs an initialization check. The check
        // can be skipped in the following situation: we have a LET or CONST
        // binding in harmony mode, both the Variable and the VariableProxy have
        // the same declaration scope (i.e. they are both in global code, in the
        // same function or in the same eval code) and the VariableProxy is in
        // the source physically located after the initializer of the variable.
        //
        // We cannot skip any initialization checks for CONST in non-harmony
        // mode because const variables may be declared but never initialized:
        //   if (false) { const x; }; var y = x;
        //
        // The condition on the declaration scopes is a conservative check for
        // nested functions that access a binding and are called before the
        // binding is initialized:
        //   function() { f(); let x = 1; function f() { x = 2; } }
        //
        bool skip_init_check;
        if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
          skip_init_check = false;
        } else {
          // Check that we always have valid source position.
          ASSERT(var->initializer_position() != RelocInfo::kNoPosition);
          ASSERT(proxy->position() != RelocInfo::kNoPosition);
          skip_init_check = var->mode() != CONST &&
              var->initializer_position() < proxy->position();
        }

        if (!skip_init_check) {
          // Let and const need a read barrier.
          GetVar(v0, var);
          __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
          __ subu(at, v0, at);  // Sub as compare: at == 0 on eq.
          if (var->mode() == LET || var->mode() == CONST_HARMONY) {
            // Throw a reference error when using an uninitialized let/const
            // binding in harmony mode.
            Label done;
            __ Branch(&done, ne, at, Operand(zero_reg));
            __ li(a0, Operand(var->name()));
            __ push(a0);
            __ CallRuntime(Runtime::kThrowReferenceError, 1);
            __ bind(&done);
          } else {
            // Uninitalized const bindings outside of harmony mode are unholed.
            ASSERT(var->mode() == CONST);
            __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
            __ Movz(v0, a0, at);  // Conditional move: Undefined if TheHole.
          }
          context()->Plug(v0);
          break;
        }
      }
      context()->Plug(var);
      break;
    }

    case Variable::LOOKUP: {
      Label done, slow;
      // Generate code for loading from variables potentially shadowed
      // by eval-introduced variables.
      EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done);
      __ bind(&slow);
      Comment cmnt(masm_, "Lookup variable");
      __ li(a1, Operand(var->name()));
      __ Push(cp, a1);  // Context and name.
      __ CallRuntime(Runtime::kLoadContextSlot, 2);
      __ bind(&done);
      context()->Plug(v0);
    }
  }
}


void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
  Comment cmnt(masm_, "[ RegExpLiteral");
  Label materialized;
  // Registers will be used as follows:
  // t1 = materialized value (RegExp literal)
  // t0 = JS function, literals array
  // a3 = literal index
  // a2 = RegExp pattern
  // a1 = RegExp flags
  // a0 = RegExp literal clone
  __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
  __ lw(t0, FieldMemOperand(a0, JSFunction::kLiteralsOffset));
  int literal_offset =
      FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
  __ lw(t1, FieldMemOperand(t0, literal_offset));
  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
  __ Branch(&materialized, ne, t1, Operand(at));

  // Create regexp literal using runtime function.
  // Result will be in v0.
  __ li(a3, Operand(Smi::FromInt(expr->literal_index())));
  __ li(a2, Operand(expr->pattern()));
  __ li(a1, Operand(expr->flags()));
  __ Push(t0, a3, a2, a1);
  __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
  __ mov(t1, v0);

  __ bind(&materialized);
  int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
  Label allocated, runtime_allocate;
  __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
  __ jmp(&allocated);

  __ bind(&runtime_allocate);
  __ push(t1);
  __ li(a0, Operand(Smi::FromInt(size)));
  __ push(a0);
  __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
  __ pop(t1);

  __ bind(&allocated);

  // After this, registers are used as follows:
  // v0: Newly allocated regexp.
  // t1: Materialized regexp.
  // a2: temp.
  __ CopyFields(v0, t1, a2.bit(), size / kPointerSize);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitAccessor(Expression* expression) {
  if (expression == NULL) {
    __ LoadRoot(a1, Heap::kNullValueRootIndex);
    __ push(a1);
  } else {
    VisitForStackValue(expression);
  }
}


void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
  Comment cmnt(masm_, "[ ObjectLiteral");
  Handle<FixedArray> constant_properties = expr->constant_properties();
  __ lw(a3, MemOperand(fp,  JavaScriptFrameConstants::kFunctionOffset));
  __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
  __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
  __ li(a1, Operand(constant_properties));
  int flags = expr->fast_elements()
      ? ObjectLiteral::kFastElements
      : ObjectLiteral::kNoFlags;
  flags |= expr->has_function()
      ? ObjectLiteral::kHasFunction
      : ObjectLiteral::kNoFlags;
  __ li(a0, Operand(Smi::FromInt(flags)));
  __ Push(a3, a2, a1, a0);
  int properties_count = constant_properties->length() / 2;
  if (expr->depth() > 1) {
    __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
  } else if (flags != ObjectLiteral::kFastElements ||
      properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
    __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
  } else {
    FastCloneShallowObjectStub stub(properties_count);
    __ CallStub(&stub);
  }

  // If result_saved is true the result is on top of the stack.  If
  // result_saved is false the result is in v0.
  bool result_saved = false;

  // Mark all computed expressions that are bound to a key that
  // is shadowed by a later occurrence of the same key. For the
  // marked expressions, no store code is emitted.
  expr->CalculateEmitStore(zone());

  AccessorTable accessor_table(zone());
  for (int i = 0; i < expr->properties()->length(); i++) {
    ObjectLiteral::Property* property = expr->properties()->at(i);
    if (property->IsCompileTimeValue()) continue;

    Literal* key = property->key();
    Expression* value = property->value();
    if (!result_saved) {
      __ push(v0);  // Save result on stack.
      result_saved = true;
    }
    switch (property->kind()) {
      case ObjectLiteral::Property::CONSTANT:
        UNREACHABLE();
      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
        ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value()));
        // Fall through.
      case ObjectLiteral::Property::COMPUTED:
        if (key->handle()->IsSymbol()) {
          if (property->emit_store()) {
            VisitForAccumulatorValue(value);
            __ mov(a0, result_register());
            __ li(a2, Operand(key->handle()));
            __ lw(a1, MemOperand(sp));
            Handle<Code> ic = is_classic_mode()
                ? isolate()->builtins()->StoreIC_Initialize()
                : isolate()->builtins()->StoreIC_Initialize_Strict();
            CallIC(ic, RelocInfo::CODE_TARGET, key->id());
            PrepareForBailoutForId(key->id(), NO_REGISTERS);
          } else {
            VisitForEffect(value);
          }
          break;
        }
        // Fall through.
      case ObjectLiteral::Property::PROTOTYPE:
        // Duplicate receiver on stack.
        __ lw(a0, MemOperand(sp));
        __ push(a0);
        VisitForStackValue(key);
        VisitForStackValue(value);
        if (property->emit_store()) {
          __ li(a0, Operand(Smi::FromInt(NONE)));  // PropertyAttributes.
          __ push(a0);
          __ CallRuntime(Runtime::kSetProperty, 4);
        } else {
          __ Drop(3);
        }
        break;
      case ObjectLiteral::Property::GETTER:
        accessor_table.lookup(key)->second->getter = value;
        break;
      case ObjectLiteral::Property::SETTER:
        accessor_table.lookup(key)->second->setter = value;
        break;
    }
  }

  // Emit code to define accessors, using only a single call to the runtime for
  // each pair of corresponding getters and setters.
  for (AccessorTable::Iterator it = accessor_table.begin();
       it != accessor_table.end();
       ++it) {
    __ lw(a0, MemOperand(sp));  // Duplicate receiver.
    __ push(a0);
    VisitForStackValue(it->first);
    EmitAccessor(it->second->getter);
    EmitAccessor(it->second->setter);
    __ li(a0, Operand(Smi::FromInt(NONE)));
    __ push(a0);
    __ CallRuntime(Runtime::kDefineOrRedefineAccessorProperty, 5);
  }

  if (expr->has_function()) {
    ASSERT(result_saved);
    __ lw(a0, MemOperand(sp));
    __ push(a0);
    __ CallRuntime(Runtime::kToFastProperties, 1);
  }

  if (result_saved) {
    context()->PlugTOS();
  } else {
    context()->Plug(v0);
  }
}


void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
  Comment cmnt(masm_, "[ ArrayLiteral");

  ZoneList<Expression*>* subexprs = expr->values();
  int length = subexprs->length();

  Handle<FixedArray> constant_elements = expr->constant_elements();
  ASSERT_EQ(2, constant_elements->length());
  ElementsKind constant_elements_kind =
      static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
  bool has_fast_elements =
      IsFastObjectElementsKind(constant_elements_kind);
  Handle<FixedArrayBase> constant_elements_values(
      FixedArrayBase::cast(constant_elements->get(1)));

  __ mov(a0, result_register());
  __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
  __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
  __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
  __ li(a1, Operand(constant_elements));
  __ Push(a3, a2, a1);
  if (has_fast_elements && constant_elements_values->map() ==
      isolate()->heap()->fixed_cow_array_map()) {
    FastCloneShallowArrayStub stub(
        FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
    __ CallStub(&stub);
    __ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(),
        1, a1, a2);
  } else if (expr->depth() > 1) {
    __ CallRuntime(Runtime::kCreateArrayLiteral, 3);
  } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
    __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
  } else {
    ASSERT(IsFastSmiOrObjectElementsKind(constant_elements_kind) ||
           FLAG_smi_only_arrays);
    FastCloneShallowArrayStub::Mode mode = has_fast_elements
      ? FastCloneShallowArrayStub::CLONE_ELEMENTS
      : FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS;
    FastCloneShallowArrayStub stub(mode, length);
    __ CallStub(&stub);
  }

  bool result_saved = false;  // Is the result saved to the stack?

  // Emit code to evaluate all the non-constant subexpressions and to store
  // them into the newly cloned array.
  for (int i = 0; i < length; i++) {
    Expression* subexpr = subexprs->at(i);
    // If the subexpression is a literal or a simple materialized literal it
    // is already set in the cloned array.
    if (subexpr->AsLiteral() != NULL ||
        CompileTimeValue::IsCompileTimeValue(subexpr)) {
      continue;
    }

    if (!result_saved) {
      __ push(v0);
      result_saved = true;
    }

    VisitForAccumulatorValue(subexpr);

    if (IsFastObjectElementsKind(constant_elements_kind)) {
      int offset = FixedArray::kHeaderSize + (i * kPointerSize);
      __ lw(t2, MemOperand(sp));  // Copy of array literal.
      __ lw(a1, FieldMemOperand(t2, JSObject::kElementsOffset));
      __ sw(result_register(), FieldMemOperand(a1, offset));
      // Update the write barrier for the array store.
      __ RecordWriteField(a1, offset, result_register(), a2,
                          kRAHasBeenSaved, kDontSaveFPRegs,
                          EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
    } else {
      __ lw(a1, MemOperand(sp));  // Copy of array literal.
      __ lw(a2, FieldMemOperand(a1, JSObject::kMapOffset));
      __ li(a3, Operand(Smi::FromInt(i)));
      __ li(t0, Operand(Smi::FromInt(expr->literal_index())));
      __ mov(a0, result_register());
      StoreArrayLiteralElementStub stub;
      __ CallStub(&stub);
    }

    PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
  }
  if (result_saved) {
    context()->PlugTOS();
  } else {
    context()->Plug(v0);
  }
}


void FullCodeGenerator::VisitAssignment(Assignment* expr) {
  Comment cmnt(masm_, "[ Assignment");
  // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
  // on the left-hand side.
  if (!expr->target()->IsValidLeftHandSide()) {
    VisitForEffect(expr->target());
    return;
  }

