root/src/objects-inl.h
/* [<][>][^][v][top][bottom][index][help] */
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Review notes:
//
// - The use of macros in these inline functions may seem superfluous
// but it is absolutely needed to make sure gcc generates optimal
// code. gcc is not happy when attempting to inline too deep.
//
#ifndef V8_OBJECTS_INL_H_
#define V8_OBJECTS_INL_H_
#include "elements.h"
#include "objects.h"
#include "contexts.h"
#include "conversions-inl.h"
#include "heap.h"
#include "isolate.h"
#include "property.h"
#include "spaces.h"
#include "store-buffer.h"
#include "v8memory.h"
#include "factory.h"
#include "incremental-marking.h"
#include "transitions-inl.h"
namespace v8 {
namespace internal {
PropertyDetails::PropertyDetails(Smi* smi) {
value_ = smi->value();
}
Smi* PropertyDetails::AsSmi() {
return Smi::FromInt(value_);
}
PropertyDetails PropertyDetails::AsDeleted() {
Smi* smi = Smi::FromInt(value_ | DeletedField::encode(1));
return PropertyDetails(smi);
}
#define TYPE_CHECKER(type, instancetype) \
bool Object::Is##type() { \
return Object::IsHeapObject() && \
HeapObject::cast(this)->map()->instance_type() == instancetype; \
}
#define CAST_ACCESSOR(type) \
type* type::cast(Object* object) { \
ASSERT(object->Is##type()); \
return reinterpret_cast<type*>(object); \
}
#define INT_ACCESSORS(holder, name, offset) \
int holder::name() { return READ_INT_FIELD(this, offset); } \
void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); }
#define ACCESSORS(holder, name, type, offset) \
type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \
void holder::set_##name(type* value, WriteBarrierMode mode) { \
WRITE_FIELD(this, offset, value); \
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \
}
// Getter that returns a tagged Smi and setter that writes a tagged Smi.
#define ACCESSORS_TO_SMI(holder, name, offset) \
Smi* holder::name() { return Smi::cast(READ_FIELD(this, offset)); } \
void holder::set_##name(Smi* value, WriteBarrierMode mode) { \
WRITE_FIELD(this, offset, value); \
}
// Getter that returns a Smi as an int and writes an int as a Smi.
#define SMI_ACCESSORS(holder, name, offset) \
int holder::name() { \
Object* value = READ_FIELD(this, offset); \
return Smi::cast(value)->value(); \
} \
void holder::set_##name(int value) { \
WRITE_FIELD(this, offset, Smi::FromInt(value)); \
}
#define BOOL_GETTER(holder, field, name, offset) \
bool holder::name() { \
return BooleanBit::get(field(), offset); \
} \
#define BOOL_ACCESSORS(holder, field, name, offset) \
bool holder::name() { \
return BooleanBit::get(field(), offset); \
} \
void holder::set_##name(bool value) { \
set_##field(BooleanBit::set(field(), offset, value)); \
}
bool Object::IsFixedArrayBase() {
return IsFixedArray() || IsFixedDoubleArray();
}
bool Object::IsInstanceOf(FunctionTemplateInfo* expected) {
// There is a constraint on the object; check.
if (!this->IsJSObject()) return false;
// Fetch the constructor function of the object.
Object* cons_obj = JSObject::cast(this)->map()->constructor();
if (!cons_obj->IsJSFunction()) return false;
JSFunction* fun = JSFunction::cast(cons_obj);
// Iterate through the chain of inheriting function templates to
// see if the required one occurs.
for (Object* type = fun->shared()->function_data();
type->IsFunctionTemplateInfo();
type = FunctionTemplateInfo::cast(type)->parent_template()) {
if (type == expected) return true;
}
// Didn't find the required type in the inheritance chain.
return false;
}
bool Object::IsSmi() {
return HAS_SMI_TAG(this);
}
bool Object::IsHeapObject() {
return Internals::HasHeapObjectTag(this);
}
bool Object::NonFailureIsHeapObject() {
ASSERT(!this->IsFailure());
return (reinterpret_cast<intptr_t>(this) & kSmiTagMask) != 0;
}
TYPE_CHECKER(HeapNumber, HEAP_NUMBER_TYPE)
bool Object::IsString() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE;
}
bool Object::IsSpecObject() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() >= FIRST_SPEC_OBJECT_TYPE;
}
bool Object::IsSpecFunction() {
if (!Object::IsHeapObject()) return false;
InstanceType type = HeapObject::cast(this)->map()->instance_type();
return type == JS_FUNCTION_TYPE || type == JS_FUNCTION_PROXY_TYPE;
}
bool Object::IsSymbol() {
if (!this->IsHeapObject()) return false;
uint32_t type = HeapObject::cast(this)->map()->instance_type();
// Because the symbol tag is non-zero and no non-string types have the
// symbol bit set we can test for symbols with a very simple test
// operation.
STATIC_ASSERT(kSymbolTag != 0);
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
return (type & kIsSymbolMask) != 0;
}
bool Object::IsConsString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsCons();
}
bool Object::IsSlicedString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSliced();
}
bool Object::IsSeqString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential();
}
bool Object::IsSeqAsciiString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
String::cast(this)->IsAsciiRepresentation();
}
bool Object::IsSeqTwoByteString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
String::cast(this)->IsTwoByteRepresentation();
}
bool Object::IsExternalString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal();
}
bool Object::IsExternalAsciiString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
String::cast(this)->IsAsciiRepresentation();
}
bool Object::IsExternalTwoByteString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
String::cast(this)->IsTwoByteRepresentation();
}
bool Object::HasValidElements() {
// Dictionary is covered under FixedArray.
return IsFixedArray() || IsFixedDoubleArray() || IsExternalArray();
}
StringShape::StringShape(String* str)
: type_(str->map()->instance_type()) {
set_valid();
ASSERT((type_ & kIsNotStringMask) == kStringTag);
}
StringShape::StringShape(Map* map)
: type_(map->instance_type()) {
set_valid();
ASSERT((type_ & kIsNotStringMask) == kStringTag);
}
StringShape::StringShape(InstanceType t)
: type_(static_cast<uint32_t>(t)) {
set_valid();
ASSERT((type_ & kIsNotStringMask) == kStringTag);
}
bool StringShape::IsSymbol() {
ASSERT(valid());
STATIC_ASSERT(kSymbolTag != 0);
return (type_ & kIsSymbolMask) != 0;
}
bool String::IsAsciiRepresentation() {
uint32_t type = map()->instance_type();
return (type & kStringEncodingMask) == kAsciiStringTag;
}
bool String::IsTwoByteRepresentation() {
uint32_t type = map()->instance_type();
return (type & kStringEncodingMask) == kTwoByteStringTag;
}
bool String::IsAsciiRepresentationUnderneath() {
uint32_t type = map()->instance_type();
STATIC_ASSERT(kIsIndirectStringTag != 0);
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
ASSERT(IsFlat());
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
case kAsciiStringTag:
return true;
case kTwoByteStringTag:
return false;
default: // Cons or sliced string. Need to go deeper.
return GetUnderlying()->IsAsciiRepresentation();
}
}
bool String::IsTwoByteRepresentationUnderneath() {
uint32_t type = map()->instance_type();
STATIC_ASSERT(kIsIndirectStringTag != 0);
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
ASSERT(IsFlat());
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
case kAsciiStringTag:
return false;
case kTwoByteStringTag:
return true;
default: // Cons or sliced string. Need to go deeper.
return GetUnderlying()->IsTwoByteRepresentation();
}
}
bool String::HasOnlyAsciiChars() {
uint32_t type = map()->instance_type();
return (type & kStringEncodingMask) == kAsciiStringTag ||
(type & kAsciiDataHintMask) == kAsciiDataHintTag;
}
bool StringShape::IsCons() {
return (type_ & kStringRepresentationMask) == kConsStringTag;
}
bool StringShape::IsSliced() {
return (type_ & kStringRepresentationMask) == kSlicedStringTag;
}
bool StringShape::IsIndirect() {
return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag;
}
bool StringShape::IsExternal() {
return (type_ & kStringRepresentationMask) == kExternalStringTag;
}
bool StringShape::IsSequential() {
return (type_ & kStringRepresentationMask) == kSeqStringTag;
}
StringRepresentationTag StringShape::representation_tag() {
uint32_t tag = (type_ & kStringRepresentationMask);
return static_cast<StringRepresentationTag>(tag);
}
uint32_t StringShape::encoding_tag() {
return type_ & kStringEncodingMask;
}
uint32_t StringShape::full_representation_tag() {
return (type_ & (kStringRepresentationMask | kStringEncodingMask));
}
STATIC_CHECK((kStringRepresentationMask | kStringEncodingMask) ==
Internals::kFullStringRepresentationMask);
bool StringShape::IsSequentialAscii() {
return full_representation_tag() == (kSeqStringTag | kAsciiStringTag);
}
bool StringShape::IsSequentialTwoByte() {
return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag);
}
bool StringShape::IsExternalAscii() {
return full_representation_tag() == (kExternalStringTag | kAsciiStringTag);
}
bool StringShape::IsExternalTwoByte() {
return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag);
}
STATIC_CHECK((kExternalStringTag | kTwoByteStringTag) ==
Internals::kExternalTwoByteRepresentationTag);
uc32 FlatStringReader::Get(int index) {
ASSERT(0 <= index && index <= length_);
if (is_ascii_) {
return static_cast<const byte*>(start_)[index];
} else {
return static_cast<const uc16*>(start_)[index];
}
}
bool Object::IsNumber() {
return IsSmi() || IsHeapNumber();
}
TYPE_CHECKER(ByteArray, BYTE_ARRAY_TYPE)
TYPE_CHECKER(FreeSpace, FREE_SPACE_TYPE)
bool Object::IsFiller() {
if (!Object::IsHeapObject()) return false;
InstanceType instance_type = HeapObject::cast(this)->map()->instance_type();
return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE;
}
TYPE_CHECKER(ExternalPixelArray, EXTERNAL_PIXEL_ARRAY_TYPE)
bool Object::IsExternalArray() {
if (!Object::IsHeapObject())
return false;
InstanceType instance_type =
HeapObject::cast(this)->map()->instance_type();
return (instance_type >= FIRST_EXTERNAL_ARRAY_TYPE &&
instance_type <= LAST_EXTERNAL_ARRAY_TYPE);
}
TYPE_CHECKER(ExternalByteArray, EXTERNAL_BYTE_ARRAY_TYPE)
TYPE_CHECKER(ExternalUnsignedByteArray, EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)
TYPE_CHECKER(ExternalShortArray, EXTERNAL_SHORT_ARRAY_TYPE)
TYPE_CHECKER(ExternalUnsignedShortArray, EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)
TYPE_CHECKER(ExternalIntArray, EXTERNAL_INT_ARRAY_TYPE)
TYPE_CHECKER(ExternalUnsignedIntArray, EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)
TYPE_CHECKER(ExternalFloatArray, EXTERNAL_FLOAT_ARRAY_TYPE)
TYPE_CHECKER(ExternalDoubleArray, EXTERNAL_DOUBLE_ARRAY_TYPE)
bool MaybeObject::IsFailure() {
return HAS_FAILURE_TAG(this);
}
bool MaybeObject::IsRetryAfterGC() {
return HAS_FAILURE_TAG(this)
&& Failure::cast(this)->type() == Failure::RETRY_AFTER_GC;
}
bool MaybeObject::IsOutOfMemory() {
return HAS_FAILURE_TAG(this)
&& Failure::cast(this)->IsOutOfMemoryException();
}
bool MaybeObject::IsException() {
return this == Failure::Exception();
}
bool MaybeObject::IsTheHole() {
return !IsFailure() && ToObjectUnchecked()->IsTheHole();
}
Failure* Failure::cast(MaybeObject* obj) {
ASSERT(HAS_FAILURE_TAG(obj));
return reinterpret_cast<Failure*>(obj);
}
bool Object::IsJSReceiver() {
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
return IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_RECEIVER_TYPE;
}
bool Object::IsJSObject() {
STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
return IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_OBJECT_TYPE;
}
bool Object::IsJSProxy() {
if (!Object::IsHeapObject()) return false;
InstanceType type = HeapObject::cast(this)->map()->instance_type();
return FIRST_JS_PROXY_TYPE <= type && type <= LAST_JS_PROXY_TYPE;
}
TYPE_CHECKER(JSFunctionProxy, JS_FUNCTION_PROXY_TYPE)
TYPE_CHECKER(JSSet, JS_SET_TYPE)
TYPE_CHECKER(JSMap, JS_MAP_TYPE)
TYPE_CHECKER(JSWeakMap, JS_WEAK_MAP_TYPE)
TYPE_CHECKER(JSContextExtensionObject, JS_CONTEXT_EXTENSION_OBJECT_TYPE)
TYPE_CHECKER(Map, MAP_TYPE)
TYPE_CHECKER(FixedArray, FIXED_ARRAY_TYPE)
TYPE_CHECKER(FixedDoubleArray, FIXED_DOUBLE_ARRAY_TYPE)
bool Object::IsDescriptorArray() {
return IsFixedArray();
}
bool Object::IsTransitionArray() {
return IsFixedArray();
}
bool Object::IsDeoptimizationInputData() {
// Must be a fixed array.