  // Left-hand side can only be a property, a global or a (parameter or local)
  // slot.
  enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
  LhsKind assign_type = VARIABLE;
  Property* property = expr->target()->AsProperty();
  if (property != NULL) {
    assign_type = (property->key()->IsPropertyName())
        ? NAMED_PROPERTY
        : KEYED_PROPERTY;
  }

  // Evaluate LHS expression.
  switch (assign_type) {
    case VARIABLE:
      // Nothing to do here.
      break;
    case NAMED_PROPERTY:
      if (expr->is_compound()) {
        // We need the receiver both on the stack and in the accumulator.
        VisitForAccumulatorValue(property->obj());
        __ push(result_register());
      } else {
        VisitForStackValue(property->obj());
      }
      break;
    case KEYED_PROPERTY:
      // We need the key and receiver on both the stack and in v0 and a1.
      if (expr->is_compound()) {
        VisitForStackValue(property->obj());
        VisitForAccumulatorValue(property->key());
        __ lw(a1, MemOperand(sp, 0));
        __ push(v0);
      } else {
        VisitForStackValue(property->obj());
        VisitForStackValue(property->key());
      }
      break;
  }

  // For compound assignments we need another deoptimization point after the
  // variable/property load.
  if (expr->is_compound()) {
    { AccumulatorValueContext context(this);
      switch (assign_type) {
        case VARIABLE:
          EmitVariableLoad(expr->target()->AsVariableProxy());
          PrepareForBailout(expr->target(), TOS_REG);
          break;
        case NAMED_PROPERTY:
          EmitNamedPropertyLoad(property);
          PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
          break;
        case KEYED_PROPERTY:
          EmitKeyedPropertyLoad(property);
          PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
          break;
      }
    }

    Token::Value op = expr->binary_op();
    __ push(v0);  // Left operand goes on the stack.
    VisitForAccumulatorValue(expr->value());

    OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
        ? OVERWRITE_RIGHT
        : NO_OVERWRITE;
    SetSourcePosition(expr->position() + 1);
    AccumulatorValueContext context(this);
    if (ShouldInlineSmiCase(op)) {
      EmitInlineSmiBinaryOp(expr->binary_operation(),
                            op,
                            mode,
                            expr->target(),
                            expr->value());
    } else {
      EmitBinaryOp(expr->binary_operation(), op, mode);
    }

    // Deoptimization point in case the binary operation may have side effects.
    PrepareForBailout(expr->binary_operation(), TOS_REG);
  } else {
    VisitForAccumulatorValue(expr->value());
  }

  // Record source position before possible IC call.
  SetSourcePosition(expr->position());

  // Store the value.
  switch (assign_type) {
    case VARIABLE:
      EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
                             expr->op());
      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
      context()->Plug(v0);
      break;
    case NAMED_PROPERTY:
      EmitNamedPropertyAssignment(expr);
      break;
    case KEYED_PROPERTY:
      EmitKeyedPropertyAssignment(expr);
      break;
  }
}


void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
  SetSourcePosition(prop->position());
  Literal* key = prop->key()->AsLiteral();
  __ mov(a0, result_register());
  __ li(a2, Operand(key->handle()));
  // Call load IC. It has arguments receiver and property name a0 and a2.
  Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
  CallIC(ic, RelocInfo::CODE_TARGET, prop->id());
}


void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
  SetSourcePosition(prop->position());
  __ mov(a0, result_register());
  // Call keyed load IC. It has arguments key and receiver in a0 and a1.
  Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
  CallIC(ic, RelocInfo::CODE_TARGET, prop->id());
}


void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
                                              Token::Value op,
                                              OverwriteMode mode,
                                              Expression* left_expr,
                                              Expression* right_expr) {
  Label done, smi_case, stub_call;

  Register scratch1 = a2;
  Register scratch2 = a3;

  // Get the arguments.
  Register left = a1;
  Register right = a0;
  __ pop(left);
  __ mov(a0, result_register());

  // Perform combined smi check on both operands.
  __ Or(scratch1, left, Operand(right));
  STATIC_ASSERT(kSmiTag == 0);
  JumpPatchSite patch_site(masm_);
  patch_site.EmitJumpIfSmi(scratch1, &smi_case);

  __ bind(&stub_call);
  BinaryOpStub stub(op, mode);
  CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
  patch_site.EmitPatchInfo();
  __ jmp(&done);

  __ bind(&smi_case);
  // Smi case. This code works the same way as the smi-smi case in the type
  // recording binary operation stub, see
  // BinaryOpStub::GenerateSmiSmiOperation for comments.
  switch (op) {
    case Token::SAR:
      __ Branch(&stub_call);
      __ GetLeastBitsFromSmi(scratch1, right, 5);
      __ srav(right, left, scratch1);
      __ And(v0, right, Operand(~kSmiTagMask));
      break;
    case Token::SHL: {
      __ Branch(&stub_call);
      __ SmiUntag(scratch1, left);
      __ GetLeastBitsFromSmi(scratch2, right, 5);
      __ sllv(scratch1, scratch1, scratch2);
      __ Addu(scratch2, scratch1, Operand(0x40000000));
      __ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
      __ SmiTag(v0, scratch1);
      break;
    }
    case Token::SHR: {
      __ Branch(&stub_call);
      __ SmiUntag(scratch1, left);
      __ GetLeastBitsFromSmi(scratch2, right, 5);
      __ srlv(scratch1, scratch1, scratch2);
      __ And(scratch2, scratch1, 0xc0000000);
      __ Branch(&stub_call, ne, scratch2, Operand(zero_reg));
      __ SmiTag(v0, scratch1);
      break;
    }
    case Token::ADD:
      __ AdduAndCheckForOverflow(v0, left, right, scratch1);
      __ BranchOnOverflow(&stub_call, scratch1);
      break;
    case Token::SUB:
      __ SubuAndCheckForOverflow(v0, left, right, scratch1);
      __ BranchOnOverflow(&stub_call, scratch1);
      break;
    case Token::MUL: {
      __ SmiUntag(scratch1, right);
      __ Mult(left, scratch1);
      __ mflo(scratch1);
      __ mfhi(scratch2);
      __ sra(scratch1, scratch1, 31);
      __ Branch(&stub_call, ne, scratch1, Operand(scratch2));
      __ mflo(v0);
      __ Branch(&done, ne, v0, Operand(zero_reg));
      __ Addu(scratch2, right, left);
      __ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
      ASSERT(Smi::FromInt(0) == 0);
      __ mov(v0, zero_reg);
      break;
    }
    case Token::BIT_OR:
      __ Or(v0, left, Operand(right));
      break;
    case Token::BIT_AND:
      __ And(v0, left, Operand(right));
      break;
    case Token::BIT_XOR:
      __ Xor(v0, left, Operand(right));
      break;
    default:
      UNREACHABLE();
  }

  __ bind(&done);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
                                     Token::Value op,
                                     OverwriteMode mode) {
  __ mov(a0, result_register());
  __ pop(a1);
  BinaryOpStub stub(op, mode);
  JumpPatchSite patch_site(masm_);    // unbound, signals no inlined smi code.
  CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
  patch_site.EmitPatchInfo();
  context()->Plug(v0);
}


void FullCodeGenerator::EmitAssignment(Expression* expr) {
  // Invalid left-hand sides are rewritten to have a 'throw
  // ReferenceError' on the left-hand side.
  if (!expr->IsValidLeftHandSide()) {
    VisitForEffect(expr);
    return;
  }

  // Left-hand side can only be a property, a global or a (parameter or local)
  // slot.
  enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
  LhsKind assign_type = VARIABLE;
  Property* prop = expr->AsProperty();
  if (prop != NULL) {
    assign_type = (prop->key()->IsPropertyName())
        ? NAMED_PROPERTY
        : KEYED_PROPERTY;
  }

  switch (assign_type) {
    case VARIABLE: {
      Variable* var = expr->AsVariableProxy()->var();
      EffectContext context(this);
      EmitVariableAssignment(var, Token::ASSIGN);
      break;
    }
    case NAMED_PROPERTY: {
      __ push(result_register());  // Preserve value.
      VisitForAccumulatorValue(prop->obj());
      __ mov(a1, result_register());
      __ pop(a0);  // Restore value.
      __ li(a2, Operand(prop->key()->AsLiteral()->handle()));
      Handle<Code> ic = is_classic_mode()
          ? isolate()->builtins()->StoreIC_Initialize()
          : isolate()->builtins()->StoreIC_Initialize_Strict();
      CallIC(ic);
      break;
    }
    case KEYED_PROPERTY: {
      __ push(result_register());  // Preserve value.
      VisitForStackValue(prop->obj());
      VisitForAccumulatorValue(prop->key());
      __ mov(a1, result_register());
      __ pop(a2);
      __ pop(a0);  // Restore value.
      Handle<Code> ic = is_classic_mode()
        ? isolate()->builtins()->KeyedStoreIC_Initialize()
        : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
      CallIC(ic);
      break;
    }
  }
  context()->Plug(v0);
}


void FullCodeGenerator::EmitVariableAssignment(Variable* var,
                                               Token::Value op) {
  if (var->IsUnallocated()) {
    // Global var, const, or let.
    __ mov(a0, result_register());
    __ li(a2, Operand(var->name()));
    __ lw(a1, GlobalObjectOperand());
    Handle<Code> ic = is_classic_mode()
        ? isolate()->builtins()->StoreIC_Initialize()
        : isolate()->builtins()->StoreIC_Initialize_Strict();
    CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);

  } else if (op == Token::INIT_CONST) {
    // Const initializers need a write barrier.
    ASSERT(!var->IsParameter());  // No const parameters.
    if (var->IsStackLocal()) {
      Label skip;
      __ lw(a1, StackOperand(var));
      __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
      __ Branch(&skip, ne, a1, Operand(t0));
      __ sw(result_register(), StackOperand(var));
      __ bind(&skip);
    } else {
      ASSERT(var->IsContextSlot() || var->IsLookupSlot());
      // Like var declarations, const declarations are hoisted to function
      // scope.  However, unlike var initializers, const initializers are
      // able to drill a hole to that function context, even from inside a
      // 'with' context.  We thus bypass the normal static scope lookup for
      // var->IsContextSlot().
      __ push(v0);
      __ li(a0, Operand(var->name()));
      __ Push(cp, a0);  // Context and name.
      __ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
    }

  } else if (var->mode() == LET && op != Token::INIT_LET) {
    // Non-initializing assignment to let variable needs a write barrier.
    if (var->IsLookupSlot()) {
      __ push(v0);  // Value.
      __ li(a1, Operand(var->name()));
      __ li(a0, Operand(Smi::FromInt(language_mode())));
      __ Push(cp, a1, a0);  // Context, name, strict mode.
      __ CallRuntime(Runtime::kStoreContextSlot, 4);
    } else {
      ASSERT(var->IsStackAllocated() || var->IsContextSlot());
      Label assign;
      MemOperand location = VarOperand(var, a1);
      __ lw(a3, location);
      __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
      __ Branch(&assign, ne, a3, Operand(t0));
      __ li(a3, Operand(var->name()));
      __ push(a3);
      __ CallRuntime(Runtime::kThrowReferenceError, 1);
      // Perform the assignment.
      __ bind(&assign);
      __ sw(result_register(), location);
      if (var->IsContextSlot()) {
        // RecordWrite may destroy all its register arguments.
        __ mov(a3, result_register());
        int offset = Context::SlotOffset(var->index());
        __ RecordWriteContextSlot(
            a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
      }
    }

  } else if (!var->is_const_mode() || op == Token::INIT_CONST_HARMONY) {
    // Assignment to var or initializing assignment to let/const
    // in harmony mode.
    if (var->IsStackAllocated() || var->IsContextSlot()) {
      MemOperand location = VarOperand(var, a1);
      if (FLAG_debug_code && op == Token::INIT_LET) {
        // Check for an uninitialized let binding.
        __ lw(a2, location);
        __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
        __ Check(eq, "Let binding re-initialization.", a2, Operand(t0));
      }
      // Perform the assignment.
      __ sw(v0, location);
      if (var->IsContextSlot()) {
        __ mov(a3, v0);
        int offset = Context::SlotOffset(var->index());
        __ RecordWriteContextSlot(
            a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
      }
    } else {
      ASSERT(var->IsLookupSlot());
      __ push(v0);  // Value.
      __ li(a1, Operand(var->name()));
      __ li(a0, Operand(Smi::FromInt(language_mode())));
      __ Push(cp, a1, a0);  // Context, name, strict mode.
      __ CallRuntime(Runtime::kStoreContextSlot, 4);
    }
  }
    // Non-initializing assignments to consts are ignored.
}


void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
  // Assignment to a property, using a named store IC.
  Property* prop = expr->target()->AsProperty();
  ASSERT(prop != NULL);
  ASSERT(prop->key()->AsLiteral() != NULL);

  // If the assignment starts a block of assignments to the same object,
  // change to slow case to avoid the quadratic behavior of repeatedly
  // adding fast properties.
  if (expr->starts_initialization_block()) {
    __ push(result_register());
    __ lw(t0, MemOperand(sp, kPointerSize));  // Receiver is now under value.
    __ push(t0);
    __ CallRuntime(Runtime::kToSlowProperties, 1);
    __ pop(result_register());
  }

  // Record source code position before IC call.
  SetSourcePosition(expr->position());
  __ mov(a0, result_register());  // Load the value.
  __ li(a2, Operand(prop->key()->AsLiteral()->handle()));
  // Load receiver to a1. Leave a copy in the stack if needed for turning the
  // receiver into fast case.
  if (expr->ends_initialization_block()) {
    __ lw(a1, MemOperand(sp));
  } else {
    __ pop(a1);
  }

  Handle<Code> ic = is_classic_mode()
        ? isolate()->builtins()->StoreIC_Initialize()
        : isolate()->builtins()->StoreIC_Initialize_Strict();
  CallIC(ic, RelocInfo::CODE_TARGET, expr->id());

  // If the assignment ends an initialization block, revert to fast case.
  if (expr->ends_initialization_block()) {
    __ push(v0);  // Result of assignment, saved even if not needed.
    // Receiver is under the result value.
    __ lw(t0, MemOperand(sp, kPointerSize));
    __ push(t0);
    __ CallRuntime(Runtime::kToFastProperties, 1);
    __ pop(v0);
    __ Drop(1);
  }
  PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
  // Assignment to a property, using a keyed store IC.

  // If the assignment starts a block of assignments to the same object,
  // change to slow case to avoid the quadratic behavior of repeatedly
  // adding fast properties.
  if (expr->starts_initialization_block()) {
    __ push(result_register());
    // Receiver is now under the key and value.
    __ lw(t0, MemOperand(sp, 2 * kPointerSize));
    __ push(t0);
    __ CallRuntime(Runtime::kToSlowProperties, 1);
    __ pop(result_register());
  }

  // Record source code position before IC call.
  SetSourcePosition(expr->position());
  // Call keyed store IC.
  // The arguments are:
  // - a0 is the value,
  // - a1 is the key,
  // - a2 is the receiver.
  __ mov(a0, result_register());
  __ pop(a1);  // Key.
  // Load receiver to a2. Leave a copy in the stack if needed for turning the
  // receiver into fast case.
  if (expr->ends_initialization_block()) {
    __ lw(a2, MemOperand(sp));
  } else {
    __ pop(a2);
  }

  Handle<Code> ic = is_classic_mode()
      ? isolate()->builtins()->KeyedStoreIC_Initialize()
      : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
  CallIC(ic, RelocInfo::CODE_TARGET, expr->id());

  // If the assignment ends an initialization block, revert to fast case.
  if (expr->ends_initialization_block()) {
    __ push(v0);  // Result of assignment, saved even if not needed.
    // Receiver is under the result value.
    __ lw(t0, MemOperand(sp, kPointerSize));
    __ push(t0);
    __ CallRuntime(Runtime::kToFastProperties, 1);
    __ pop(v0);
    __ Drop(1);
  }
  PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
  context()->Plug(v0);
}


void FullCodeGenerator::VisitProperty(Property* expr) {
  Comment cmnt(masm_, "[ Property");
  Expression* key = expr->key();

  if (key->IsPropertyName()) {
    VisitForAccumulatorValue(expr->obj());
    EmitNamedPropertyLoad(expr);
    context()->Plug(v0);
  } else {
    VisitForStackValue(expr->obj());
    VisitForAccumulatorValue(expr->key());
    __ pop(a1);
    EmitKeyedPropertyLoad(expr);
    context()->Plug(v0);
  }
}


void FullCodeGenerator::CallIC(Handle<Code> code,
                               RelocInfo::Mode rmode,
                               unsigned ast_id) {
  ic_total_count_++;
  __ Call(code, rmode, ast_id);
}


void FullCodeGenerator::EmitCallWithIC(Call* expr,
                                       Handle<Object> name,
                                       RelocInfo::Mode mode) {
  // Code common for calls using the IC.
  ZoneList<Expression*>* args = expr->arguments();
  int arg_count = args->length();
  { PreservePositionScope scope(masm()->positions_recorder());
    for (int i = 0; i < arg_count; i++) {
      VisitForStackValue(args->at(i));
    }
    __ li(a2, Operand(name));
  }
  // Record source position for debugger.
  SetSourcePosition(expr->position());
  // Call the IC initialization code.
  Handle<Code> ic =
      isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
  CallIC(ic, mode, expr->id());
  RecordJSReturnSite(expr);
  // Restore context register.
  __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  context()->Plug(v0);
}


void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
                                            Expression* key) {
  // Load the key.
  VisitForAccumulatorValue(key);

  // Swap the name of the function and the receiver on the stack to follow
  // the calling convention for call ICs.
  __ pop(a1);
  __ push(v0);
  __ push(a1);

  // Code common for calls using the IC.
  ZoneList<Expression*>* args = expr->arguments();
  int arg_count = args->length();
  { PreservePositionScope scope(masm()->positions_recorder());
    for (int i = 0; i < arg_count; i++) {
      VisitForStackValue(args->at(i));
    }
  }
  // Record source position for debugger.
  SetSourcePosition(expr->position());
  // Call the IC initialization code.
  Handle<Code> ic =
      isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count);
  __ lw(a2, MemOperand(sp, (arg_count + 1) * kPointerSize));  // Key.
  CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
  RecordJSReturnSite(expr);
  // Restore context register.
  __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  context()->DropAndPlug(1, v0);  // Drop the key still on the stack.
}


void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) {
  // Code common for calls using the call stub.
  ZoneList<Expression*>* args = expr->arguments();
  int arg_count = args->length();
  { PreservePositionScope scope(masm()->positions_recorder());
    for (int i = 0; i < arg_count; i++) {
      VisitForStackValue(args->at(i));
    }
  }
  // Record source position for debugger.
  SetSourcePosition(expr->position());

  // Record call targets in unoptimized code, but not in the snapshot.
  if (!Serializer::enabled()) {
    flags = static_cast<CallFunctionFlags>(flags | RECORD_CALL_TARGET);
    Handle<Object> uninitialized =
        TypeFeedbackCells::UninitializedSentinel(isolate());
    Handle<JSGlobalPropertyCell> cell =
        isolate()->factory()->NewJSGlobalPropertyCell(uninitialized);
    RecordTypeFeedbackCell(expr->id(), cell);
    __ li(a2, Operand(cell));
  }

  CallFunctionStub stub(arg_count, flags);
  __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
  __ CallStub(&stub);
  RecordJSReturnSite(expr);
  // Restore context register.
  __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  context()->DropAndPlug(1, v0);
}


void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
  // Push copy of the first argument or undefined if it doesn't exist.
  if (arg_count > 0) {
    __ lw(a1, MemOperand(sp, arg_count * kPointerSize));
  } else {
    __ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
  }
  __ push(a1);

  // Push the receiver of the enclosing function.
  int receiver_offset = 2 + info_->scope()->num_parameters();
  __ lw(a1, MemOperand(fp, receiver_offset * kPointerSize));
  __ push(a1);
  // Push the language mode.
  __ li(a1, Operand(Smi::FromInt(language_mode())));
  __ push(a1);

  // Push the start position of the scope the calls resides in.
  __ li(a1, Operand(Smi::FromInt(scope()->start_position())));
  __ push(a1);

  // Do the runtime call.
  __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5);
}


void FullCodeGenerator::VisitCall(Call* expr) {
#ifdef DEBUG
  // We want to verify that RecordJSReturnSite gets called on all paths
  // through this function.  Avoid early returns.
  expr->return_is_recorded_ = false;
#endif

  Comment cmnt(masm_, "[ Call");
  Expression* callee = expr->expression();
  VariableProxy* proxy = callee->AsVariableProxy();
  Property* property = callee->AsProperty();

  if (proxy != NULL && proxy->var()->is_possibly_eval()) {
    // In a call to eval, we first call %ResolvePossiblyDirectEval to
    // resolve the function we need to call and the receiver of the
    // call.  Then we call the resolved function using the given
    // arguments.
    ZoneList<Expression*>* args = expr->arguments();
    int arg_count = args->length();

    { PreservePositionScope pos_scope(masm()->positions_recorder());
      VisitForStackValue(callee);
      __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
      __ push(a2);  // Reserved receiver slot.

      // Push the arguments.
      for (int i = 0; i < arg_count; i++) {
        VisitForStackValue(args->at(i));
      }

      // Push a copy of the function (found below the arguments) and
      // resolve eval.
      __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
      __ push(a1);
      EmitResolvePossiblyDirectEval(arg_count);

      // The runtime call returns a pair of values in v0 (function) and
      // v1 (receiver). Touch up the stack with the right values.
      __ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize));
      __ sw(v1, MemOperand(sp, arg_count * kPointerSize));
    }
    // Record source position for debugger.
    SetSourcePosition(expr->position());
    CallFunctionStub stub(arg_count, RECEIVER_MIGHT_BE_IMPLICIT);
    __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
    __ CallStub(&stub);
    RecordJSReturnSite(expr);
    // Restore context register.
    __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
    context()->DropAndPlug(1, v0);
  } else if (proxy != NULL && proxy->var()->IsUnallocated()) {
    // Push global object as receiver for the call IC.
    __ lw(a0, GlobalObjectOperand());
    __ push(a0);
    EmitCallWithIC(expr, proxy->name(), RelocInfo::CODE_TARGET_CONTEXT);
  } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
    // Call to a lookup slot (dynamically introduced variable).
    Label slow, done;

    { PreservePositionScope scope(masm()->positions_recorder());
      // Generate code for loading from variables potentially shadowed
      // by eval-introduced variables.
      EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done);
    }

    __ bind(&slow);
    // Call the runtime to find the function to call (returned in v0)
    // and the object holding it (returned in v1).
    __ push(context_register());
    __ li(a2, Operand(proxy->name()));
    __ push(a2);
    __ CallRuntime(Runtime::kLoadContextSlot, 2);
    __ Push(v0, v1);  // Function, receiver.