if (!IsFixedArray()) return false;
// There's no sure way to detect the difference between a fixed array and
// a deoptimization data array. Since this is used for asserts we can
// check that the length is zero or else the fixed size plus a multiple of
// the entry size.
int length = FixedArray::cast(this)->length();
if (length == 0) return true;
length -= DeoptimizationInputData::kFirstDeoptEntryIndex;
return length >= 0 &&
length % DeoptimizationInputData::kDeoptEntrySize == 0;
}
bool Object::IsDeoptimizationOutputData() {
if (!IsFixedArray()) return false;
// There's actually no way to see the difference between a fixed array and
// a deoptimization data array. Since this is used for asserts we can check
// that the length is plausible though.
if (FixedArray::cast(this)->length() % 2 != 0) return false;
return true;
}
bool Object::IsTypeFeedbackCells() {
if (!IsFixedArray()) return false;
// There's actually no way to see the difference between a fixed array and
// a cache cells array. Since this is used for asserts we can check that
// the length is plausible though.
if (FixedArray::cast(this)->length() % 2 != 0) return false;
return true;
}
bool Object::IsContext() {
if (Object::IsHeapObject()) {
Map* map = HeapObject::cast(this)->map();
Heap* heap = map->GetHeap();
return (map == heap->function_context_map() ||
map == heap->catch_context_map() ||
map == heap->with_context_map() ||
map == heap->global_context_map() ||
map == heap->block_context_map() ||
map == heap->module_context_map());
}
return false;
}
bool Object::IsGlobalContext() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->global_context_map();
}
bool Object::IsModuleContext() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->module_context_map();
}
bool Object::IsScopeInfo() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->scope_info_map();
}
TYPE_CHECKER(JSFunction, JS_FUNCTION_TYPE)
template <> inline bool Is<JSFunction>(Object* obj) {
return obj->IsJSFunction();
}
TYPE_CHECKER(Code, CODE_TYPE)
TYPE_CHECKER(Oddball, ODDBALL_TYPE)
TYPE_CHECKER(JSGlobalPropertyCell, JS_GLOBAL_PROPERTY_CELL_TYPE)
TYPE_CHECKER(SharedFunctionInfo, SHARED_FUNCTION_INFO_TYPE)
TYPE_CHECKER(JSModule, JS_MODULE_TYPE)
TYPE_CHECKER(JSValue, JS_VALUE_TYPE)
TYPE_CHECKER(JSDate, JS_DATE_TYPE)
TYPE_CHECKER(JSMessageObject, JS_MESSAGE_OBJECT_TYPE)
bool Object::IsStringWrapper() {
return IsJSValue() && JSValue::cast(this)->value()->IsString();
}
TYPE_CHECKER(Foreign, FOREIGN_TYPE)
bool Object::IsBoolean() {
return IsOddball() &&
((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0);
}
TYPE_CHECKER(JSArray, JS_ARRAY_TYPE)
TYPE_CHECKER(JSRegExp, JS_REGEXP_TYPE)
template <> inline bool Is<JSArray>(Object* obj) {
return obj->IsJSArray();
}
bool Object::IsHashTable() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->hash_table_map();
}
bool Object::IsDictionary() {
return IsHashTable() &&
this != HeapObject::cast(this)->GetHeap()->symbol_table();
}
bool Object::IsSymbolTable() {
return IsHashTable() && this ==
HeapObject::cast(this)->GetHeap()->raw_unchecked_symbol_table();
}
bool Object::IsJSFunctionResultCache() {
if (!IsFixedArray()) return false;
FixedArray* self = FixedArray::cast(this);
int length = self->length();
if (length < JSFunctionResultCache::kEntriesIndex) return false;
if ((length - JSFunctionResultCache::kEntriesIndex)
% JSFunctionResultCache::kEntrySize != 0) {
return false;
}
#ifdef DEBUG
if (FLAG_verify_heap) {
reinterpret_cast<JSFunctionResultCache*>(this)->
JSFunctionResultCacheVerify();
}
#endif
return true;
}
bool Object::IsNormalizedMapCache() {
if (!IsFixedArray()) return false;
if (FixedArray::cast(this)->length() != NormalizedMapCache::kEntries) {
return false;
}
#ifdef DEBUG
if (FLAG_verify_heap) {
reinterpret_cast<NormalizedMapCache*>(this)->NormalizedMapCacheVerify();
}
#endif
return true;
}
bool Object::IsCompilationCacheTable() {
return IsHashTable();
}
bool Object::IsCodeCacheHashTable() {
return IsHashTable();
}
bool Object::IsPolymorphicCodeCacheHashTable() {
return IsHashTable();
}
bool Object::IsMapCache() {
return IsHashTable();
}
bool Object::IsPrimitive() {
return IsOddball() || IsNumber() || IsString();
}
bool Object::IsJSGlobalProxy() {
bool result = IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() ==
JS_GLOBAL_PROXY_TYPE);
ASSERT(!result || IsAccessCheckNeeded());
return result;
}
bool Object::IsGlobalObject() {
if (!IsHeapObject()) return false;
InstanceType type = HeapObject::cast(this)->map()->instance_type();
return type == JS_GLOBAL_OBJECT_TYPE ||
type == JS_BUILTINS_OBJECT_TYPE;
}
TYPE_CHECKER(JSGlobalObject, JS_GLOBAL_OBJECT_TYPE)
TYPE_CHECKER(JSBuiltinsObject, JS_BUILTINS_OBJECT_TYPE)
bool Object::IsUndetectableObject() {
return IsHeapObject()
&& HeapObject::cast(this)->map()->is_undetectable();
}
bool Object::IsAccessCheckNeeded() {
return IsHeapObject()
&& HeapObject::cast(this)->map()->is_access_check_needed();
}
bool Object::IsStruct() {
if (!IsHeapObject()) return false;
switch (HeapObject::cast(this)->map()->instance_type()) {
#define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
default: return false;
}
}
#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
bool Object::Is##Name() { \
return Object::IsHeapObject() \
&& HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \
}
STRUCT_LIST(MAKE_STRUCT_PREDICATE)
#undef MAKE_STRUCT_PREDICATE
bool Object::IsUndefined() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUndefined;
}
bool Object::IsNull() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kNull;
}
bool Object::IsTheHole() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTheHole;
}
bool Object::IsTrue() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTrue;
}
bool Object::IsFalse() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kFalse;
}
bool Object::IsArgumentsMarker() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kArgumentMarker;
}
double Object::Number() {
ASSERT(IsNumber());
return IsSmi()
? static_cast<double>(reinterpret_cast<Smi*>(this)->value())
: reinterpret_cast<HeapNumber*>(this)->value();
}
bool Object::IsNaN() {
return this->IsHeapNumber() && isnan(HeapNumber::cast(this)->value());
}
MaybeObject* Object::ToSmi() {
if (IsSmi()) return this;
if (IsHeapNumber()) {
double value = HeapNumber::cast(this)->value();
int int_value = FastD2I(value);
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
return Smi::FromInt(int_value);
}
}
return Failure::Exception();
}
bool Object::HasSpecificClassOf(String* name) {
return this->IsJSObject() && (JSObject::cast(this)->class_name() == name);
}
MaybeObject* Object::GetElement(uint32_t index) {
// GetElement can trigger a getter which can cause allocation.
// This was not always the case. This ASSERT is here to catch
// leftover incorrect uses.
ASSERT(HEAP->IsAllocationAllowed());
return GetElementWithReceiver(this, index);
}
Object* Object::GetElementNoExceptionThrown(uint32_t index) {
MaybeObject* maybe = GetElementWithReceiver(this, index);
ASSERT(!maybe->IsFailure());
Object* result = NULL; // Initialization to please compiler.
maybe->ToObject(&result);
return result;
}
MaybeObject* Object::GetProperty(String* key) {
PropertyAttributes attributes;
return GetPropertyWithReceiver(this, key, &attributes);
}
MaybeObject* Object::GetProperty(String* key, PropertyAttributes* attributes) {
return GetPropertyWithReceiver(this, key, attributes);
}
#define FIELD_ADDR(p, offset) \
(reinterpret_cast<byte*>(p) + offset - kHeapObjectTag)
#define READ_FIELD(p, offset) \
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)))
#define WRITE_FIELD(p, offset, value) \
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value)
#define WRITE_BARRIER(heap, object, offset, value) \
heap->incremental_marking()->RecordWrite( \
object, HeapObject::RawField(object, offset), value); \
if (heap->InNewSpace(value)) { \
heap->RecordWrite(object->address(), offset); \
}
#define CONDITIONAL_WRITE_BARRIER(heap, object, offset, value, mode) \
if (mode == UPDATE_WRITE_BARRIER) { \
heap->incremental_marking()->RecordWrite( \
object, HeapObject::RawField(object, offset), value); \
if (heap->InNewSpace(value)) { \
heap->RecordWrite(object->address(), offset); \
} \
}
#ifndef V8_TARGET_ARCH_MIPS
#define READ_DOUBLE_FIELD(p, offset) \
(*reinterpret_cast<double*>(FIELD_ADDR(p, offset)))
#else // V8_TARGET_ARCH_MIPS
// Prevent gcc from using load-double (mips ldc1) on (possibly)
// non-64-bit aligned HeapNumber::value.
static inline double read_double_field(void* p, int offset) {
union conversion {
double d;
uint32_t u[2];
} c;
c.u[0] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)));
c.u[1] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4)));
return c.d;
}
#define READ_DOUBLE_FIELD(p, offset) read_double_field(p, offset)
#endif // V8_TARGET_ARCH_MIPS
#ifndef V8_TARGET_ARCH_MIPS
#define WRITE_DOUBLE_FIELD(p, offset, value) \
(*reinterpret_cast<double*>(FIELD_ADDR(p, offset)) = value)
#else // V8_TARGET_ARCH_MIPS
// Prevent gcc from using store-double (mips sdc1) on (possibly)
// non-64-bit aligned HeapNumber::value.
static inline void write_double_field(void* p, int offset,
double value) {
union conversion {
double d;
uint32_t u[2];
} c;
c.d = value;
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))) = c.u[0];
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4))) = c.u[1];
}
#define WRITE_DOUBLE_FIELD(p, offset, value) \
write_double_field(p, offset, value)
#endif // V8_TARGET_ARCH_MIPS
#define READ_INT_FIELD(p, offset) \
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)))
#define WRITE_INT_FIELD(p, offset, value) \
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value)
#define READ_INTPTR_FIELD(p, offset) \
(*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)))
#define WRITE_INTPTR_FIELD(p, offset, value) \
(*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_UINT32_FIELD(p, offset) \
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)))
#define WRITE_UINT32_FIELD(p, offset, value) \
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_INT64_FIELD(p, offset) \
(*reinterpret_cast<int64_t*>(FIELD_ADDR(p, offset)))
#define WRITE_INT64_FIELD(p, offset, value) \
(*reinterpret_cast<int64_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_SHORT_FIELD(p, offset) \
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)))
#define WRITE_SHORT_FIELD(p, offset, value) \
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_BYTE_FIELD(p, offset) \
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)))
#define WRITE_BYTE_FIELD(p, offset, value) \
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value)
Object** HeapObject::RawField(HeapObject* obj, int byte_offset) {
return &READ_FIELD(obj, byte_offset);
}
int Smi::value() {
return Internals::SmiValue(this);
}
Smi* Smi::FromInt(int value) {
ASSERT(Smi::IsValid(value));
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
intptr_t tagged_value =
(static_cast<intptr_t>(value) << smi_shift_bits) | kSmiTag;
return reinterpret_cast<Smi*>(tagged_value);
}
Smi* Smi::FromIntptr(intptr_t value) {
ASSERT(Smi::IsValid(value));
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag);
}
Failure::Type Failure::type() const {
return static_cast<Type>(value() & kFailureTypeTagMask);
}
bool Failure::IsInternalError() const {
return type() == INTERNAL_ERROR;
}
bool Failure::IsOutOfMemoryException() const {
return type() == OUT_OF_MEMORY_EXCEPTION;
}
AllocationSpace Failure::allocation_space() const {
ASSERT_EQ(RETRY_AFTER_GC, type());
return static_cast<AllocationSpace>((value() >> kFailureTypeTagSize)
& kSpaceTagMask);
}
Failure* Failure::InternalError() {
return Construct(INTERNAL_ERROR);
}
Failure* Failure::Exception() {
return Construct(EXCEPTION);
}
Failure* Failure::OutOfMemoryException() {
return Construct(OUT_OF_MEMORY_EXCEPTION);
}
intptr_t Failure::value() const {
return static_cast<intptr_t>(
reinterpret_cast<uintptr_t>(this) >> kFailureTagSize);
}
Failure* Failure::RetryAfterGC() {
return RetryAfterGC(NEW_SPACE);
}
Failure* Failure::RetryAfterGC(AllocationSpace space) {
ASSERT((space & ~kSpaceTagMask) == 0);
return Construct(RETRY_AFTER_GC, space);
}
Failure* Failure::Construct(Type type, intptr_t value) {
uintptr_t info =
(static_cast<uintptr_t>(value) << kFailureTypeTagSize) | type;
ASSERT(((info << kFailureTagSize) >> kFailureTagSize) == info);
return reinterpret_cast<Failure*>((info << kFailureTagSize) | kFailureTag);
}
bool Smi::IsValid(intptr_t value) {
#ifdef DEBUG
bool in_range = (value >= kMinValue) && (value <= kMaxValue);
#endif
#ifdef V8_TARGET_ARCH_X64
// To be representable as a long smi, the value must be a 32-bit integer.
bool result = (value == static_cast<int32_t>(value));
#else
// To be representable as an tagged small integer, the two
// most-significant bits of 'value' must be either 00 or 11 due to
// sign-extension. To check this we add 01 to the two
// most-significant bits, and check if the most-significant bit is 0
//
// CAUTION: The original code below:
// bool result = ((value + 0x40000000) & 0x80000000) == 0;
// may lead to incorrect results according to the C language spec, and
// in fact doesn't work correctly with gcc4.1.1 in some cases: The
// compiler may produce undefined results in case of signed integer
// overflow. The computation must be done w/ unsigned ints.
bool result = (static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U);
#endif
ASSERT(result == in_range);
return result;
}
MapWord MapWord::FromMap(Map* map) {
return MapWord(reinterpret_cast<uintptr_t>(map));
}
Map* MapWord::ToMap() {
return reinterpret_cast<Map*>(value_);
}
bool MapWord::IsForwardingAddress() {
return HAS_SMI_TAG(reinterpret_cast<Object*>(value_));
}
MapWord MapWord::FromForwardingAddress(HeapObject* object) {
Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag;
return MapWord(reinterpret_cast<uintptr_t>(raw));
}
HeapObject* MapWord::ToForwardingAddress() {
ASSERT(IsForwardingAddress());
return HeapObject::FromAddress(reinterpret_cast<Address>(value_));
}
#ifdef DEBUG
void HeapObject::VerifyObjectField(int offset) {
VerifyPointer(READ_FIELD(this, offset));
}
void HeapObject::VerifySmiField(int offset) {
ASSERT(READ_FIELD(this, offset)->IsSmi());
}
#endif
Heap* HeapObject::GetHeap() {
Heap* heap =
MemoryChunk::FromAddress(reinterpret_cast<Address>(this))->heap();
ASSERT(heap != NULL);
ASSERT(heap->isolate() == Isolate::Current());
return heap;
}
Isolate* HeapObject::GetIsolate() {
return GetHeap()->isolate();
}
Map* HeapObject::map() {
return map_word().ToMap();
}
void HeapObject::set_map(Map* value) {
set_map_word(MapWord::FromMap(value));
if (value != NULL) {
// TODO(1600) We are passing NULL as a slot because maps can never be on
// evacuation candidate.
value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value);
}
}
// Unsafe accessor omitting write barrier.
void HeapObject::set_map_no_write_barrier(Map* value) {
set_map_word(MapWord::FromMap(value));
}
MapWord HeapObject::map_word() {
return MapWord(reinterpret_cast<uintptr_t>(READ_FIELD(this, kMapOffset)));
}
void HeapObject::set_map_word(MapWord map_word) {
// WRITE_FIELD does not invoke write barrier, but there is no need
// here.
WRITE_FIELD(this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
}
HeapObject* HeapObject::FromAddress(Address address) {
ASSERT_TAG_ALIGNED(address);
return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
}
Address HeapObject::address() {
return reinterpret_cast<Address>(this) - kHeapObjectTag;
}
int HeapObject::Size() {
return SizeFromMap(map());
}
void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) {
v->VisitPointers(reinterpret_cast<Object**>(FIELD_ADDR(this, start)),
reinterpret_cast<Object**>(FIELD_ADDR(this, end)));
}
void HeapObject::IteratePointer(ObjectVisitor* v, int offset) {
v->VisitPointer(reinterpret_cast<Object**>(FIELD_ADDR(this, offset)));
}
double HeapNumber::value() {
return READ_DOUBLE_FIELD(this, kValueOffset);
}
void HeapNumber::set_value(double value) {
WRITE_DOUBLE_FIELD(this, kValueOffset, value);
}
int HeapNumber::get_exponent() {
return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >>
kExponentShift) - kExponentBias;
}
int HeapNumber::get_sign() {
return READ_INT_FIELD(this, kExponentOffset) & kSignMask;
}
ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset)
Object** FixedArray::GetFirstElementAddress() {
return reinterpret_cast<Object**>(FIELD_ADDR(this, OffsetOfElementAt(0)));
}
bool FixedArray::ContainsOnlySmisOrHoles() {
Object* the_hole = GetHeap()->the_hole_value();
Object** current = GetFirstElementAddress();
for (int i = 0; i < length(); ++i) {
Object* candidate = *current++;
if (!candidate->IsSmi() && candidate != the_hole) return false;
}
return true;
}
FixedArrayBase* JSObject::elements() {
Object* array = READ_FIELD(this, kElementsOffset);
return static_cast<FixedArrayBase*>(array);
}
void JSObject::ValidateElements() {
#if DEBUG
if (FLAG_enable_slow_asserts) {
ElementsAccessor* accessor = GetElementsAccessor();
accessor->Validate(this);
}
#endif
}
MaybeObject* JSObject::EnsureCanContainHeapObjectElements() {
ValidateElements();
ElementsKind elements_kind = map()->elements_kind();
if (!IsFastObjectElementsKind(elements_kind)) {
if (IsFastHoleyElementsKind(elements_kind)) {
return TransitionElementsKind(FAST_HOLEY_ELEMENTS);
} else {
return TransitionElementsKind(FAST_ELEMENTS);
}
}
return this;
}
MaybeObject* JSObject::EnsureCanContainElements(Object** objects,
uint32_t count,
EnsureElementsMode mode) {
ElementsKind current_kind = map()->elements_kind();
ElementsKind target_kind = current_kind;
ASSERT(mode != ALLOW_COPIED_DOUBLE_ELEMENTS);
bool is_holey = IsFastHoleyElementsKind(current_kind);
if (current_kind == FAST_HOLEY_ELEMENTS) return this;
Heap* heap = GetHeap();
Object* the_hole = heap->the_hole_value();
for (uint32_t i = 0; i < count; ++i) {
Object* current = *objects++;
if (current == the_hole) {
is_holey = true;
target_kind = GetHoleyElementsKind(target_kind);
} else if (!current->IsSmi()) {
if (mode == ALLOW_CONVERTED_DOUBLE_ELEMENTS && current->IsNumber()) {
if (IsFastSmiElementsKind(target_kind)) {
if (is_holey) {
target_kind = FAST_HOLEY_DOUBLE_ELEMENTS;
} else {
target_kind = FAST_DOUBLE_ELEMENTS;
}
}
} else if (is_holey) {
target_kind = FAST_HOLEY_ELEMENTS;
break;
} else {
target_kind = FAST_ELEMENTS;
}
}
}
if (target_kind != current_kind) {
return TransitionElementsKind(target_kind);
}
return this;
}
MaybeObject* JSObject::EnsureCanContainElements(FixedArrayBase* elements,
uint32_t length,
EnsureElementsMode mode) {
if (elements->map() != GetHeap()->fixed_double_array_map()) {
ASSERT(elements->map() == GetHeap()->fixed_array_map() ||
elements->map() == GetHeap()->fixed_cow_array_map());
if (mode == ALLOW_COPIED_DOUBLE_ELEMENTS) {
mode = DONT_ALLOW_DOUBLE_ELEMENTS;
}
Object** objects = FixedArray::cast(elements)->GetFirstElementAddress();
return EnsureCanContainElements(objects, length, mode);
}
ASSERT(mode == ALLOW_COPIED_DOUBLE_ELEMENTS);
if (GetElementsKind() == FAST_HOLEY_SMI_ELEMENTS) {
return TransitionElementsKind(FAST_HOLEY_DOUBLE_ELEMENTS);
} else if (GetElementsKind() == FAST_SMI_ELEMENTS) {
FixedDoubleArray* double_array = FixedDoubleArray::cast(elements);
for (uint32_t i = 0; i < length; ++i) {
if (double_array->is_the_hole(i)) {
return TransitionElementsKind(FAST_HOLEY_DOUBLE_ELEMENTS);
}
}
return TransitionElementsKind(FAST_DOUBLE_ELEMENTS);
}
return this;
}
MaybeObject* JSObject::GetElementsTransitionMap(Isolate* isolate,
ElementsKind to_kind) {
Map* current_map = map();
ElementsKind from_kind = current_map->elements_kind();
if (from_kind == to_kind) return current_map;
Context* global_context = isolate->context()->global_context();
Object* maybe_array_maps = global_context->js_array_maps();
if (maybe_array_maps->IsFixedArray()) {
FixedArray* array_maps = FixedArray::cast(maybe_array_maps);
if (array_maps->get(from_kind) == current_map) {
Object* maybe_transitioned_map = array_maps->get(to_kind);
if (maybe_transitioned_map->IsMap()) {
return Map::cast(maybe_transitioned_map);
}
}
}
return GetElementsTransitionMapSlow(to_kind);
}
void JSObject::set_map_and_elements(Map* new_map,
FixedArrayBase* value,
WriteBarrierMode mode) {
ASSERT(value->HasValidElements());
if (new_map != NULL) {
if (mode == UPDATE_WRITE_BARRIER) {
set_map(new_map);
} else {
ASSERT(mode == SKIP_WRITE_BARRIER);
set_map_no_write_barrier(new_map);
}
}
ASSERT((map()->has_fast_smi_or_object_elements() ||
(value == GetHeap()->empty_fixed_array())) ==
(value->map() == GetHeap()->fixed_array_map() ||
value->map() == GetHeap()->fixed_cow_array_map()));
ASSERT((value == GetHeap()->empty_fixed_array()) ||
(map()->has_fast_double_elements() == value->IsFixedDoubleArray()));
WRITE_FIELD(this, kElementsOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, value, mode);
}
void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) {
set_map_and_elements(NULL, value, mode);
}
void JSObject::initialize_properties() {
ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array());
}
void JSObject::initialize_elements() {
ASSERT(map()->has_fast_smi_or_object_elements() ||
map()->has_fast_double_elements());
ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
WRITE_FIELD(this, kElementsOffset, GetHeap()->empty_fixed_array());
}
MaybeObject* JSObject::ResetElements() {
Object* obj;
ElementsKind elements_kind = GetInitialFastElementsKind();
if (!FLAG_smi_only_arrays) {
elements_kind = FastSmiToObjectElementsKind(elements_kind);
}
MaybeObject* maybe_obj = GetElementsTransitionMap(GetIsolate(),
elements_kind);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
set_map(Map::cast(obj));
initialize_elements();
return this;
}
ACCESSORS(Oddball, to_string, String, kToStringOffset)
ACCESSORS(Oddball, to_number, Object, kToNumberOffset)
byte Oddball::kind() {
return Smi::cast(READ_FIELD(this, kKindOffset))->value();
}
void Oddball::set_kind(byte value) {
WRITE_FIELD(this, kKindOffset, Smi::FromInt(value));
}
Object* JSGlobalPropertyCell::value() {
return READ_FIELD(this, kValueOffset);
}
void JSGlobalPropertyCell::set_value(Object* val, WriteBarrierMode ignored) {
// The write barrier is not used for global property cells.