    // If fast case code has been generated, emit code to push the
    // function and receiver and have the slow path jump around this
    // code.
    if (done.is_linked()) {
      Label call;
      __ Branch(&call);
      __ bind(&done);
      // Push function.
      __ push(v0);
      // The receiver is implicitly the global receiver. Indicate this
      // by passing the hole to the call function stub.
      __ LoadRoot(a1, Heap::kTheHoleValueRootIndex);
      __ push(a1);
      __ bind(&call);
    }

    // The receiver is either the global receiver or an object found
    // by LoadContextSlot. That object could be the hole if the
    // receiver is implicitly the global object.
    EmitCallWithStub(expr, RECEIVER_MIGHT_BE_IMPLICIT);
  } else if (property != NULL) {
    { PreservePositionScope scope(masm()->positions_recorder());
      VisitForStackValue(property->obj());
    }
    if (property->key()->IsPropertyName()) {
      EmitCallWithIC(expr,
                     property->key()->AsLiteral()->handle(),
                     RelocInfo::CODE_TARGET);
    } else {
      EmitKeyedCallWithIC(expr, property->key());
    }
  } else {
    // Call to an arbitrary expression not handled specially above.
    { PreservePositionScope scope(masm()->positions_recorder());
      VisitForStackValue(callee);
    }
    // Load global receiver object.
    __ lw(a1, GlobalObjectOperand());
    __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset));
    __ push(a1);
    // Emit function call.
    EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS);
  }

#ifdef DEBUG
  // RecordJSReturnSite should have been called.
  ASSERT(expr->return_is_recorded_);
#endif
}


void FullCodeGenerator::VisitCallNew(CallNew* expr) {
  Comment cmnt(masm_, "[ CallNew");
  // According to ECMA-262, section 11.2.2, page 44, the function
  // expression in new calls must be evaluated before the
  // arguments.

  // Push constructor on the stack.  If it's not a function it's used as
  // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
  // ignored.
  VisitForStackValue(expr->expression());

  // Push the arguments ("left-to-right") on the stack.
  ZoneList<Expression*>* args = expr->arguments();
  int arg_count = args->length();
  for (int i = 0; i < arg_count; i++) {
    VisitForStackValue(args->at(i));
  }

  // Call the construct call builtin that handles allocation and
  // constructor invocation.
  SetSourcePosition(expr->position());

  // Load function and argument count into a1 and a0.
  __ li(a0, Operand(arg_count));
  __ lw(a1, MemOperand(sp, arg_count * kPointerSize));

  // Record call targets in unoptimized code, but not in the snapshot.
  CallFunctionFlags flags;
  if (!Serializer::enabled()) {
    flags = RECORD_CALL_TARGET;
    Handle<Object> uninitialized =
       TypeFeedbackCells::UninitializedSentinel(isolate());
    Handle<JSGlobalPropertyCell> cell =
        isolate()->factory()->NewJSGlobalPropertyCell(uninitialized);
    RecordTypeFeedbackCell(expr->id(), cell);
    __ li(a2, Operand(cell));
  } else {
    flags = NO_CALL_FUNCTION_FLAGS;
  }

  CallConstructStub stub(flags);
  __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
  PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  VisitForAccumulatorValue(args->at(0));

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  __ And(t0, v0, Operand(kSmiTagMask));
  Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through);

  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  VisitForAccumulatorValue(args->at(0));

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  __ And(at, v0, Operand(kSmiTagMask | 0x80000000));
  Split(eq, at, Operand(zero_reg), if_true, if_false, fall_through);

  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  VisitForAccumulatorValue(args->at(0));

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  __ JumpIfSmi(v0, if_false);
  __ LoadRoot(at, Heap::kNullValueRootIndex);
  __ Branch(if_true, eq, v0, Operand(at));
  __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
  // Undetectable objects behave like undefined when tested with typeof.
  __ lbu(a1, FieldMemOperand(a2, Map::kBitFieldOffset));
  __ And(at, a1, Operand(1 << Map::kIsUndetectable));
  __ Branch(if_false, ne, at, Operand(zero_reg));
  __ lbu(a1, FieldMemOperand(a2, Map::kInstanceTypeOffset));
  __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  Split(le, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE),
        if_true, if_false, fall_through);

  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  VisitForAccumulatorValue(args->at(0));

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  __ JumpIfSmi(v0, if_false);
  __ GetObjectType(v0, a1, a1);
  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  Split(ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE),
        if_true, if_false, fall_through);

  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  VisitForAccumulatorValue(args->at(0));

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  __ JumpIfSmi(v0, if_false);
  __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
  __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset));
  __ And(at, a1, Operand(1 << Map::kIsUndetectable));
  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  Split(ne, at, Operand(zero_reg), if_true, if_false, fall_through);

  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
    CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  VisitForAccumulatorValue(args->at(0));

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  if (FLAG_debug_code) __ AbortIfSmi(v0);

  __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
  __ lbu(t0, FieldMemOperand(a1, Map::kBitField2Offset));
  __ And(t0, t0, 1 << Map::kStringWrapperSafeForDefaultValueOf);
  __ Branch(if_true, ne, t0, Operand(zero_reg));

  // Check for fast case object. Generate false result for slow case object.
  __ lw(a2, FieldMemOperand(v0, JSObject::kPropertiesOffset));
  __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
  __ LoadRoot(t0, Heap::kHashTableMapRootIndex);
  __ Branch(if_false, eq, a2, Operand(t0));

  // Look for valueOf symbol in the descriptor array, and indicate false if
  // found. The type is not checked, so if it is a transition it is a false
  // negative.
  __ LoadInstanceDescriptors(a1, t0, a3);
  __ lw(a3, FieldMemOperand(t0, FixedArray::kLengthOffset));
  // t0: descriptor array
  // a3: length of descriptor array
  // Calculate the end of the descriptor array.
  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiTagSize == 1);
  STATIC_ASSERT(kPointerSize == 4);
  __ Addu(a2, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ sll(t1, a3, kPointerSizeLog2 - kSmiTagSize);
  __ Addu(a2, a2, t1);

  // Calculate location of the first key name.
  __ Addu(t0,
          t0,
          Operand(FixedArray::kHeaderSize - kHeapObjectTag +
                  DescriptorArray::kFirstIndex * kPointerSize));
  // Loop through all the keys in the descriptor array. If one of these is the
  // symbol valueOf the result is false.
  Label entry, loop;
  // The use of t2 to store the valueOf symbol asumes that it is not otherwise
  // used in the loop below.
  __ LoadRoot(t2, Heap::kvalue_of_symbolRootIndex);
  __ jmp(&entry);
  __ bind(&loop);
  __ lw(a3, MemOperand(t0, 0));
  __ Branch(if_false, eq, a3, Operand(t2));
  __ Addu(t0, t0, Operand(kPointerSize));
  __ bind(&entry);
  __ Branch(&loop, ne, t0, Operand(a2));

  // If a valueOf property is not found on the object check that it's
  // prototype is the un-modified String prototype. If not result is false.
  __ lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
  __ JumpIfSmi(a2, if_false);
  __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
  __ lw(a3, ContextOperand(cp, Context::GLOBAL_INDEX));
  __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset));
  __ lw(a3, ContextOperand(a3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
  __ Branch(if_false, ne, a2, Operand(a3));

  // Set the bit in the map to indicate that it has been checked safe for
  // default valueOf and set true result.
  __ lbu(a2, FieldMemOperand(a1, Map::kBitField2Offset));
  __ Or(a2, a2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
  __ sb(a2, FieldMemOperand(a1, Map::kBitField2Offset));
  __ jmp(if_true);

  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  VisitForAccumulatorValue(args->at(0));

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  __ JumpIfSmi(v0, if_false);
  __ GetObjectType(v0, a1, a2);
  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  __ Branch(if_true, eq, a2, Operand(JS_FUNCTION_TYPE));
  __ Branch(if_false);

  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  VisitForAccumulatorValue(args->at(0));

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  __ JumpIfSmi(v0, if_false);
  __ GetObjectType(v0, a1, a1);
  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  Split(eq, a1, Operand(JS_ARRAY_TYPE),
        if_true, if_false, fall_through);

  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  VisitForAccumulatorValue(args->at(0));

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  __ JumpIfSmi(v0, if_false);
  __ GetObjectType(v0, a1, a1);
  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through);

  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
  ASSERT(expr->arguments()->length() == 0);

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  // Get the frame pointer for the calling frame.
  __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));

  // Skip the arguments adaptor frame if it exists.
  Label check_frame_marker;
  __ lw(a1, MemOperand(a2, StandardFrameConstants::kContextOffset));
  __ Branch(&check_frame_marker, ne,
            a1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
  __ lw(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));

  // Check the marker in the calling frame.
  __ bind(&check_frame_marker);
  __ lw(a1, MemOperand(a2, StandardFrameConstants::kMarkerOffset));
  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  Split(eq, a1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)),
        if_true, if_false, fall_through);

  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 2);

  // Load the two objects into registers and perform the comparison.
  VisitForStackValue(args->at(0));
  VisitForAccumulatorValue(args->at(1));

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  __ pop(a1);
  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  Split(eq, v0, Operand(a1), if_true, if_false, fall_through);

  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  // ArgumentsAccessStub expects the key in a1 and the formal
  // parameter count in a0.
  VisitForAccumulatorValue(args->at(0));
  __ mov(a1, v0);
  __ li(a0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
  ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
  __ CallStub(&stub);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
  ASSERT(expr->arguments()->length() == 0);
  Label exit;
  // Get the number of formal parameters.
  __ li(v0, Operand(Smi::FromInt(info_->scope()->num_parameters())));

  // Check if the calling frame is an arguments adaptor frame.
  __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
  __ Branch(&exit, ne, a3,
            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));

  // Arguments adaptor case: Read the arguments length from the
  // adaptor frame.
  __ lw(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));

  __ bind(&exit);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);
  Label done, null, function, non_function_constructor;

  VisitForAccumulatorValue(args->at(0));

  // If the object is a smi, we return null.
  __ JumpIfSmi(v0, &null);

  // Check that the object is a JS object but take special care of JS
  // functions to make sure they have 'Function' as their class.
  // Assume that there are only two callable types, and one of them is at
  // either end of the type range for JS object types. Saves extra comparisons.
  STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
  __ GetObjectType(v0, v0, a1);  // Map is now in v0.
  __ Branch(&null, lt, a1, Operand(FIRST_SPEC_OBJECT_TYPE));

  STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
                FIRST_SPEC_OBJECT_TYPE + 1);
  __ Branch(&function, eq, a1, Operand(FIRST_SPEC_OBJECT_TYPE));

  STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
                LAST_SPEC_OBJECT_TYPE - 1);
  __ Branch(&function, eq, a1, Operand(LAST_SPEC_OBJECT_TYPE));
  // Assume that there is no larger type.
  STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);

  // Check if the constructor in the map is a JS function.
  __ lw(v0, FieldMemOperand(v0, Map::kConstructorOffset));
  __ GetObjectType(v0, a1, a1);
  __ Branch(&non_function_constructor, ne, a1, Operand(JS_FUNCTION_TYPE));

  // v0 now contains the constructor function. Grab the
  // instance class name from there.
  __ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
  __ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset));
  __ Branch(&done);

  // Functions have class 'Function'.
  __ bind(&function);
  __ LoadRoot(v0, Heap::kfunction_class_symbolRootIndex);
  __ jmp(&done);

  // Objects with a non-function constructor have class 'Object'.
  __ bind(&non_function_constructor);
  __ LoadRoot(v0, Heap::kObject_symbolRootIndex);
  __ jmp(&done);

  // Non-JS objects have class null.
  __ bind(&null);
  __ LoadRoot(v0, Heap::kNullValueRootIndex);

  // All done.
  __ bind(&done);

  context()->Plug(v0);
}


void FullCodeGenerator::EmitLog(CallRuntime* expr) {
  // Conditionally generate a log call.
  // Args:
  //   0 (literal string): The type of logging (corresponds to the flags).
  //     This is used to determine whether or not to generate the log call.
  //   1 (string): Format string.  Access the string at argument index 2
  //     with '%2s' (see Logger::LogRuntime for all the formats).
  //   2 (array): Arguments to the format string.
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT_EQ(args->length(), 3);
  if (CodeGenerator::ShouldGenerateLog(args->at(0))) {
    VisitForStackValue(args->at(1));
    VisitForStackValue(args->at(2));
    __ CallRuntime(Runtime::kLog, 2);
  }

  // Finally, we're expected to leave a value on the top of the stack.
  __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitRandomHeapNumber(CallRuntime* expr) {
  ASSERT(expr->arguments()->length() == 0);
  Label slow_allocate_heapnumber;
  Label heapnumber_allocated;

  // Save the new heap number in callee-saved register s0, since
  // we call out to external C code below.
  __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
  __ AllocateHeapNumber(s0, a1, a2, t6, &slow_allocate_heapnumber);
  __ jmp(&heapnumber_allocated);

  __ bind(&slow_allocate_heapnumber);

  // Allocate a heap number.
  __ CallRuntime(Runtime::kNumberAlloc, 0);
  __ mov(s0, v0);   // Save result in s0, so it is saved thru CFunc call.