ASSERT(!val->IsJSGlobalPropertyCell());
WRITE_FIELD(this, kValueOffset, val);
}
int JSObject::GetHeaderSize() {
InstanceType type = map()->instance_type();
// Check for the most common kind of JavaScript object before
// falling into the generic switch. This speeds up the internal
// field operations considerably on average.
if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize;
switch (type) {
case JS_MODULE_TYPE:
return JSModule::kSize;
case JS_GLOBAL_PROXY_TYPE:
return JSGlobalProxy::kSize;
case JS_GLOBAL_OBJECT_TYPE:
return JSGlobalObject::kSize;
case JS_BUILTINS_OBJECT_TYPE:
return JSBuiltinsObject::kSize;
case JS_FUNCTION_TYPE:
return JSFunction::kSize;
case JS_VALUE_TYPE:
return JSValue::kSize;
case JS_DATE_TYPE:
return JSDate::kSize;
case JS_ARRAY_TYPE:
return JSArray::kSize;
case JS_WEAK_MAP_TYPE:
return JSWeakMap::kSize;
case JS_REGEXP_TYPE:
return JSRegExp::kSize;
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
return JSObject::kHeaderSize;
case JS_MESSAGE_OBJECT_TYPE:
return JSMessageObject::kSize;
default:
UNREACHABLE();
return 0;
}
}
int JSObject::GetInternalFieldCount() {
ASSERT(1 << kPointerSizeLog2 == kPointerSize);
// Make sure to adjust for the number of in-object properties. These
// properties do contribute to the size, but are not internal fields.
return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) -
map()->inobject_properties();
}
int JSObject::GetInternalFieldOffset(int index) {
ASSERT(index < GetInternalFieldCount() && index >= 0);
return GetHeaderSize() + (kPointerSize * index);
}
Object* JSObject::GetInternalField(int index) {
ASSERT(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index));
}
void JSObject::SetInternalField(int index, Object* value) {
ASSERT(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
int offset = GetHeaderSize() + (kPointerSize * index);
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(GetHeap(), this, offset, value);
}
void JSObject::SetInternalField(int index, Smi* value) {
ASSERT(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
int offset = GetHeaderSize() + (kPointerSize * index);
WRITE_FIELD(this, offset, value);
}
// Access fast-case object properties at index. The use of these routines
// is needed to correctly distinguish between properties stored in-object and
// properties stored in the properties array.
Object* JSObject::FastPropertyAt(int index) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
if (index < 0) {
int offset = map()->instance_size() + (index * kPointerSize);
return READ_FIELD(this, offset);
} else {
ASSERT(index < properties()->length());
return properties()->get(index);
}
}
Object* JSObject::FastPropertyAtPut(int index, Object* value) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
if (index < 0) {
int offset = map()->instance_size() + (index * kPointerSize);
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(GetHeap(), this, offset, value);
} else {
ASSERT(index < properties()->length());
properties()->set(index, value);
}
return value;
}
int JSObject::GetInObjectPropertyOffset(int index) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
ASSERT(index < 0);
return map()->instance_size() + (index * kPointerSize);
}
Object* JSObject::InObjectPropertyAt(int index) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
ASSERT(index < 0);
int offset = map()->instance_size() + (index * kPointerSize);
return READ_FIELD(this, offset);
}
Object* JSObject::InObjectPropertyAtPut(int index,
Object* value,
WriteBarrierMode mode) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
ASSERT(index < 0);
int offset = map()->instance_size() + (index * kPointerSize);
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);
return value;
}
void JSObject::InitializeBody(Map* map,
Object* pre_allocated_value,
Object* filler_value) {
ASSERT(!filler_value->IsHeapObject() ||
!GetHeap()->InNewSpace(filler_value));
ASSERT(!pre_allocated_value->IsHeapObject() ||
!GetHeap()->InNewSpace(pre_allocated_value));
int size = map->instance_size();
int offset = kHeaderSize;
if (filler_value != pre_allocated_value) {
int pre_allocated = map->pre_allocated_property_fields();
ASSERT(pre_allocated * kPointerSize + kHeaderSize <= size);
for (int i = 0; i < pre_allocated; i++) {
WRITE_FIELD(this, offset, pre_allocated_value);
offset += kPointerSize;
}
}
while (offset < size) {
WRITE_FIELD(this, offset, filler_value);
offset += kPointerSize;
}
}
bool JSObject::HasFastProperties() {
return !properties()->IsDictionary();
}
bool JSObject::TooManyFastProperties(int properties,
JSObject::StoreFromKeyed store_mode) {
// Allow extra fast properties if the object has more than
// kFastPropertiesSoftLimit in-object properties. When this is the case,
// it is very unlikely that the object is being used as a dictionary
// and there is a good chance that allowing more map transitions
// will be worth it.
int inobject = map()->inobject_properties();
int limit;
if (store_mode == CERTAINLY_NOT_STORE_FROM_KEYED) {
limit = Max(inobject, kMaxFastProperties);
} else {
limit = Max(inobject, kFastPropertiesSoftLimit);
}
return properties > limit;
}
void Struct::InitializeBody(int object_size) {
Object* value = GetHeap()->undefined_value();
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
WRITE_FIELD(this, offset, value);
}
}
bool Object::ToArrayIndex(uint32_t* index) {
if (IsSmi()) {
int value = Smi::cast(this)->value();
if (value < 0) return false;
*index = value;
return true;
}
if (IsHeapNumber()) {
double value = HeapNumber::cast(this)->value();
uint32_t uint_value = static_cast<uint32_t>(value);
if (value == static_cast<double>(uint_value)) {
*index = uint_value;
return true;
}
}
return false;
}
bool Object::IsStringObjectWithCharacterAt(uint32_t index) {
if (!this->IsJSValue()) return false;
JSValue* js_value = JSValue::cast(this);
if (!js_value->value()->IsString()) return false;
String* str = String::cast(js_value->value());
if (index >= (uint32_t)str->length()) return false;
return true;
}
FixedArrayBase* FixedArrayBase::cast(Object* object) {
ASSERT(object->IsFixedArray() || object->IsFixedDoubleArray());
return reinterpret_cast<FixedArrayBase*>(object);
}
Object* FixedArray::get(int index) {
ASSERT(index >= 0 && index < this->length());
return READ_FIELD(this, kHeaderSize + index * kPointerSize);
}
bool FixedArray::is_the_hole(int index) {
return get(index) == GetHeap()->the_hole_value();
}
void FixedArray::set(int index, Smi* value) {
ASSERT(map() != HEAP->fixed_cow_array_map());
ASSERT(index >= 0 && index < this->length());
ASSERT(reinterpret_cast<Object*>(value)->IsSmi());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
}
void FixedArray::set(int index, Object* value) {
ASSERT(map() != HEAP->fixed_cow_array_map());
ASSERT(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(GetHeap(), this, offset, value);
}
inline bool FixedDoubleArray::is_the_hole_nan(double value) {
return BitCast<uint64_t, double>(value) == kHoleNanInt64;
}
inline double FixedDoubleArray::hole_nan_as_double() {
return BitCast<double, uint64_t>(kHoleNanInt64);
}
inline double FixedDoubleArray::canonical_not_the_hole_nan_as_double() {
ASSERT(BitCast<uint64_t>(OS::nan_value()) != kHoleNanInt64);
ASSERT((BitCast<uint64_t>(OS::nan_value()) >> 32) != kHoleNanUpper32);
return OS::nan_value();
}
double FixedDoubleArray::get_scalar(int index) {
ASSERT(map() != HEAP->fixed_cow_array_map() &&
map() != HEAP->fixed_array_map());
ASSERT(index >= 0 && index < this->length());
double result = READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize);
ASSERT(!is_the_hole_nan(result));
return result;
}
int64_t FixedDoubleArray::get_representation(int index) {
ASSERT(map() != HEAP->fixed_cow_array_map() &&
map() != HEAP->fixed_array_map());
ASSERT(index >= 0 && index < this->length());
return READ_INT64_FIELD(this, kHeaderSize + index * kDoubleSize);
}
MaybeObject* FixedDoubleArray::get(int index) {
if (is_the_hole(index)) {
return GetHeap()->the_hole_value();
} else {
return GetHeap()->NumberFromDouble(get_scalar(index));
}
}
void FixedDoubleArray::set(int index, double value) {
ASSERT(map() != HEAP->fixed_cow_array_map() &&
map() != HEAP->fixed_array_map());
int offset = kHeaderSize + index * kDoubleSize;
if (isnan(value)) value = canonical_not_the_hole_nan_as_double();
WRITE_DOUBLE_FIELD(this, offset, value);
}
void FixedDoubleArray::set_the_hole(int index) {
ASSERT(map() != HEAP->fixed_cow_array_map() &&
map() != HEAP->fixed_array_map());
int offset = kHeaderSize + index * kDoubleSize;
WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double());
}
bool FixedDoubleArray::is_the_hole(int index) {
int offset = kHeaderSize + index * kDoubleSize;
return is_the_hole_nan(READ_DOUBLE_FIELD(this, offset));
}
WriteBarrierMode HeapObject::GetWriteBarrierMode(const AssertNoAllocation&) {
Heap* heap = GetHeap();
if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER;
if (heap->InNewSpace(this)) return SKIP_WRITE_BARRIER;
return UPDATE_WRITE_BARRIER;
}
void FixedArray::set(int index,
Object* value,
WriteBarrierMode mode) {
ASSERT(map() != HEAP->fixed_cow_array_map());
ASSERT(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);
}
void FixedArray::NoIncrementalWriteBarrierSet(FixedArray* array,
int index,
Object* value) {
ASSERT(array->map() != HEAP->raw_unchecked_fixed_cow_array_map());
ASSERT(index >= 0 && index < array->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(array, offset, value);
Heap* heap = array->GetHeap();
if (heap->InNewSpace(value)) {
heap->RecordWrite(array->address(), offset);
}
}
void FixedArray::NoWriteBarrierSet(FixedArray* array,
int index,
Object* value) {
ASSERT(array->map() != HEAP->raw_unchecked_fixed_cow_array_map());
ASSERT(index >= 0 && index < array->length());
ASSERT(!HEAP->InNewSpace(value));
WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value);
}
void FixedArray::set_undefined(int index) {
ASSERT(map() != HEAP->fixed_cow_array_map());
set_undefined(GetHeap(), index);
}
void FixedArray::set_undefined(Heap* heap, int index) {
ASSERT(index >= 0 && index < this->length());
ASSERT(!heap->InNewSpace(heap->undefined_value()));
WRITE_FIELD(this, kHeaderSize + index * kPointerSize,
heap->undefined_value());
}
void FixedArray::set_null(int index) {
set_null(GetHeap(), index);
}
void FixedArray::set_null(Heap* heap, int index) {
ASSERT(index >= 0 && index < this->length());
ASSERT(!heap->InNewSpace(heap->null_value()));
WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value());
}
void FixedArray::set_the_hole(int index) {
ASSERT(map() != HEAP->fixed_cow_array_map());
ASSERT(index >= 0 && index < this->length());
ASSERT(!HEAP->InNewSpace(HEAP->the_hole_value()));
WRITE_FIELD(this,
kHeaderSize + index * kPointerSize,
GetHeap()->the_hole_value());
}
void FixedArray::set_unchecked(int index, Smi* value) {
ASSERT(reinterpret_cast<Object*>(value)->IsSmi());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
}
void FixedArray::set_unchecked(Heap* heap,
int index,
Object* value,
WriteBarrierMode mode) {
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(heap, this, offset, value, mode);
}
void FixedArray::set_null_unchecked(Heap* heap, int index) {
ASSERT(index >= 0 && index < this->length());
ASSERT(!heap->InNewSpace(heap->null_value()));
WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value());
}
Object** FixedArray::data_start() {
return HeapObject::RawField(this, kHeaderSize);
}
bool DescriptorArray::IsEmpty() {
ASSERT(length() >= kFirstIndex ||
this == HEAP->empty_descriptor_array());
return length() < kFirstIndex;
}
bool DescriptorArray::MayContainTransitions() {
return !IsEmpty();
}
bool DescriptorArray::HasTransitionArray() {
return MayContainTransitions() && !get(kTransitionsIndex)->IsSmi();
}
Object* DescriptorArray::back_pointer_storage() {
return READ_FIELD(this, kBackPointerStorageOffset);
}
void DescriptorArray::set_back_pointer_storage(Object* value,
WriteBarrierMode mode) {
ASSERT(length() > kBackPointerStorageIndex);
Heap* heap = GetHeap();
WRITE_FIELD(this, kBackPointerStorageOffset, value);
CONDITIONAL_WRITE_BARRIER(heap, this, kBackPointerStorageOffset, value, mode);
}
void DescriptorArray::NoIncrementalWriteBarrierSwap(FixedArray* array,
int first,
int second) {
Object* tmp = array->get(first);
NoIncrementalWriteBarrierSet(array, first, array->get(second));
NoIncrementalWriteBarrierSet(array, second, tmp);
}
// Perform a binary search in a fixed array. Low and high are entry indices. If
// there are three entries in this array it should be called with low=0 and
// high=2.
template<typename T>
int BinarySearch(T* array, String* name, int low, int high) {
uint32_t hash = name->Hash();
int limit = high;
ASSERT(low <= high);
while (low != high) {
int mid = (low + high) / 2;
String* mid_name = array->GetKey(mid);
uint32_t mid_hash = mid_name->Hash();
if (mid_hash >= hash) {
high = mid;
} else {
low = mid + 1;
}
}
for (; low <= limit && array->GetKey(low)->Hash() == hash; ++low) {
if (array->GetKey(low)->Equals(name)) return low;
}
return T::kNotFound;
}
// Perform a linear search in this fixed array. len is the number of entry
// indices that are valid.
template<typename T>
int LinearSearch(T* array, SearchMode mode, String* name, int len) {
uint32_t hash = name->Hash();
for (int number = 0; number < len; number++) {
String* entry = array->GetKey(number);
uint32_t current_hash = entry->Hash();
if (mode == EXPECT_SORTED && current_hash > hash) break;
if (current_hash == hash && name->Equals(entry)) return number;
}
return T::kNotFound;
}
template<typename T>
int Search(T* array, String* name) {
SLOW_ASSERT(array->IsSortedNoDuplicates());
// Check for empty descriptor array.
int nof = array->number_of_entries();
if (nof == 0) return T::kNotFound;
// Fast case: do linear search for small arrays.
const int kMaxElementsForLinearSearch = 8;
if (StringShape(name).IsSymbol() && nof < kMaxElementsForLinearSearch) {
return LinearSearch(array, EXPECT_SORTED, name, nof);
}
// Slow case: perform binary search.
return BinarySearch(array, name, 0, nof - 1);
}
int DescriptorArray::Search(String* name) {
return internal::Search(this, name);
}
int DescriptorArray::SearchWithCache(String* name) {
DescriptorLookupCache* cache = GetIsolate()->descriptor_lookup_cache();
int number = cache->Lookup(this, name);
if (number == DescriptorLookupCache::kAbsent) {
number = internal::Search(this, name);
cache->Update(this, name, number);
}
return number;
}
TransitionArray* DescriptorArray::transitions() {
ASSERT(MayContainTransitions());
Object* array = get(kTransitionsIndex);
return TransitionArray::cast(array);
}
void DescriptorArray::ClearTransitions() {
WRITE_FIELD(this, kTransitionsOffset, Smi::FromInt(0));
}
void DescriptorArray::set_transitions(TransitionArray* transitions_array,
WriteBarrierMode mode) {
Heap* heap = GetHeap();
WRITE_FIELD(this, kTransitionsOffset, transitions_array);
CONDITIONAL_WRITE_BARRIER(
heap, this, kTransitionsOffset, transitions_array, mode);
}
Object** DescriptorArray::GetKeySlot(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
return HeapObject::RawField(
reinterpret_cast<HeapObject*>(this),
OffsetOfElementAt(ToKeyIndex(descriptor_number)));
}
String* DescriptorArray::GetKey(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
return String::cast(get(ToKeyIndex(descriptor_number)));
}
Object** DescriptorArray::GetValueSlot(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
return HeapObject::RawField(
reinterpret_cast<HeapObject*>(this),
OffsetOfElementAt(ToValueIndex(descriptor_number)));
}
Object* DescriptorArray::GetValue(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
return get(ToValueIndex(descriptor_number));
}
PropertyDetails DescriptorArray::GetDetails(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
Object* details = get(ToDetailsIndex(descriptor_number));
return PropertyDetails(Smi::cast(details));
}
PropertyType DescriptorArray::GetType(int descriptor_number) {
return GetDetails(descriptor_number).type();
}
int DescriptorArray::GetFieldIndex(int descriptor_number) {
return Descriptor::IndexFromValue(GetValue(descriptor_number));
}
JSFunction* DescriptorArray::GetConstantFunction(int descriptor_number) {
return JSFunction::cast(GetValue(descriptor_number));
}
Object* DescriptorArray::GetCallbacksObject(int descriptor_number) {
ASSERT(GetType(descriptor_number) == CALLBACKS);
return GetValue(descriptor_number);
}
AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) {
ASSERT(GetType(descriptor_number) == CALLBACKS);
Foreign* p = Foreign::cast(GetCallbacksObject(descriptor_number));
return reinterpret_cast<AccessorDescriptor*>(p->foreign_address());
}
void DescriptorArray::Get(int descriptor_number, Descriptor* desc) {
desc->Init(GetKey(descriptor_number),
GetValue(descriptor_number),
GetDetails(descriptor_number));
}
void DescriptorArray::Set(int descriptor_number,
Descriptor* desc,
const WhitenessWitness&) {
// Range check.
ASSERT(descriptor_number < number_of_descriptors());
ASSERT(desc->GetDetails().index() <= number_of_descriptors());
ASSERT(desc->GetDetails().index() > 0);
NoIncrementalWriteBarrierSet(this,
ToKeyIndex(descriptor_number),
desc->GetKey());
NoIncrementalWriteBarrierSet(this,
ToValueIndex(descriptor_number),
desc->GetValue());
NoIncrementalWriteBarrierSet(this,
ToDetailsIndex(descriptor_number),
desc->GetDetails().AsSmi());
}
void DescriptorArray::Append(Descriptor* desc,
const WhitenessWitness& witness) {
int descriptor_number = NumberOfSetDescriptors();
int enumeration_index = descriptor_number + 1;
desc->SetEnumerationIndex(enumeration_index);
Set(descriptor_number, desc, witness);
SetLastAdded(descriptor_number);
}
void DescriptorArray::NoIncrementalWriteBarrierSwapDescriptors(
int first, int second) {
NoIncrementalWriteBarrierSwap(this, ToKeyIndex(first), ToKeyIndex(second));
NoIncrementalWriteBarrierSwap(this,
ToValueIndex(first),
ToValueIndex(second));
NoIncrementalWriteBarrierSwap(this,
ToDetailsIndex(first),
ToDetailsIndex(second));
}
FixedArray::WhitenessWitness::WhitenessWitness(FixedArray* array)
: marking_(array->GetHeap()->incremental_marking()) {
marking_->EnterNoMarkingScope();
ASSERT(Marking::Color(array) == Marking::WHITE_OBJECT);
}
FixedArray::WhitenessWitness::~WhitenessWitness() {
marking_->LeaveNoMarkingScope();
}
template<typename Shape, typename Key>
int HashTable<Shape, Key>::ComputeCapacity(int at_least_space_for) {
const int kMinCapacity = 32;
int capacity = RoundUpToPowerOf2(at_least_space_for * 2);
if (capacity < kMinCapacity) {
capacity = kMinCapacity; // Guarantee min capacity.
}
return capacity;
}
template<typename Shape, typename Key>
int HashTable<Shape, Key>::FindEntry(Key key) {
return FindEntry(GetIsolate(), key);
}
// Find entry for key otherwise return kNotFound.
template<typename Shape, typename Key>
int HashTable<Shape, Key>::FindEntry(Isolate* isolate, Key key) {
uint32_t capacity = Capacity();
uint32_t entry = FirstProbe(HashTable<Shape, Key>::Hash(key), capacity);
uint32_t count = 1;
// EnsureCapacity will guarantee the hash table is never full.
while (true) {
Object* element = KeyAt(entry);
// Empty entry.
if (element == isolate->heap()->raw_unchecked_undefined_value()) break;
if (element != isolate->heap()->raw_unchecked_the_hole_value() &&
Shape::IsMatch(key, element)) return entry;
entry = NextProbe(entry, count++, capacity);
}
return kNotFound;
}
bool SeededNumberDictionary::requires_slow_elements() {
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return false;
return 0 !=
(Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask);
}
uint32_t SeededNumberDictionary::max_number_key() {
ASSERT(!requires_slow_elements());
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return 0;
uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value());
return value >> kRequiresSlowElementsTagSize;
}
void SeededNumberDictionary::set_requires_slow_elements() {
set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask));
}
// ------------------------------------
// Cast operations
CAST_ACCESSOR(FixedArray)
CAST_ACCESSOR(FixedDoubleArray)
CAST_ACCESSOR(DescriptorArray)
CAST_ACCESSOR(DeoptimizationInputData)
CAST_ACCESSOR(DeoptimizationOutputData)
CAST_ACCESSOR(TypeFeedbackCells)
CAST_ACCESSOR(SymbolTable)
CAST_ACCESSOR(JSFunctionResultCache)
CAST_ACCESSOR(NormalizedMapCache)
CAST_ACCESSOR(ScopeInfo)
CAST_ACCESSOR(CompilationCacheTable)
CAST_ACCESSOR(CodeCacheHashTable)
CAST_ACCESSOR(PolymorphicCodeCacheHashTable)
CAST_ACCESSOR(MapCache)
CAST_ACCESSOR(String)
CAST_ACCESSOR(SeqString)
CAST_ACCESSOR(SeqAsciiString)
CAST_ACCESSOR(SeqTwoByteString)
CAST_ACCESSOR(SlicedString)
CAST_ACCESSOR(ConsString)
CAST_ACCESSOR(ExternalString)
CAST_ACCESSOR(ExternalAsciiString)
CAST_ACCESSOR(ExternalTwoByteString)
CAST_ACCESSOR(JSReceiver)
CAST_ACCESSOR(JSObject)
CAST_ACCESSOR(Smi)
CAST_ACCESSOR(HeapObject)
CAST_ACCESSOR(HeapNumber)
CAST_ACCESSOR(Oddball)
CAST_ACCESSOR(JSGlobalPropertyCell)
CAST_ACCESSOR(SharedFunctionInfo)
CAST_ACCESSOR(Map)
CAST_ACCESSOR(JSFunction)
CAST_ACCESSOR(GlobalObject)
CAST_ACCESSOR(JSGlobalProxy)
CAST_ACCESSOR(JSGlobalObject)
CAST_ACCESSOR(JSBuiltinsObject)
CAST_ACCESSOR(Code)
CAST_ACCESSOR(JSArray)
CAST_ACCESSOR(JSRegExp)
CAST_ACCESSOR(JSProxy)
CAST_ACCESSOR(JSFunctionProxy)
CAST_ACCESSOR(JSSet)
CAST_ACCESSOR(JSMap)
CAST_ACCESSOR(JSWeakMap)
CAST_ACCESSOR(Foreign)
CAST_ACCESSOR(ByteArray)
CAST_ACCESSOR(FreeSpace)
CAST_ACCESSOR(ExternalArray)
CAST_ACCESSOR(ExternalByteArray)
CAST_ACCESSOR(ExternalUnsignedByteArray)
CAST_ACCESSOR(ExternalShortArray)
CAST_ACCESSOR(ExternalUnsignedShortArray)
CAST_ACCESSOR(ExternalIntArray)
CAST_ACCESSOR(ExternalUnsignedIntArray)
CAST_ACCESSOR(ExternalFloatArray)
CAST_ACCESSOR(ExternalDoubleArray)
CAST_ACCESSOR(ExternalPixelArray)
CAST_ACCESSOR(Struct)
#define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name)
STRUCT_LIST(MAKE_STRUCT_CAST)
#undef MAKE_STRUCT_CAST
template <typename Shape, typename Key>
HashTable<Shape, Key>* HashTable<Shape, Key>::cast(Object* obj) {
ASSERT(obj->IsHashTable());
return reinterpret_cast<HashTable*>(obj);
}
SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
SMI_ACCESSORS(FreeSpace, size, kSizeOffset)
SMI_ACCESSORS(String, length, kLengthOffset)
uint32_t String::hash_field() {
return READ_UINT32_FIELD(this, kHashFieldOffset);
}
void String::set_hash_field(uint32_t value) {
WRITE_UINT32_FIELD(this, kHashFieldOffset, value);
#if V8_HOST_ARCH_64_BIT
WRITE_UINT32_FIELD(this, kHashFieldOffset + kIntSize, 0);
#endif
}
bool String::Equals(String* other) {
if (other == this) return true;
if (StringShape(this).IsSymbol() && StringShape(other).IsSymbol()) {
return false;
}
return SlowEquals(other);
}
MaybeObject* String::TryFlatten(PretenureFlag pretenure) {
if (!StringShape(this).IsCons()) return this;
ConsString* cons = ConsString::cast(this);
if (cons->IsFlat()) return cons->first();
return SlowTryFlatten(pretenure);
}
String* String::TryFlattenGetString(PretenureFlag pretenure) {
MaybeObject* flat = TryFlatten(pretenure);
Object* successfully_flattened;
if (!flat->ToObject(&successfully_flattened)) return this;
return String::cast(successfully_flattened);
}
uint16_t String::Get(int index) {
ASSERT(index >= 0 && index < length());
switch (StringShape(this).full_representation_tag()) {
case kSeqStringTag | kAsciiStringTag:
return SeqAsciiString::cast(this)->SeqAsciiStringGet(index);
case kSeqStringTag | kTwoByteStringTag:
return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index);
case kConsStringTag | kAsciiStringTag:
case kConsStringTag | kTwoByteStringTag:
return ConsString::cast(this)->ConsStringGet(index);
case kExternalStringTag | kAsciiStringTag:
return ExternalAsciiString::cast(this)->ExternalAsciiStringGet(index);
case kExternalStringTag | kTwoByteStringTag:
return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index);
case kSlicedStringTag | kAsciiStringTag:
case kSlicedStringTag | kTwoByteStringTag:
return SlicedString::cast(this)->SlicedStringGet(index);
default:
break;
}
UNREACHABLE();
return 0;
}
void String::Set(int index, uint16_t value) {
ASSERT(index >= 0 && index < length());
ASSERT(StringShape(this).IsSequential());
return this->IsAsciiRepresentation()
? SeqAsciiString::cast(this)->SeqAsciiStringSet(index, value)
: SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value);
}
bool String::IsFlat() {
if (!StringShape(this).IsCons()) return true;
return ConsString::cast(this)->second()->length() == 0;
}
String* String::GetUnderlying() {
// Giving direct access to underlying string only makes sense if the
// wrapping string is already flattened.