  __ bind(&heapnumber_allocated);

  // Convert 32 random bits in v0 to 0.(32 random bits) in a double
  // by computing:
  // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
  if (CpuFeatures::IsSupported(FPU)) {
    __ PrepareCallCFunction(1, a0);
    __ lw(a0, ContextOperand(cp, Context::GLOBAL_INDEX));
    __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset));
    __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);

    CpuFeatures::Scope scope(FPU);
    // 0x41300000 is the top half of 1.0 x 2^20 as a double.
    __ li(a1, Operand(0x41300000));
    // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU.
    __ Move(f12, v0, a1);
    // Move 0x4130000000000000 to FPU.
    __ Move(f14, zero_reg, a1);
    // Subtract and store the result in the heap number.
    __ sub_d(f0, f12, f14);
    __ sdc1(f0, FieldMemOperand(s0, HeapNumber::kValueOffset));
    __ mov(v0, s0);
  } else {
    __ PrepareCallCFunction(2, a0);
    __ mov(a0, s0);
    __ lw(a1, ContextOperand(cp, Context::GLOBAL_INDEX));
    __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalContextOffset));
    __ CallCFunction(
        ExternalReference::fill_heap_number_with_random_function(isolate()), 2);
  }

  context()->Plug(v0);
}


void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
  // Load the arguments on the stack and call the stub.
  SubStringStub stub;
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 3);
  VisitForStackValue(args->at(0));
  VisitForStackValue(args->at(1));
  VisitForStackValue(args->at(2));
  __ CallStub(&stub);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
  // Load the arguments on the stack and call the stub.
  RegExpExecStub stub;
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 4);
  VisitForStackValue(args->at(0));
  VisitForStackValue(args->at(1));
  VisitForStackValue(args->at(2));
  VisitForStackValue(args->at(3));
  __ CallStub(&stub);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  VisitForAccumulatorValue(args->at(0));  // Load the object.

  Label done;
  // If the object is a smi return the object.
  __ JumpIfSmi(v0, &done);
  // If the object is not a value type, return the object.
  __ GetObjectType(v0, a1, a1);
  __ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE));

  __ lw(v0, FieldMemOperand(v0, JSValue::kValueOffset));

  __ bind(&done);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 2);
  ASSERT_NE(NULL, args->at(1)->AsLiteral());
  Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->handle()));

  VisitForAccumulatorValue(args->at(0));  // Load the object.

  Label runtime, done;
  Register object = v0;
  Register result = v0;
  Register scratch0 = t5;
  Register scratch1 = a1;

#ifdef DEBUG
  __ AbortIfSmi(object);
  __ GetObjectType(object, scratch1, scratch1);
  __ Assert(eq, "Trying to get date field from non-date.",
      scratch1, Operand(JS_DATE_TYPE));
#endif

  if (index->value() == 0) {
    __ lw(result, FieldMemOperand(object, JSDate::kValueOffset));
  } else {
    if (index->value() < JSDate::kFirstUncachedField) {
      ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
      __ li(scratch1, Operand(stamp));
      __ lw(scratch1, MemOperand(scratch1));
      __ lw(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset));
      __ Branch(&runtime, ne, scratch1, Operand(scratch0));
      __ lw(result, FieldMemOperand(object, JSDate::kValueOffset +
                                            kPointerSize * index->value()));
      __ jmp(&done);
    }
    __ bind(&runtime);
    __ PrepareCallCFunction(2, scratch1);
    __ li(a1, Operand(index));
    __ Move(a0, object);
    __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
    __ bind(&done);
  }

  context()->Plug(v0);
}


void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
  // Load the arguments on the stack and call the runtime function.
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 2);
  VisitForStackValue(args->at(0));
  VisitForStackValue(args->at(1));
  if (CpuFeatures::IsSupported(FPU)) {
    MathPowStub stub(MathPowStub::ON_STACK);
    __ CallStub(&stub);
  } else {
    __ CallRuntime(Runtime::kMath_pow, 2);
  }
  context()->Plug(v0);
}


void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 2);

  VisitForStackValue(args->at(0));  // Load the object.
  VisitForAccumulatorValue(args->at(1));  // Load the value.
  __ pop(a1);  // v0 = value. a1 = object.

  Label done;
  // If the object is a smi, return the value.
  __ JumpIfSmi(a1, &done);

  // If the object is not a value type, return the value.
  __ GetObjectType(a1, a2, a2);
  __ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE));

  // Store the value.
  __ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset));
  // Update the write barrier.  Save the value as it will be
  // overwritten by the write barrier code and is needed afterward.
  __ mov(a2, v0);
  __ RecordWriteField(
      a1, JSValue::kValueOffset, a2, a3, kRAHasBeenSaved, kDontSaveFPRegs);

  __ bind(&done);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT_EQ(args->length(), 1);

  // Load the argument on the stack and call the stub.
  VisitForStackValue(args->at(0));

  NumberToStringStub stub;
  __ CallStub(&stub);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);

  VisitForAccumulatorValue(args->at(0));

  Label done;
  StringCharFromCodeGenerator generator(v0, a1);
  generator.GenerateFast(masm_);
  __ jmp(&done);

  NopRuntimeCallHelper call_helper;
  generator.GenerateSlow(masm_, call_helper);

  __ bind(&done);
  context()->Plug(a1);
}


void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 2);

  VisitForStackValue(args->at(0));
  VisitForAccumulatorValue(args->at(1));
  __ mov(a0, result_register());

  Register object = a1;
  Register index = a0;
  Register result = v0;

  __ pop(object);

  Label need_conversion;
  Label index_out_of_range;
  Label done;
  StringCharCodeAtGenerator generator(object,
                                      index,
                                      result,
                                      &need_conversion,
                                      &need_conversion,
                                      &index_out_of_range,
                                      STRING_INDEX_IS_NUMBER);
  generator.GenerateFast(masm_);
  __ jmp(&done);

  __ bind(&index_out_of_range);
  // When the index is out of range, the spec requires us to return
  // NaN.
  __ LoadRoot(result, Heap::kNanValueRootIndex);
  __ jmp(&done);

  __ bind(&need_conversion);
  // Load the undefined value into the result register, which will
  // trigger conversion.
  __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
  __ jmp(&done);

  NopRuntimeCallHelper call_helper;
  generator.GenerateSlow(masm_, call_helper);

  __ bind(&done);
  context()->Plug(result);
}


void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 2);

  VisitForStackValue(args->at(0));
  VisitForAccumulatorValue(args->at(1));
  __ mov(a0, result_register());

  Register object = a1;
  Register index = a0;
  Register scratch = a3;
  Register result = v0;

  __ pop(object);

  Label need_conversion;
  Label index_out_of_range;
  Label done;
  StringCharAtGenerator generator(object,
                                  index,
                                  scratch,
                                  result,
                                  &need_conversion,
                                  &need_conversion,
                                  &index_out_of_range,
                                  STRING_INDEX_IS_NUMBER);
  generator.GenerateFast(masm_);
  __ jmp(&done);

  __ bind(&index_out_of_range);
  // When the index is out of range, the spec requires us to return
  // the empty string.
  __ LoadRoot(result, Heap::kEmptyStringRootIndex);
  __ jmp(&done);

  __ bind(&need_conversion);
  // Move smi zero into the result register, which will trigger
  // conversion.
  __ li(result, Operand(Smi::FromInt(0)));
  __ jmp(&done);

  NopRuntimeCallHelper call_helper;
  generator.GenerateSlow(masm_, call_helper);

  __ bind(&done);
  context()->Plug(result);
}


void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT_EQ(2, args->length());
  VisitForStackValue(args->at(0));
  VisitForStackValue(args->at(1));

  StringAddStub stub(NO_STRING_ADD_FLAGS);
  __ CallStub(&stub);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT_EQ(2, args->length());

  VisitForStackValue(args->at(0));
  VisitForStackValue(args->at(1));

  StringCompareStub stub;
  __ CallStub(&stub);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitMathSin(CallRuntime* expr) {
  // Load the argument on the stack and call the stub.
  TranscendentalCacheStub stub(TranscendentalCache::SIN,
                               TranscendentalCacheStub::TAGGED);
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);
  VisitForStackValue(args->at(0));
  __ mov(a0, result_register());  // Stub requires parameter in a0 and on tos.
  __ CallStub(&stub);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitMathCos(CallRuntime* expr) {
  // Load the argument on the stack and call the stub.
  TranscendentalCacheStub stub(TranscendentalCache::COS,
                               TranscendentalCacheStub::TAGGED);
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);
  VisitForStackValue(args->at(0));
  __ mov(a0, result_register());  // Stub requires parameter in a0 and on tos.
  __ CallStub(&stub);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitMathTan(CallRuntime* expr) {
  // Load the argument on the stack and call the stub.
  TranscendentalCacheStub stub(TranscendentalCache::TAN,
                               TranscendentalCacheStub::TAGGED);
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);
  VisitForStackValue(args->at(0));
  __ mov(a0, result_register());  // Stub requires parameter in a0 and on tos.
  __ CallStub(&stub);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitMathLog(CallRuntime* expr) {
  // Load the argument on the stack and call the stub.
  TranscendentalCacheStub stub(TranscendentalCache::LOG,
                               TranscendentalCacheStub::TAGGED);
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);
  VisitForStackValue(args->at(0));
  __ mov(a0, result_register());  // Stub requires parameter in a0 and on tos.
  __ CallStub(&stub);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitMathSqrt(CallRuntime* expr) {
  // Load the argument on the stack and call the runtime function.
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);
  VisitForStackValue(args->at(0));
  __ CallRuntime(Runtime::kMath_sqrt, 1);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() >= 2);

  int arg_count = args->length() - 2;  // 2 ~ receiver and function.
  for (int i = 0; i < arg_count + 1; i++) {
    VisitForStackValue(args->at(i));
  }
  VisitForAccumulatorValue(args->last());  // Function.