ASSERT(this->IsFlat());
ASSERT(StringShape(this).IsIndirect());
STATIC_ASSERT(ConsString::kFirstOffset == SlicedString::kParentOffset);
const int kUnderlyingOffset = SlicedString::kParentOffset;
return String::cast(READ_FIELD(this, kUnderlyingOffset));
}
uint16_t SeqAsciiString::SeqAsciiStringGet(int index) {
ASSERT(index >= 0 && index < length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void SeqAsciiString::SeqAsciiStringSet(int index, uint16_t value) {
ASSERT(index >= 0 && index < length() && value <= kMaxAsciiCharCode);
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize,
static_cast<byte>(value));
}
Address SeqAsciiString::GetCharsAddress() {
return FIELD_ADDR(this, kHeaderSize);
}
char* SeqAsciiString::GetChars() {
return reinterpret_cast<char*>(GetCharsAddress());
}
Address SeqTwoByteString::GetCharsAddress() {
return FIELD_ADDR(this, kHeaderSize);
}
uc16* SeqTwoByteString::GetChars() {
return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize));
}
uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) {
ASSERT(index >= 0 && index < length());
return READ_SHORT_FIELD(this, kHeaderSize + index * kShortSize);
}
void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
ASSERT(index >= 0 && index < length());
WRITE_SHORT_FIELD(this, kHeaderSize + index * kShortSize, value);
}
int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) {
return SizeFor(length());
}
int SeqAsciiString::SeqAsciiStringSize(InstanceType instance_type) {
return SizeFor(length());
}
String* SlicedString::parent() {
return String::cast(READ_FIELD(this, kParentOffset));
}
void SlicedString::set_parent(String* parent) {
ASSERT(parent->IsSeqString() || parent->IsExternalString());
WRITE_FIELD(this, kParentOffset, parent);
}
SMI_ACCESSORS(SlicedString, offset, kOffsetOffset)
String* ConsString::first() {
return String::cast(READ_FIELD(this, kFirstOffset));
}
Object* ConsString::unchecked_first() {
return READ_FIELD(this, kFirstOffset);
}
void ConsString::set_first(String* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kFirstOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, value, mode);
}
String* ConsString::second() {
return String::cast(READ_FIELD(this, kSecondOffset));
}
Object* ConsString::unchecked_second() {
return READ_FIELD(this, kSecondOffset);
}
void ConsString::set_second(String* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kSecondOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, value, mode);
}
bool ExternalString::is_short() {
InstanceType type = map()->instance_type();
return (type & kShortExternalStringMask) == kShortExternalStringTag;
}
const ExternalAsciiString::Resource* ExternalAsciiString::resource() {
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}
void ExternalAsciiString::update_data_cache() {
if (is_short()) return;
const char** data_field =
reinterpret_cast<const char**>(FIELD_ADDR(this, kResourceDataOffset));
*data_field = resource()->data();
}
void ExternalAsciiString::set_resource(
const ExternalAsciiString::Resource* resource) {
*reinterpret_cast<const Resource**>(
FIELD_ADDR(this, kResourceOffset)) = resource;
if (resource != NULL) update_data_cache();
}
const char* ExternalAsciiString::GetChars() {
return resource()->data();
}
uint16_t ExternalAsciiString::ExternalAsciiStringGet(int index) {
ASSERT(index >= 0 && index < length());
return GetChars()[index];
}
const ExternalTwoByteString::Resource* ExternalTwoByteString::resource() {
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}
void ExternalTwoByteString::update_data_cache() {
if (is_short()) return;
const uint16_t** data_field =
reinterpret_cast<const uint16_t**>(FIELD_ADDR(this, kResourceDataOffset));
*data_field = resource()->data();
}
void ExternalTwoByteString::set_resource(
const ExternalTwoByteString::Resource* resource) {
*reinterpret_cast<const Resource**>(
FIELD_ADDR(this, kResourceOffset)) = resource;
if (resource != NULL) update_data_cache();
}
const uint16_t* ExternalTwoByteString::GetChars() {
return resource()->data();
}
uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) {
ASSERT(index >= 0 && index < length());
return GetChars()[index];
}
const uint16_t* ExternalTwoByteString::ExternalTwoByteStringGetData(
unsigned start) {
return GetChars() + start;
}
void JSFunctionResultCache::MakeZeroSize() {
set_finger_index(kEntriesIndex);
set_size(kEntriesIndex);
}
void JSFunctionResultCache::Clear() {
int cache_size = size();
Object** entries_start = RawField(this, OffsetOfElementAt(kEntriesIndex));
MemsetPointer(entries_start,
GetHeap()->the_hole_value(),
cache_size - kEntriesIndex);
MakeZeroSize();
}
int JSFunctionResultCache::size() {
return Smi::cast(get(kCacheSizeIndex))->value();
}
void JSFunctionResultCache::set_size(int size) {
set(kCacheSizeIndex, Smi::FromInt(size));
}
int JSFunctionResultCache::finger_index() {
return Smi::cast(get(kFingerIndex))->value();
}
void JSFunctionResultCache::set_finger_index(int finger_index) {
set(kFingerIndex, Smi::FromInt(finger_index));
}
byte ByteArray::get(int index) {
ASSERT(index >= 0 && index < this->length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void ByteArray::set(int index, byte value) {
ASSERT(index >= 0 && index < this->length());
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
}
int ByteArray::get_int(int index) {
ASSERT(index >= 0 && (index * kIntSize) < this->length());
return READ_INT_FIELD(this, kHeaderSize + index * kIntSize);
}
ByteArray* ByteArray::FromDataStartAddress(Address address) {
ASSERT_TAG_ALIGNED(address);
return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag);
}
Address ByteArray::GetDataStartAddress() {
return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
}
uint8_t* ExternalPixelArray::external_pixel_pointer() {
return reinterpret_cast<uint8_t*>(external_pointer());
}
uint8_t ExternalPixelArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
uint8_t* ptr = external_pixel_pointer();
return ptr[index];
}
MaybeObject* ExternalPixelArray::get(int index) {
return Smi::FromInt(static_cast<int>(get_scalar(index)));
}
void ExternalPixelArray::set(int index, uint8_t value) {
ASSERT((index >= 0) && (index < this->length()));
uint8_t* ptr = external_pixel_pointer();
ptr[index] = value;
}
void* ExternalArray::external_pointer() {
intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset);
return reinterpret_cast<void*>(ptr);
}
void ExternalArray::set_external_pointer(void* value, WriteBarrierMode mode) {
intptr_t ptr = reinterpret_cast<intptr_t>(value);
WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr);
}
int8_t ExternalByteArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
int8_t* ptr = static_cast<int8_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalByteArray::get(int index) {
return Smi::FromInt(static_cast<int>(get_scalar(index)));
}
void ExternalByteArray::set(int index, int8_t value) {
ASSERT((index >= 0) && (index < this->length()));
int8_t* ptr = static_cast<int8_t*>(external_pointer());
ptr[index] = value;
}
uint8_t ExternalUnsignedByteArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalUnsignedByteArray::get(int index) {
return Smi::FromInt(static_cast<int>(get_scalar(index)));
}
void ExternalUnsignedByteArray::set(int index, uint8_t value) {
ASSERT((index >= 0) && (index < this->length()));
uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
ptr[index] = value;
}
int16_t ExternalShortArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
int16_t* ptr = static_cast<int16_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalShortArray::get(int index) {
return Smi::FromInt(static_cast<int>(get_scalar(index)));
}
void ExternalShortArray::set(int index, int16_t value) {
ASSERT((index >= 0) && (index < this->length()));
int16_t* ptr = static_cast<int16_t*>(external_pointer());
ptr[index] = value;
}
uint16_t ExternalUnsignedShortArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalUnsignedShortArray::get(int index) {
return Smi::FromInt(static_cast<int>(get_scalar(index)));
}
void ExternalUnsignedShortArray::set(int index, uint16_t value) {
ASSERT((index >= 0) && (index < this->length()));
uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
ptr[index] = value;
}
int32_t ExternalIntArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
int32_t* ptr = static_cast<int32_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalIntArray::get(int index) {
return GetHeap()->NumberFromInt32(get_scalar(index));
}
void ExternalIntArray::set(int index, int32_t value) {
ASSERT((index >= 0) && (index < this->length()));
int32_t* ptr = static_cast<int32_t*>(external_pointer());
ptr[index] = value;
}
uint32_t ExternalUnsignedIntArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalUnsignedIntArray::get(int index) {
return GetHeap()->NumberFromUint32(get_scalar(index));
}
void ExternalUnsignedIntArray::set(int index, uint32_t value) {
ASSERT((index >= 0) && (index < this->length()));
uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
ptr[index] = value;
}
float ExternalFloatArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
float* ptr = static_cast<float*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalFloatArray::get(int index) {
return GetHeap()->NumberFromDouble(get_scalar(index));
}
void ExternalFloatArray::set(int index, float value) {
ASSERT((index >= 0) && (index < this->length()));
float* ptr = static_cast<float*>(external_pointer());
ptr[index] = value;
}
double ExternalDoubleArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
double* ptr = static_cast<double*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalDoubleArray::get(int index) {
return GetHeap()->NumberFromDouble(get_scalar(index));
}
void ExternalDoubleArray::set(int index, double value) {
ASSERT((index >= 0) && (index < this->length()));
double* ptr = static_cast<double*>(external_pointer());
ptr[index] = value;
}
int Map::visitor_id() {
return READ_BYTE_FIELD(this, kVisitorIdOffset);
}
void Map::set_visitor_id(int id) {
ASSERT(0 <= id && id < 256);
WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast<byte>(id));
}
int Map::instance_size() {
return READ_BYTE_FIELD(this, kInstanceSizeOffset) << kPointerSizeLog2;
}
int Map::inobject_properties() {
return READ_BYTE_FIELD(this, kInObjectPropertiesOffset);
}
int Map::pre_allocated_property_fields() {
return READ_BYTE_FIELD(this, kPreAllocatedPropertyFieldsOffset);
}
int HeapObject::SizeFromMap(Map* map) {
int instance_size = map->instance_size();
if (instance_size != kVariableSizeSentinel) return instance_size;
// We can ignore the "symbol" bit becase it is only set for symbols
// and implies a string type.
int instance_type = static_cast<int>(map->instance_type()) & ~kIsSymbolMask;
// Only inline the most frequent cases.
if (instance_type == FIXED_ARRAY_TYPE) {
return FixedArray::BodyDescriptor::SizeOf(map, this);
}
if (instance_type == ASCII_STRING_TYPE) {
return SeqAsciiString::SizeFor(
reinterpret_cast<SeqAsciiString*>(this)->length());
}
if (instance_type == BYTE_ARRAY_TYPE) {
return reinterpret_cast<ByteArray*>(this)->ByteArraySize();
}
if (instance_type == FREE_SPACE_TYPE) {
return reinterpret_cast<FreeSpace*>(this)->size();
}
if (instance_type == STRING_TYPE) {
return SeqTwoByteString::SizeFor(
reinterpret_cast<SeqTwoByteString*>(this)->length());
}
if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) {
return FixedDoubleArray::SizeFor(
reinterpret_cast<FixedDoubleArray*>(this)->length());
}
ASSERT(instance_type == CODE_TYPE);
return reinterpret_cast<Code*>(this)->CodeSize();
}
void Map::set_instance_size(int value) {
ASSERT_EQ(0, value & (kPointerSize - 1));
value >>= kPointerSizeLog2;
ASSERT(0 <= value && value < 256);
WRITE_BYTE_FIELD(this, kInstanceSizeOffset, static_cast<byte>(value));
}
void Map::set_inobject_properties(int value) {
ASSERT(0 <= value && value < 256);
WRITE_BYTE_FIELD(this, kInObjectPropertiesOffset, static_cast<byte>(value));
}
void Map::set_pre_allocated_property_fields(int value) {
ASSERT(0 <= value && value < 256);
WRITE_BYTE_FIELD(this,
kPreAllocatedPropertyFieldsOffset,
static_cast<byte>(value));
}
InstanceType Map::instance_type() {
return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset));
}
void Map::set_instance_type(InstanceType value) {
WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value);
}
int Map::unused_property_fields() {
return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset);
}
void Map::set_unused_property_fields(int value) {
WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255));
}
byte Map::bit_field() {
return READ_BYTE_FIELD(this, kBitFieldOffset);
}
void Map::set_bit_field(byte value) {
WRITE_BYTE_FIELD(this, kBitFieldOffset, value);
}
byte Map::bit_field2() {
return READ_BYTE_FIELD(this, kBitField2Offset);
}
void Map::set_bit_field2(byte value) {
WRITE_BYTE_FIELD(this, kBitField2Offset, value);
}
void Map::set_non_instance_prototype(bool value) {
if (value) {
set_bit_field(bit_field() | (1 << kHasNonInstancePrototype));
} else {
set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype));
}
}
bool Map::has_non_instance_prototype() {
return ((1 << kHasNonInstancePrototype) & bit_field()) != 0;
}
void Map::set_function_with_prototype(bool value) {
if (value) {
set_bit_field3(bit_field3() | (1 << kFunctionWithPrototype));
} else {
set_bit_field3(bit_field3() & ~(1 << kFunctionWithPrototype));
}
}
bool Map::function_with_prototype() {
return ((1 << kFunctionWithPrototype) & bit_field3()) != 0;
}
void Map::set_is_access_check_needed(bool access_check_needed) {
if (access_check_needed) {
set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded));
} else {
set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded));
}
}
bool Map::is_access_check_needed() {
return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0;
}
void Map::set_is_extensible(bool value) {
if (value) {
set_bit_field2(bit_field2() | (1 << kIsExtensible));
} else {
set_bit_field2(bit_field2() & ~(1 << kIsExtensible));
}
}
bool Map::is_extensible() {
return ((1 << kIsExtensible) & bit_field2()) != 0;
}
void Map::set_attached_to_shared_function_info(bool value) {
if (value) {
set_bit_field2(bit_field2() | (1 << kAttachedToSharedFunctionInfo));
} else {
set_bit_field2(bit_field2() & ~(1 << kAttachedToSharedFunctionInfo));
}
}
bool Map::attached_to_shared_function_info() {
return ((1 << kAttachedToSharedFunctionInfo) & bit_field2()) != 0;
}
void Map::set_is_shared(bool value) {
if (value) {
set_bit_field3(bit_field3() | (1 << kIsShared));
} else {
set_bit_field3(bit_field3() & ~(1 << kIsShared));
}
}
bool Map::is_shared() {
return ((1 << kIsShared) & bit_field3()) != 0;
}
JSFunction* Map::unchecked_constructor() {
return reinterpret_cast<JSFunction*>(READ_FIELD(this, kConstructorOffset));
}
Code::Flags Code::flags() {
return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset));
}
void Code::set_flags(Code::Flags flags) {
STATIC_ASSERT(Code::NUMBER_OF_KINDS <= KindField::kMax + 1);
// Make sure that all call stubs have an arguments count.
ASSERT((ExtractKindFromFlags(flags) != CALL_IC &&
ExtractKindFromFlags(flags) != KEYED_CALL_IC) ||
ExtractArgumentsCountFromFlags(flags) >= 0);
WRITE_INT_FIELD(this, kFlagsOffset, flags);
}
Code::Kind Code::kind() {
return ExtractKindFromFlags(flags());
}
InlineCacheState Code::ic_state() {
InlineCacheState result = ExtractICStateFromFlags(flags());
// Only allow uninitialized or debugger states for non-IC code
// objects. This is used in the debugger to determine whether or not
// a call to code object has been replaced with a debug break call.
ASSERT(is_inline_cache_stub() ||
result == UNINITIALIZED ||
result == DEBUG_BREAK ||
result == DEBUG_PREPARE_STEP_IN);
return result;
}
Code::ExtraICState Code::extra_ic_state() {
ASSERT(is_inline_cache_stub());
return ExtractExtraICStateFromFlags(flags());
}
Code::StubType Code::type() {
return ExtractTypeFromFlags(flags());
}
int Code::arguments_count() {
ASSERT(is_call_stub() || is_keyed_call_stub() || kind() == STUB);
return ExtractArgumentsCountFromFlags(flags());
}
int Code::major_key() {
ASSERT(kind() == STUB ||
kind() == UNARY_OP_IC ||
kind() == BINARY_OP_IC ||
kind() == COMPARE_IC ||
kind() == TO_BOOLEAN_IC);
return StubMajorKeyField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
}
void Code::set_major_key(int major) {
ASSERT(kind() == STUB ||
kind() == UNARY_OP_IC ||
kind() == BINARY_OP_IC ||
kind() == COMPARE_IC ||
kind() == TO_BOOLEAN_IC);
ASSERT(0 <= major && major < 256);
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
int updated = StubMajorKeyField::update(previous, major);
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
}
bool Code::is_pregenerated() {
return kind() == STUB && IsPregeneratedField::decode(flags());
}
void Code::set_is_pregenerated(bool value) {
ASSERT(kind() == STUB);
Flags f = flags();
f = static_cast<Flags>(IsPregeneratedField::update(f, value));
set_flags(f);
}
bool Code::optimizable() {
ASSERT_EQ(FUNCTION, kind());
return READ_BYTE_FIELD(this, kOptimizableOffset) == 1;
}
void Code::set_optimizable(bool value) {
ASSERT_EQ(FUNCTION, kind());
WRITE_BYTE_FIELD(this, kOptimizableOffset, value ? 1 : 0);
}
bool Code::has_deoptimization_support() {
ASSERT_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
return FullCodeFlagsHasDeoptimizationSupportField::decode(flags);
}
void Code::set_has_deoptimization_support(bool value) {
ASSERT_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
flags = FullCodeFlagsHasDeoptimizationSupportField::update(flags, value);
WRITE_BYTE_FIELD(this, kFullCodeFlags, flags);
}
bool Code::has_debug_break_slots() {
ASSERT_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
return FullCodeFlagsHasDebugBreakSlotsField::decode(flags);
}
void Code::set_has_debug_break_slots(bool value) {
ASSERT_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
flags = FullCodeFlagsHasDebugBreakSlotsField::update(flags, value);
WRITE_BYTE_FIELD(this, kFullCodeFlags, flags);
}
bool Code::is_compiled_optimizable() {
ASSERT_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
return FullCodeFlagsIsCompiledOptimizable::decode(flags);
}
void Code::set_compiled_optimizable(bool value) {
ASSERT_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
flags = FullCodeFlagsIsCompiledOptimizable::update(flags, value);
WRITE_BYTE_FIELD(this, kFullCodeFlags, flags);
}
int Code::allow_osr_at_loop_nesting_level() {
ASSERT_EQ(FUNCTION, kind());
return READ_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset);
}
void Code::set_allow_osr_at_loop_nesting_level(int level) {
ASSERT_EQ(FUNCTION, kind());
ASSERT(level >= 0 && level <= kMaxLoopNestingMarker);
WRITE_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset, level);
}
int Code::profiler_ticks() {
ASSERT_EQ(FUNCTION, kind());
return READ_BYTE_FIELD(this, kProfilerTicksOffset);
}
void Code::set_profiler_ticks(int ticks) {
ASSERT_EQ(FUNCTION, kind());
ASSERT(ticks < 256);
WRITE_BYTE_FIELD(this, kProfilerTicksOffset, ticks);
}
unsigned Code::stack_slots() {
ASSERT(kind() == OPTIMIZED_FUNCTION);
return StackSlotsField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_stack_slots(unsigned slots) {
CHECK(slots <= (1 << kStackSlotsBitCount));
ASSERT(kind() == OPTIMIZED_FUNCTION);
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = StackSlotsField::update(previous, slots);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
unsigned Code::safepoint_table_offset() {
ASSERT(kind() == OPTIMIZED_FUNCTION);
return SafepointTableOffsetField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
}
void Code::set_safepoint_table_offset(unsigned offset) {
CHECK(offset <= (1 << kSafepointTableOffsetBitCount));
ASSERT(kind() == OPTIMIZED_FUNCTION);
ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize)));
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
int updated = SafepointTableOffsetField::update(previous, offset);
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
}
unsigned Code::stack_check_table_offset() {
ASSERT_EQ(FUNCTION, kind());
return StackCheckTableOffsetField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
}
void Code::set_stack_check_table_offset(unsigned offset) {
ASSERT_EQ(FUNCTION, kind());
ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize)));
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
int updated = StackCheckTableOffsetField::update(previous, offset);
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
}
CheckType Code::check_type() {
ASSERT(is_call_stub() || is_keyed_call_stub());
byte type = READ_BYTE_FIELD(this, kCheckTypeOffset);
return static_cast<CheckType>(type);
}
void Code::set_check_type(CheckType value) {
ASSERT(is_call_stub() || is_keyed_call_stub());
WRITE_BYTE_FIELD(this, kCheckTypeOffset, value);
}
byte Code::unary_op_type() {
ASSERT(is_unary_op_stub());
return UnaryOpTypeField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_unary_op_type(byte value) {
ASSERT(is_unary_op_stub());
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = UnaryOpTypeField::update(previous, value);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
byte Code::binary_op_type() {
ASSERT(is_binary_op_stub());
return BinaryOpTypeField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_binary_op_type(byte value) {
ASSERT(is_binary_op_stub());
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = BinaryOpTypeField::update(previous, value);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
byte Code::binary_op_result_type() {
ASSERT(is_binary_op_stub());
return BinaryOpResultTypeField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_binary_op_result_type(byte value) {
ASSERT(is_binary_op_stub());
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = BinaryOpResultTypeField::update(previous, value);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
byte Code::compare_state() {
ASSERT(is_compare_ic_stub());
return CompareStateField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_compare_state(byte value) {
ASSERT(is_compare_ic_stub());
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = CompareStateField::update(previous, value);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
byte Code::compare_operation() {
ASSERT(is_compare_ic_stub());
return CompareOperationField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_compare_operation(byte value) {
ASSERT(is_compare_ic_stub());
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = CompareOperationField::update(previous, value);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
byte Code::to_boolean_state() {
ASSERT(is_to_boolean_ic_stub());
return ToBooleanStateField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_to_boolean_state(byte value) {
ASSERT(is_to_boolean_ic_stub());
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = ToBooleanStateField::update(previous, value);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
bool Code::has_function_cache() {
ASSERT(kind() == STUB);
return HasFunctionCacheField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_has_function_cache(bool flag) {
ASSERT(kind() == STUB);
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = HasFunctionCacheField::update(previous, flag);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
bool Code::is_inline_cache_stub() {
Kind kind = this->kind();
return kind >= FIRST_IC_KIND && kind <= LAST_IC_KIND;
}
Code::Flags Code::ComputeFlags(Kind kind,
InlineCacheState ic_state,
ExtraICState extra_ic_state,
StubType type,
int argc,
InlineCacheHolderFlag holder) {
// Extra IC state is only allowed for call IC stubs or for store IC
// stubs.