  // Check for proxy.
  Label proxy, done;
  __ GetObjectType(v0, a1, a1);
  __ Branch(&proxy, eq, a1, Operand(JS_FUNCTION_PROXY_TYPE));

  // InvokeFunction requires the function in a1. Move it in there.
  __ mov(a1, result_register());
  ParameterCount count(arg_count);
  __ InvokeFunction(a1, count, CALL_FUNCTION,
                    NullCallWrapper(), CALL_AS_METHOD);
  __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  __ jmp(&done);

  __ bind(&proxy);
  __ push(v0);
  __ CallRuntime(Runtime::kCall, args->length());
  __ bind(&done);

  context()->Plug(v0);
}


void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
  RegExpConstructResultStub stub;
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 3);
  VisitForStackValue(args->at(0));
  VisitForStackValue(args->at(1));
  VisitForStackValue(args->at(2));
  __ CallStub(&stub);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT_EQ(2, args->length());

  ASSERT_NE(NULL, args->at(0)->AsLiteral());
  int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();

  Handle<FixedArray> jsfunction_result_caches(
      isolate()->global_context()->jsfunction_result_caches());
  if (jsfunction_result_caches->length() <= cache_id) {
    __ Abort("Attempt to use undefined cache.");
    __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
    context()->Plug(v0);
    return;
  }

  VisitForAccumulatorValue(args->at(1));

  Register key = v0;
  Register cache = a1;
  __ lw(cache, ContextOperand(cp, Context::GLOBAL_INDEX));
  __ lw(cache, FieldMemOperand(cache, GlobalObject::kGlobalContextOffset));
  __ lw(cache,
         ContextOperand(
             cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
  __ lw(cache,
         FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));


  Label done, not_found;
  STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
  __ lw(a2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
  // a2 now holds finger offset as a smi.
  __ Addu(a3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  // a3 now points to the start of fixed array elements.
  __ sll(at, a2, kPointerSizeLog2 - kSmiTagSize);
  __ addu(a3, a3, at);
  // a3 now points to key of indexed element of cache.
  __ lw(a2, MemOperand(a3));
  __ Branch(&not_found, ne, key, Operand(a2));

  __ lw(v0, MemOperand(a3, kPointerSize));
  __ Branch(&done);

  __ bind(&not_found);
  // Call runtime to perform the lookup.
  __ Push(cache, key);
  __ CallRuntime(Runtime::kGetFromCache, 2);

  __ bind(&done);
  context()->Plug(v0);
}


void FullCodeGenerator::EmitIsRegExpEquivalent(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT_EQ(2, args->length());

  Register right = v0;
  Register left = a1;
  Register tmp = a2;
  Register tmp2 = a3;

  VisitForStackValue(args->at(0));
  VisitForAccumulatorValue(args->at(1));  // Result (right) in v0.
  __ pop(left);

  Label done, fail, ok;
  __ Branch(&ok, eq, left, Operand(right));
  // Fail if either is a non-HeapObject.
  __ And(tmp, left, Operand(right));
  __ JumpIfSmi(tmp, &fail);
  __ lw(tmp, FieldMemOperand(left, HeapObject::kMapOffset));
  __ lbu(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset));
  __ Branch(&fail, ne, tmp2, Operand(JS_REGEXP_TYPE));
  __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
  __ Branch(&fail, ne, tmp, Operand(tmp2));
  __ lw(tmp, FieldMemOperand(left, JSRegExp::kDataOffset));
  __ lw(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset));
  __ Branch(&ok, eq, tmp, Operand(tmp2));
  __ bind(&fail);
  __ LoadRoot(v0, Heap::kFalseValueRootIndex);
  __ jmp(&done);
  __ bind(&ok);
  __ LoadRoot(v0, Heap::kTrueValueRootIndex);
  __ bind(&done);

  context()->Plug(v0);
}


void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  VisitForAccumulatorValue(args->at(0));

  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  __ lw(a0, FieldMemOperand(v0, String::kHashFieldOffset));
  __ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask));

  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through);

  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 1);
  VisitForAccumulatorValue(args->at(0));

  if (FLAG_debug_code) {
    __ AbortIfNotString(v0);
  }

  __ lw(v0, FieldMemOperand(v0, String::kHashFieldOffset));
  __ IndexFromHash(v0, v0);

  context()->Plug(v0);
}


void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
  Label bailout, done, one_char_separator, long_separator,
      non_trivial_array, not_size_one_array, loop,
      empty_separator_loop, one_char_separator_loop,
      one_char_separator_loop_entry, long_separator_loop;
  ZoneList<Expression*>* args = expr->arguments();
  ASSERT(args->length() == 2);
  VisitForStackValue(args->at(1));
  VisitForAccumulatorValue(args->at(0));

  // All aliases of the same register have disjoint lifetimes.
  Register array = v0;
  Register elements = no_reg;  // Will be v0.
  Register result = no_reg;  // Will be v0.
  Register separator = a1;
  Register array_length = a2;
  Register result_pos = no_reg;  // Will be a2.
  Register string_length = a3;
  Register string = t0;
  Register element = t1;
  Register elements_end = t2;
  Register scratch1 = t3;
  Register scratch2 = t5;
  Register scratch3 = t4;

  // Separator operand is on the stack.
  __ pop(separator);

  // Check that the array is a JSArray.
  __ JumpIfSmi(array, &bailout);
  __ GetObjectType(array, scratch1, scratch2);
  __ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE));

  // Check that the array has fast elements.
  __ CheckFastElements(scratch1, scratch2, &bailout);

  // If the array has length zero, return the empty string.
  __ lw(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
  __ SmiUntag(array_length);
  __ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg));
  __ LoadRoot(v0, Heap::kEmptyStringRootIndex);
  __ Branch(&done);

  __ bind(&non_trivial_array);

  // Get the FixedArray containing array's elements.
  elements = array;
  __ lw(elements, FieldMemOperand(array, JSArray::kElementsOffset));
  array = no_reg;  // End of array's live range.

  // Check that all array elements are sequential ASCII strings, and
  // accumulate the sum of their lengths, as a smi-encoded value.
  __ mov(string_length, zero_reg);
  __ Addu(element,
          elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ sll(elements_end, array_length, kPointerSizeLog2);
  __ Addu(elements_end, element, elements_end);
  // Loop condition: while (element < elements_end).
  // Live values in registers:
  //   elements: Fixed array of strings.
  //   array_length: Length of the fixed array of strings (not smi)
  //   separator: Separator string
  //   string_length: Accumulated sum of string lengths (smi).
  //   element: Current array element.
  //   elements_end: Array end.
  if (FLAG_debug_code) {
    __ Assert(gt, "No empty arrays here in EmitFastAsciiArrayJoin",
        array_length, Operand(zero_reg));
  }
  __ bind(&loop);
  __ lw(string, MemOperand(element));
  __ Addu(element, element, kPointerSize);
  __ JumpIfSmi(string, &bailout);
  __ lw(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
  __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
  __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
  __ lw(scratch1, FieldMemOperand(string, SeqAsciiString::kLengthOffset));
  __ AdduAndCheckForOverflow(string_length, string_length, scratch1, scratch3);
  __ BranchOnOverflow(&bailout, scratch3);
  __ Branch(&loop, lt, element, Operand(elements_end));

  // If array_length is 1, return elements[0], a string.
  __ Branch(&not_size_one_array, ne, array_length, Operand(1));
  __ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize));
  __ Branch(&done);

  __ bind(&not_size_one_array);

  // Live values in registers:
  //   separator: Separator string
  //   array_length: Length of the array.
  //   string_length: Sum of string lengths (smi).
  //   elements: FixedArray of strings.

  // Check that the separator is a flat ASCII string.
  __ JumpIfSmi(separator, &bailout);
  __ lw(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
  __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
  __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);

  // Add (separator length times array_length) - separator length to the
  // string_length to get the length of the result string. array_length is not
  // smi but the other values are, so the result is a smi.
  __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
  __ Subu(string_length, string_length, Operand(scratch1));
  __ Mult(array_length, scratch1);
  // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
  // zero.
  __ mfhi(scratch2);
  __ Branch(&bailout, ne, scratch2, Operand(zero_reg));
  __ mflo(scratch2);
  __ And(scratch3, scratch2, Operand(0x80000000));
  __ Branch(&bailout, ne, scratch3, Operand(zero_reg));
  __ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3);
  __ BranchOnOverflow(&bailout, scratch3);
  __ SmiUntag(string_length);

  // Get first element in the array to free up the elements register to be used
  // for the result.
  __ Addu(element,
          elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  result = elements;  // End of live range for elements.
  elements = no_reg;
  // Live values in registers:
  //   element: First array element
  //   separator: Separator string
  //   string_length: Length of result string (not smi)
  //   array_length: Length of the array.
  __ AllocateAsciiString(result,
                         string_length,
                         scratch1,
                         scratch2,
                         elements_end,
                         &bailout);
  // Prepare for looping. Set up elements_end to end of the array. Set
  // result_pos to the position of the result where to write the first
  // character.
  __ sll(elements_end, array_length, kPointerSizeLog2);
  __ Addu(elements_end, element, elements_end);
  result_pos = array_length;  // End of live range for array_length.
  array_length = no_reg;
  __ Addu(result_pos,
          result,
          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));

  // Check the length of the separator.
  __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
  __ li(at, Operand(Smi::FromInt(1)));
  __ Branch(&one_char_separator, eq, scratch1, Operand(at));
  __ Branch(&long_separator, gt, scratch1, Operand(at));

  // Empty separator case.
  __ bind(&empty_separator_loop);
  // Live values in registers:
  //   result_pos: the position to which we are currently copying characters.
  //   element: Current array element.
  //   elements_end: Array end.

  // Copy next array element to the result.
  __ lw(string, MemOperand(element));
  __ Addu(element, element, kPointerSize);
  __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
  __ SmiUntag(string_length);
  __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
  __ CopyBytes(string, result_pos, string_length, scratch1);
  // End while (element < elements_end).
  __ Branch(&empty_separator_loop, lt, element, Operand(elements_end));
  ASSERT(result.is(v0));
  __ Branch(&done);

  // One-character separator case.
  __ bind(&one_char_separator);
  // Replace separator with its ASCII character value.
  __ lbu(separator, FieldMemOperand(separator, SeqAsciiString::kHeaderSize));
  // Jump into the loop after the code that copies the separator, so the first
  // element is not preceded by a separator.
  __ jmp(&one_char_separator_loop_entry);

  __ bind(&one_char_separator_loop);
  // Live values in registers:
  //   result_pos: the position to which we are currently copying characters.
  //   element: Current array element.
  //   elements_end: Array end.
  //   separator: Single separator ASCII char (in lower byte).

  // Copy the separator character to the result.
  __ sb(separator, MemOperand(result_pos));
  __ Addu(result_pos, result_pos, 1);

  // Copy next array element to the result.
  __ bind(&one_char_separator_loop_entry);
  __ lw(string, MemOperand(element));
  __ Addu(element, element, kPointerSize);
  __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
  __ SmiUntag(string_length);
  __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
  __ CopyBytes(string, result_pos, string_length, scratch1);
  // End while (element < elements_end).
  __ Branch(&one_char_separator_loop, lt, element, Operand(elements_end));
  ASSERT(result.is(v0));
  __ Branch(&done);

  // Long separator case (separator is more than one character). Entry is at the
  // label long_separator below.
  __ bind(&long_separator_loop);
  // Live values in registers:
  //   result_pos: the position to which we are currently copying characters.
  //   element: Current array element.
  //   elements_end: Array end.
  //   separator: Separator string.

  // Copy the separator to the result.
  __ lw(string_length, FieldMemOperand(separator, String::kLengthOffset));
  __ SmiUntag(string_length);
  __ Addu(string,
          separator,
          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
  __ CopyBytes(string, result_pos, string_length, scratch1);

  __ bind(&long_separator);
  __ lw(string, MemOperand(element));
  __ Addu(element, element, kPointerSize);
  __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
  __ SmiUntag(string_length);
  __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
  __ CopyBytes(string, result_pos, string_length, scratch1);
  // End while (element < elements_end).
  __ Branch(&long_separator_loop, lt, element, Operand(elements_end));
  ASSERT(result.is(v0));
  __ Branch(&done);

  __ bind(&bailout);
  __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
  __ bind(&done);
  context()->Plug(v0);
}


void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
  Handle<String> name = expr->name();
  if (name->length() > 0 && name->Get(0) == '_') {
    Comment cmnt(masm_, "[ InlineRuntimeCall");
    EmitInlineRuntimeCall(expr);
    return;
  }

  Comment cmnt(masm_, "[ CallRuntime");
  ZoneList<Expression*>* args = expr->arguments();

  if (expr->is_jsruntime()) {
    // Prepare for calling JS runtime function.
    __ lw(a0, GlobalObjectOperand());
    __ lw(a0, FieldMemOperand(a0, GlobalObject::kBuiltinsOffset));
    __ push(a0);
  }

  // Push the arguments ("left-to-right").
  int arg_count = args->length();
  for (int i = 0; i < arg_count; i++) {
    VisitForStackValue(args->at(i));
  }

  if (expr->is_jsruntime()) {
    // Call the JS runtime function.
    __ li(a2, Operand(expr->name()));
    RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
    Handle<Code> ic =
        isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
    CallIC(ic, mode, expr->id());
    // Restore context register.
    __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  } else {
    // Call the C runtime function.
    __ CallRuntime(expr->function(), arg_count);
  }
  context()->Plug(v0);
}


void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
  switch (expr->op()) {
    case Token::DELETE: {
      Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
      Property* property = expr->expression()->AsProperty();
      VariableProxy* proxy = expr->expression()->AsVariableProxy();

      if (property != NULL) {
        VisitForStackValue(property->obj());
        VisitForStackValue(property->key());
        StrictModeFlag strict_mode_flag = (language_mode() == CLASSIC_MODE)
            ? kNonStrictMode : kStrictMode;
        __ li(a1, Operand(Smi::FromInt(strict_mode_flag)));
        __ push(a1);
        __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
        context()->Plug(v0);
      } else if (proxy != NULL) {
        Variable* var = proxy->var();
        // Delete of an unqualified identifier is disallowed in strict mode
        // but "delete this" is allowed.
        ASSERT(language_mode() == CLASSIC_MODE || var->is_this());
        if (var->IsUnallocated()) {
          __ lw(a2, GlobalObjectOperand());
          __ li(a1, Operand(var->name()));
          __ li(a0, Operand(Smi::FromInt(kNonStrictMode)));
          __ Push(a2, a1, a0);
          __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
          context()->Plug(v0);
        } else if (var->IsStackAllocated() || var->IsContextSlot()) {
          // Result of deleting non-global, non-dynamic variables is false.
          // The subexpression does not have side effects.
          context()->Plug(var->is_this());
        } else {
          // Non-global variable.  Call the runtime to try to delete from the
          // context where the variable was introduced.
          __ push(context_register());
          __ li(a2, Operand(var->name()));
          __ push(a2);
          __ CallRuntime(Runtime::kDeleteContextSlot, 2);
          context()->Plug(v0);
        }
      } else {
        // Result of deleting non-property, non-variable reference is true.
        // The subexpression may have side effects.
        VisitForEffect(expr->expression());
        context()->Plug(true);
      }
      break;
    }

    case Token::VOID: {
      Comment cmnt(masm_, "[ UnaryOperation (VOID)");
      VisitForEffect(expr->expression());
      context()->Plug(Heap::kUndefinedValueRootIndex);
      break;
    }

    case Token::NOT: {
      Comment cmnt(masm_, "[ UnaryOperation (NOT)");
      if (context()->IsEffect()) {
        // Unary NOT has no side effects so it's only necessary to visit the
        // subexpression.  Match the optimizing compiler by not branching.
        VisitForEffect(expr->expression());
      } else if (context()->IsTest()) {
        const TestContext* test = TestContext::cast(context());
        // The labels are swapped for the recursive call.
        VisitForControl(expr->expression(),
                        test->false_label(),
                        test->true_label(),
                        test->fall_through());
        context()->Plug(test->true_label(), test->false_label());
      } else {
        // We handle value contexts explicitly rather than simply visiting
        // for control and plugging the control flow into the context,
        // because we need to prepare a pair of extra administrative AST ids
        // for the optimizing compiler.
        ASSERT(context()->IsAccumulatorValue() || context()->IsStackValue());
        Label materialize_true, materialize_false, done;
        VisitForControl(expr->expression(),
                        &materialize_false,
                        &materialize_true,
                        &materialize_true);
        __ bind(&materialize_true);
        PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
        __ LoadRoot(v0, Heap::kTrueValueRootIndex);
        if (context()->IsStackValue()) __ push(v0);
        __ jmp(&done);
        __ bind(&materialize_false);
        PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
        __ LoadRoot(v0, Heap::kFalseValueRootIndex);
        if (context()->IsStackValue()) __ push(v0);
        __ bind(&done);
      }
      break;
    }

    case Token::TYPEOF: {
      Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
      { StackValueContext context(this);
        VisitForTypeofValue(expr->expression());
      }
      __ CallRuntime(Runtime::kTypeof, 1);
      context()->Plug(v0);
      break;
    }

    case Token::ADD: {
      Comment cmt(masm_, "[ UnaryOperation (ADD)");
      VisitForAccumulatorValue(expr->expression());
      Label no_conversion;
      __ JumpIfSmi(result_register(), &no_conversion);
      __ mov(a0, result_register());
      ToNumberStub convert_stub;
      __ CallStub(&convert_stub);
      __ bind(&no_conversion);
      context()->Plug(result_register());
      break;
    }

    case Token::SUB:
      EmitUnaryOperation(expr, "[ UnaryOperation (SUB)");
      break;

    case Token::BIT_NOT:
      EmitUnaryOperation(expr, "[ UnaryOperation (BIT_NOT)");
      break;

    default:
      UNREACHABLE();
  }
}


void FullCodeGenerator::EmitUnaryOperation(UnaryOperation* expr,
                                           const char* comment) {
  // TODO(svenpanne): Allowing format strings in Comment would be nice here...
  Comment cmt(masm_, comment);
  bool can_overwrite = expr->expression()->ResultOverwriteAllowed();
  UnaryOverwriteMode overwrite =
      can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
  UnaryOpStub stub(expr->op(), overwrite);
  // GenericUnaryOpStub expects the argument to be in a0.
  VisitForAccumulatorValue(expr->expression());
  SetSourcePosition(expr->position());
  __ mov(a0, result_register());
  CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
  context()->Plug(v0);
}


void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
  Comment cmnt(masm_, "[ CountOperation");
  SetSourcePosition(expr->position());

  // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
  // as the left-hand side.
  if (!expr->expression()->IsValidLeftHandSide()) {
    VisitForEffect(expr->expression());
    return;
  }

  // Expression can only be a property, a global or a (parameter or local)
  // slot.
  enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
  LhsKind assign_type = VARIABLE;
  Property* prop = expr->expression()->AsProperty();
  // In case of a property we use the uninitialized expression context
  // of the key to detect a named property.
  if (prop != NULL) {
    assign_type =
        (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
  }

  // Evaluate expression and get value.
  if (assign_type == VARIABLE) {
    ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
    AccumulatorValueContext context(this);
    EmitVariableLoad(expr->expression()->AsVariableProxy());
  } else {
    // Reserve space for result of postfix operation.
    if (expr->is_postfix() && !context()->IsEffect()) {
      __ li(at, Operand(Smi::FromInt(0)));
      __ push(at);
    }
    if (assign_type == NAMED_PROPERTY) {
      // Put the object both on the stack and in the accumulator.
      VisitForAccumulatorValue(prop->obj());
      __ push(v0);
      EmitNamedPropertyLoad(prop);
    } else {
      VisitForStackValue(prop->obj());
      VisitForAccumulatorValue(prop->key());
      __ lw(a1, MemOperand(sp, 0));
      __ push(v0);
      EmitKeyedPropertyLoad(prop);
    }
  }

  // We need a second deoptimization point after loading the value
  // in case evaluating the property load my have a side effect.
  if (assign_type == VARIABLE) {
    PrepareForBailout(expr->expression(), TOS_REG);
  } else {
    PrepareForBailoutForId(expr->CountId(), TOS_REG);
  }

  // Call ToNumber only if operand is not a smi.
  Label no_conversion;
  __ JumpIfSmi(v0, &no_conversion);
  __ mov(a0, v0);
  ToNumberStub convert_stub;
  __ CallStub(&convert_stub);
  __ bind(&no_conversion);

  // Save result for postfix expressions.
  if (expr->is_postfix()) {
    if (!context()->IsEffect()) {
      // Save the result on the stack. If we have a named or keyed property
      // we store the result under the receiver that is currently on top
      // of the stack.
      switch (assign_type) {
        case VARIABLE:
          __ push(v0);
          break;
        case NAMED_PROPERTY:
          __ sw(v0, MemOperand(sp, kPointerSize));
          break;
        case KEYED_PROPERTY:
          __ sw(v0, MemOperand(sp, 2 * kPointerSize));
          break;
      }
    }
  }
  __ mov(a0, result_register());

  // Inline smi case if we are in a loop.
  Label stub_call, done;
  JumpPatchSite patch_site(masm_);

  int count_value = expr->op() == Token::INC ? 1 : -1;
  __ li(a1, Operand(Smi::FromInt(count_value)));

  if (ShouldInlineSmiCase(expr->op())) {
    __ AdduAndCheckForOverflow(v0, a0, a1, t0);
    __ BranchOnOverflow(&stub_call, t0);  // Do stub on overflow.

    // We could eliminate this smi check if we split the code at
    // the first smi check before calling ToNumber.
    patch_site.EmitJumpIfSmi(v0, &done);
    __ bind(&stub_call);
  }

  // Record position before stub call.
  SetSourcePosition(expr->position());

  BinaryOpStub stub(Token::ADD, NO_OVERWRITE);
  CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->CountId());
  patch_site.EmitPatchInfo();
  __ bind(&done);

  // Store the value returned in v0.
  switch (assign_type) {
    case VARIABLE:
      if (expr->is_postfix()) {
        { EffectContext context(this);
          EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
                                 Token::ASSIGN);
          PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
          context.Plug(v0);
        }
        // For all contexts except EffectConstant we have the result on
        // top of the stack.
        if (!context()->IsEffect()) {
          context()->PlugTOS();
        }
      } else {
        EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
                               Token::ASSIGN);
        PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
        context()->Plug(v0);
      }
      break;
    case NAMED_PROPERTY: {
      __ mov(a0, result_register());  // Value.
      __ li(a2, Operand(prop->key()->AsLiteral()->handle()));  // Name.
      __ pop(a1);  // Receiver.
      Handle<Code> ic = is_classic_mode()
          ? isolate()->builtins()->StoreIC_Initialize()
          : isolate()->builtins()->StoreIC_Initialize_Strict();
      CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
      if (expr->is_postfix()) {
        if (!context()->IsEffect()) {
          context()->PlugTOS();
        }
      } else {
        context()->Plug(v0);
      }
      break;
    }
    case KEYED_PROPERTY: {
      __ mov(a0, result_register());  // Value.
      __ pop(a1);  // Key.
      __ pop(a2);  // Receiver.
      Handle<Code> ic = is_classic_mode()
          ? isolate()->builtins()->KeyedStoreIC_Initialize()
          : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
      CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
      if (expr->is_postfix()) {
        if (!context()->IsEffect()) {
          context()->PlugTOS();
        }
      } else {
        context()->Plug(v0);
      }
      break;
    }
  }
}


void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
  ASSERT(!context()->IsEffect());
  ASSERT(!context()->IsTest());
  VariableProxy* proxy = expr->AsVariableProxy();
  if (proxy != NULL && proxy->var()->IsUnallocated()) {
    Comment cmnt(masm_, "Global variable");
    __ lw(a0, GlobalObjectOperand());
    __ li(a2, Operand(proxy->name()));
    Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
    // Use a regular load, not a contextual load, to avoid a reference
    // error.
    CallIC(ic);
    PrepareForBailout(expr, TOS_REG);
    context()->Plug(v0);
  } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
    Label done, slow;

    // Generate code for loading from variables potentially shadowed
    // by eval-introduced variables.
    EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done);

    __ bind(&slow);
    __ li(a0, Operand(proxy->name()));
    __ Push(cp, a0);
    __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
    PrepareForBailout(expr, TOS_REG);
    __ bind(&done);

    context()->Plug(v0);
  } else {
    // This expression cannot throw a reference error at the top level.
    VisitInDuplicateContext(expr);
  }
}

void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
                                                 Expression* sub_expr,
                                                 Handle<String> check) {
  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  { AccumulatorValueContext context(this);
    VisitForTypeofValue(sub_expr);
  }
  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);

  if (check->Equals(isolate()->heap()->number_symbol())) {
    __ JumpIfSmi(v0, if_true);
    __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
    Split(eq, v0, Operand(at), if_true, if_false, fall_through);
  } else if (check->Equals(isolate()->heap()->string_symbol())) {
    __ JumpIfSmi(v0, if_false);
    // Check for undetectable objects => false.
    __ GetObjectType(v0, v0, a1);
    __ Branch(if_false, ge, a1, Operand(FIRST_NONSTRING_TYPE));
    __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
    __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
    Split(eq, a1, Operand(zero_reg),
          if_true, if_false, fall_through);
  } else if (check->Equals(isolate()->heap()->boolean_symbol())) {
    __ LoadRoot(at, Heap::kTrueValueRootIndex);
    __ Branch(if_true, eq, v0, Operand(at));
    __ LoadRoot(at, Heap::kFalseValueRootIndex);
    Split(eq, v0, Operand(at), if_true, if_false, fall_through);
  } else if (FLAG_harmony_typeof &&
             check->Equals(isolate()->heap()->null_symbol())) {
    __ LoadRoot(at, Heap::kNullValueRootIndex);
    Split(eq, v0, Operand(at), if_true, if_false, fall_through);
  } else if (check->Equals(isolate()->heap()->undefined_symbol())) {
    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
    __ Branch(if_true, eq, v0, Operand(at));
    __ JumpIfSmi(v0, if_false);
    // Check for undetectable objects => true.
    __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
    __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
    __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
    Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
  } else if (check->Equals(isolate()->heap()->function_symbol())) {
    __ JumpIfSmi(v0, if_false);
    STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
    __ GetObjectType(v0, v0, a1);
    __ Branch(if_true, eq, a1, Operand(JS_FUNCTION_TYPE));
    Split(eq, a1, Operand(JS_FUNCTION_PROXY_TYPE),
          if_true, if_false, fall_through);
  } else if (check->Equals(isolate()->heap()->object_symbol())) {
    __ JumpIfSmi(v0, if_false);
    if (!FLAG_harmony_typeof) {
      __ LoadRoot(at, Heap::kNullValueRootIndex);
      __ Branch(if_true, eq, v0, Operand(at));
    }
    // Check for JS objects => true.
    __ GetObjectType(v0, v0, a1);
    __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
    __ lbu(a1, FieldMemOperand(v0, Map::kInstanceTypeOffset));
    __ Branch(if_false, gt, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
    // Check for undetectable objects => false.
    __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
    __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
    Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through);
  } else {
    if (if_false != fall_through) __ jmp(if_false);
  }
  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
  Comment cmnt(masm_, "[ CompareOperation");
  SetSourcePosition(expr->position());

  // First we try a fast inlined version of the compare when one of
  // the operands is a literal.
  if (TryLiteralCompare(expr)) return;

  // Always perform the comparison for its control flow.  Pack the result
  // into the expression's context after the comparison is performed.
  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  Token::Value op = expr->op();
  VisitForStackValue(expr->left());
  switch (op) {
    case Token::IN:
      VisitForStackValue(expr->right());
      __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
      PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
      __ LoadRoot(t0, Heap::kTrueValueRootIndex);
      Split(eq, v0, Operand(t0), if_true, if_false, fall_through);
      break;

    case Token::INSTANCEOF: {
      VisitForStackValue(expr->right());
      InstanceofStub stub(InstanceofStub::kNoFlags);
      __ CallStub(&stub);
      PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
      // The stub returns 0 for true.
      Split(eq, v0, Operand(zero_reg), if_true, if_false, fall_through);
      break;
    }

    default: {
      VisitForAccumulatorValue(expr->right());
      Condition cc = eq;
      switch (op) {
        case Token::EQ_STRICT:
        case Token::EQ:
          cc = eq;
          break;
        case Token::LT:
          cc = lt;
          break;
        case Token::GT:
          cc = gt;
         break;
        case Token::LTE:
          cc = le;
          break;
        case Token::GTE:
          cc = ge;
          break;
        case Token::IN:
        case Token::INSTANCEOF:
        default:
          UNREACHABLE();
      }
      __ mov(a0, result_register());
      __ pop(a1);

      bool inline_smi_code = ShouldInlineSmiCase(op);
      JumpPatchSite patch_site(masm_);
      if (inline_smi_code) {
        Label slow_case;
        __ Or(a2, a0, Operand(a1));
        patch_site.EmitJumpIfNotSmi(a2, &slow_case);
        Split(cc, a1, Operand(a0), if_true, if_false, NULL);
        __ bind(&slow_case);
      }
      // Record position and call the compare IC.
      SetSourcePosition(expr->position());
      Handle<Code> ic = CompareIC::GetUninitialized(op);
      CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
      patch_site.EmitPatchInfo();
      PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
      Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through);
    }
  }

  // Convert the result of the comparison into one expected for this
  // expression's context.
  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
                                              Expression* sub_expr,
                                              NilValue nil) {
  Label materialize_true, materialize_false;
  Label* if_true = NULL;
  Label* if_false = NULL;
  Label* fall_through = NULL;
  context()->PrepareTest(&materialize_true, &materialize_false,
                         &if_true, &if_false, &fall_through);

  VisitForAccumulatorValue(sub_expr);
  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
  Heap::RootListIndex nil_value = nil == kNullValue ?
      Heap::kNullValueRootIndex :
      Heap::kUndefinedValueRootIndex;
  __ mov(a0, result_register());
  __ LoadRoot(a1, nil_value);
  if (expr->op() == Token::EQ_STRICT) {
    Split(eq, a0, Operand(a1), if_true, if_false, fall_through);
  } else {
    Heap::RootListIndex other_nil_value = nil == kNullValue ?
        Heap::kUndefinedValueRootIndex :
        Heap::kNullValueRootIndex;
    __ Branch(if_true, eq, a0, Operand(a1));
    __ LoadRoot(a1, other_nil_value);
    __ Branch(if_true, eq, a0, Operand(a1));
    __ JumpIfSmi(a0, if_false);
    // It can be an undetectable object.
    __ lw(a1, FieldMemOperand(a0, HeapObject::kMapOffset));
    __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset));
    __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
    Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
  }
  context()->Plug(if_true, if_false);
}


void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
  __ lw(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
  context()->Plug(v0);
}


Register FullCodeGenerator::result_register() {
  return v0;
}


Register FullCodeGenerator::context_register() {
  return cp;
}


void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
  ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
  __ sw(value, MemOperand(fp, frame_offset));
}


void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
  __ lw(dst, ContextOperand(cp, context_index));
}


void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
  Scope* declaration_scope = scope()->DeclarationScope();
  if (declaration_scope->is_global_scope() ||
      declaration_scope->is_module_scope()) {
    // Contexts nested in the global context have a canonical empty function
    // as their closure, not the anonymous closure containing the global
    // code.  Pass a smi sentinel and let the runtime look up the empty
    // function.
    __ li(at, Operand(Smi::FromInt(0)));
  } else if (declaration_scope->is_eval_scope()) {
    // Contexts created by a call to eval have the same closure as the
    // context calling eval, not the anonymous closure containing the eval
    // code.  Fetch it from the context.
    __ lw(at, ContextOperand(cp, Context::CLOSURE_INDEX));
  } else {
    ASSERT(declaration_scope->is_function_scope());
    __ lw(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
  }
  __ push(at);
}


// ----------------------------------------------------------------------------
// Non-local control flow support.

void FullCodeGenerator::EnterFinallyBlock() {
  ASSERT(!result_register().is(a1));
  // Store result register while executing finally block.
  __ push(result_register());
  // Cook return address in link register to stack (smi encoded Code* delta).
  __ Subu(a1, ra, Operand(masm_->CodeObject()));
  ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
  STATIC_ASSERT(0 == kSmiTag);
  __ Addu(a1, a1, Operand(a1));  // Convert to smi.

  // Store result register while executing finally block.
  __ push(a1);

  // Store pending message while executing finally block.
  ExternalReference pending_message_obj =
      ExternalReference::address_of_pending_message_obj(isolate());
  __ li(at, Operand(pending_message_obj));
  __ lw(a1, MemOperand(at));
  __ push(a1);

  ExternalReference has_pending_message =
      ExternalReference::address_of_has_pending_message(isolate());
  __ li(at, Operand(has_pending_message));
  __ lw(a1, MemOperand(at));
  __ SmiTag(a1);
  __ push(a1);

  ExternalReference pending_message_script =
      ExternalReference::address_of_pending_message_script(isolate());
  __ li(at, Operand(pending_message_script));
  __ lw(a1, MemOperand(at));
  __ push(a1);
}


void FullCodeGenerator::ExitFinallyBlock() {
  ASSERT(!result_register().is(a1));
  // Restore pending message from stack.
  __ pop(a1);
  ExternalReference pending_message_script =
      ExternalReference::address_of_pending_message_script(isolate());
  __ li(at, Operand(pending_message_script));
  __ sw(a1, MemOperand(at));

  __ pop(a1);
  __ SmiUntag(a1);
  ExternalReference has_pending_message =
      ExternalReference::address_of_has_pending_message(isolate());
  __ li(at, Operand(has_pending_message));
  __ sw(a1, MemOperand(at));

  __ pop(a1);
  ExternalReference pending_message_obj =
      ExternalReference::address_of_pending_message_obj(isolate());
  __ li(at, Operand(pending_message_obj));
  __ sw(a1, MemOperand(at));

  // Restore result register from stack.
  __ pop(a1);

  // Uncook return address and return.
  __ pop(result_register());
  ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
  __ sra(a1, a1, 1);  // Un-smi-tag value.
  __ Addu(at, a1, Operand(masm_->CodeObject()));
  __ Jump(at);
}


#undef __

#define __ ACCESS_MASM(masm())

FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
    int* stack_depth,
    int* context_length) {
  // The macros used here must preserve the result register.

  // Because the handler block contains the context of the finally
  // code, we can restore it directly from there for the finally code
  // rather than iteratively unwinding contexts via their previous
  // links.
  __ Drop(*stack_depth);  // Down to the handler block.
  if (*context_length > 0) {
    // Restore the context to its dedicated register and the stack.
    __ lw(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
    __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  }
  __ PopTryHandler();
  __ Call(finally_entry_);

  *stack_depth = 0;
  *context_length = 0;
  return previous_;
}


#undef __

} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_MIPS

/* [<][>][^][v][top][bottom][index][help] */