ASSERT(extra_ic_state == kNoExtraICState ||
kind == CALL_IC ||
kind == STORE_IC ||
kind == KEYED_STORE_IC);
// Compute the bit mask.
int bits = KindField::encode(kind)
| ICStateField::encode(ic_state)
| TypeField::encode(type)
| ExtraICStateField::encode(extra_ic_state)
| (argc << kArgumentsCountShift)
| CacheHolderField::encode(holder);
return static_cast<Flags>(bits);
}
Code::Flags Code::ComputeMonomorphicFlags(Kind kind,
StubType type,
ExtraICState extra_ic_state,
InlineCacheHolderFlag holder,
int argc) {
return ComputeFlags(kind, MONOMORPHIC, extra_ic_state, type, argc, holder);
}
Code::Kind Code::ExtractKindFromFlags(Flags flags) {
return KindField::decode(flags);
}
InlineCacheState Code::ExtractICStateFromFlags(Flags flags) {
return ICStateField::decode(flags);
}
Code::ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) {
return ExtraICStateField::decode(flags);
}
Code::StubType Code::ExtractTypeFromFlags(Flags flags) {
return TypeField::decode(flags);
}
int Code::ExtractArgumentsCountFromFlags(Flags flags) {
return (flags & kArgumentsCountMask) >> kArgumentsCountShift;
}
InlineCacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) {
return CacheHolderField::decode(flags);
}
Code::Flags Code::RemoveTypeFromFlags(Flags flags) {
int bits = flags & ~TypeField::kMask;
return static_cast<Flags>(bits);
}
Code* Code::GetCodeFromTargetAddress(Address address) {
HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize);
// GetCodeFromTargetAddress might be called when marking objects during mark
// sweep. reinterpret_cast is therefore used instead of the more appropriate
// Code::cast. Code::cast does not work when the object's map is
// marked.
Code* result = reinterpret_cast<Code*>(code);
return result;
}
Object* Code::GetObjectFromEntryAddress(Address location_of_address) {
return HeapObject::
FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize);
}
Object* Map::prototype() {
return READ_FIELD(this, kPrototypeOffset);
}
void Map::set_prototype(Object* value, WriteBarrierMode mode) {
ASSERT(value->IsNull() || value->IsJSReceiver());
WRITE_FIELD(this, kPrototypeOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, value, mode);
}
DescriptorArray* Map::instance_descriptors() {
Object* object = READ_FIELD(this, kInstanceDescriptorsOrBackPointerOffset);
if (!object->IsDescriptorArray()) {
ASSERT(object->IsMap() || object->IsUndefined());
return GetHeap()->empty_descriptor_array();
} else {
return DescriptorArray::cast(object);
}
}
void Map::set_instance_descriptors(DescriptorArray* value,
WriteBarrierMode mode) {
Heap* heap = GetHeap();
if (value == heap->empty_descriptor_array()) {
ClearDescriptorArray(heap, mode);
return;
}
Object* object = READ_FIELD(this, kInstanceDescriptorsOrBackPointerOffset);
if (object->IsDescriptorArray()) {
value->set_back_pointer_storage(
DescriptorArray::cast(object)->back_pointer_storage());
} else {
ASSERT(object->IsMap() || object->IsUndefined());
value->set_back_pointer_storage(object);
}
ASSERT(!is_shared());
WRITE_FIELD(this, kInstanceDescriptorsOrBackPointerOffset, value);
CONDITIONAL_WRITE_BARRIER(
heap, this, kInstanceDescriptorsOrBackPointerOffset, value, mode);
}
SMI_ACCESSORS(Map, bit_field3, kBitField3Offset)
void Map::ClearDescriptorArray(Heap* heap, WriteBarrierMode mode) {
Object* back_pointer = GetBackPointer();
#ifdef DEBUG
Object* object = READ_FIELD(this, kInstanceDescriptorsOrBackPointerOffset);
if (object->IsDescriptorArray()) {
ZapTransitions();
} else {
ASSERT(object->IsMap() || object->IsUndefined());
}
#endif
WRITE_FIELD(this, kInstanceDescriptorsOrBackPointerOffset, back_pointer);
CONDITIONAL_WRITE_BARRIER(
heap, this, kInstanceDescriptorsOrBackPointerOffset, back_pointer, mode);
}
Object* Map::GetBackPointer() {
Object* object = READ_FIELD(this, kInstanceDescriptorsOrBackPointerOffset);
if (object->IsDescriptorArray()) {
return DescriptorArray::cast(object)->back_pointer_storage();
} else {
ASSERT(object->IsMap() || object->IsUndefined());
return object;
}
}
bool Map::HasElementsTransition() {
return HasTransitionArray() && transitions()->HasElementsTransition();
}
bool Map::HasTransitionArray() {
return instance_descriptors()->HasTransitionArray();
}
Map* Map::elements_transition_map() {
return transitions()->elements_transition();
}
MaybeObject* Map::AddTransition(String* key, Map* target) {
if (HasTransitionArray()) return transitions()->CopyInsert(key, target);
return TransitionArray::NewWith(key, target);
}
void Map::SetTransition(int transition_index, Map* target) {
transitions()->SetTarget(transition_index, target);
}
// If the map is using the empty descriptor array, install a new empty
// descriptor array that will contain an elements transition.
static MaybeObject* AllowTransitions(Map* map) {
if (map->instance_descriptors()->MayContainTransitions()) return map;
DescriptorArray* descriptors;
MaybeObject* maybe_descriptors =
DescriptorArray::Allocate(0, DescriptorArray::CANNOT_BE_SHARED);
if (!maybe_descriptors->To(&descriptors)) return maybe_descriptors;
map->set_instance_descriptors(descriptors);
return descriptors;
}
// If the descriptor is using the empty transition array, install a new empty
// transition array that will have place for an element transition.
static MaybeObject* EnsureHasTransitionArray(Map* map) {
if (map->HasTransitionArray()) return map;
AllowTransitions(map);
TransitionArray* transitions;
MaybeObject* maybe_transitions = TransitionArray::Allocate(0);
if (!maybe_transitions->To(&transitions)) return maybe_transitions;
MaybeObject* added_transitions = map->set_transitions(transitions);
if (added_transitions->IsFailure()) return added_transitions;
return transitions;
}
MaybeObject* Map::set_elements_transition_map(Map* transitioned_map) {
MaybeObject* allow_elements = EnsureHasTransitionArray(this);
if (allow_elements->IsFailure()) return allow_elements;
transitions()->set_elements_transition(transitioned_map);
return this;
}
FixedArray* Map::GetPrototypeTransitions() {
if (!HasTransitionArray()) return GetHeap()->empty_fixed_array();
if (!transitions()->HasPrototypeTransitions()) {
return GetHeap()->empty_fixed_array();
}
return transitions()->GetPrototypeTransitions();
}
MaybeObject* Map::SetPrototypeTransitions(FixedArray* proto_transitions) {
MaybeObject* allow_prototype = EnsureHasTransitionArray(this);
if (allow_prototype->IsFailure()) return allow_prototype;
#ifdef DEBUG
if (HasPrototypeTransitions()) {
ASSERT(GetPrototypeTransitions() != proto_transitions);
ZapPrototypeTransitions();
}
#endif
transitions()->SetPrototypeTransitions(proto_transitions);
return this;
}
bool Map::HasPrototypeTransitions() {
return HasTransitionArray() && transitions()->HasPrototypeTransitions();
}
TransitionArray* Map::transitions() {
return instance_descriptors()->transitions();
}
void Map::ClearTransitions(Heap* heap, WriteBarrierMode mode) {
#ifdef DEBUG
ZapTransitions();
#endif
DescriptorArray* descriptors = instance_descriptors();
if (descriptors->number_of_descriptors() == 0) {
ClearDescriptorArray(heap, mode);
} else {
descriptors->ClearTransitions();
}
}
MaybeObject* Map::set_transitions(TransitionArray* transitions_array) {
MaybeObject* allow_transitions = AllowTransitions(this);
if (allow_transitions->IsFailure()) return allow_transitions;
#ifdef DEBUG
if (HasTransitionArray()) {
ASSERT(transitions() != transitions_array);
ZapTransitions();
}
#endif
instance_descriptors()->set_transitions(transitions_array);
return this;
}
void Map::init_back_pointer(Object* undefined) {
ASSERT(undefined->IsUndefined());
WRITE_FIELD(this, kInstanceDescriptorsOrBackPointerOffset, undefined);
}
void Map::SetBackPointer(Object* value, WriteBarrierMode mode) {
ASSERT(instance_type() >= FIRST_JS_RECEIVER_TYPE);
ASSERT((value->IsUndefined() && GetBackPointer()->IsMap()) ||
(value->IsMap() && GetBackPointer()->IsUndefined()));
Object* object = READ_FIELD(this, kInstanceDescriptorsOrBackPointerOffset);
if (object->IsDescriptorArray()) {
DescriptorArray::cast(object)->set_back_pointer_storage(value);
} else {
WRITE_FIELD(this, kInstanceDescriptorsOrBackPointerOffset, value);
CONDITIONAL_WRITE_BARRIER(
GetHeap(), this, kInstanceDescriptorsOrBackPointerOffset, value, mode);
}
}
// Can either be Smi (no transitions), normal transition array, or a transition
// array with the header overwritten as a Smi (thus iterating).
TransitionArray* Map::unchecked_transition_array() {
ASSERT(HasTransitionArray());
Object* object = *HeapObject::RawField(instance_descriptors(),
DescriptorArray::kTransitionsOffset);
ASSERT(!object->IsSmi());
TransitionArray* transition_array = static_cast<TransitionArray*>(object);
return transition_array;
}
HeapObject* Map::UncheckedPrototypeTransitions() {
ASSERT(HasTransitionArray());
ASSERT(unchecked_transition_array()->HasPrototypeTransitions());
return unchecked_transition_array()->UncheckedPrototypeTransitions();
}
ACCESSORS(Map, code_cache, Object, kCodeCacheOffset)
ACCESSORS(Map, constructor, Object, kConstructorOffset)
ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset)
ACCESSORS(JSFunction, literals_or_bindings, FixedArray, kLiteralsOffset)
ACCESSORS(JSFunction, next_function_link, Object, kNextFunctionLinkOffset)
ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset)
ACCESSORS(GlobalObject, global_context, Context, kGlobalContextOffset)
ACCESSORS(GlobalObject, global_receiver, JSObject, kGlobalReceiverOffset)
ACCESSORS(JSGlobalProxy, context, Object, kContextOffset)
ACCESSORS(AccessorInfo, getter, Object, kGetterOffset)
ACCESSORS(AccessorInfo, setter, Object, kSetterOffset)
ACCESSORS(AccessorInfo, data, Object, kDataOffset)
ACCESSORS(AccessorInfo, name, Object, kNameOffset)
ACCESSORS_TO_SMI(AccessorInfo, flag, kFlagOffset)
ACCESSORS(AccessorInfo, expected_receiver_type, Object,
kExpectedReceiverTypeOffset)
ACCESSORS(AccessorPair, getter, Object, kGetterOffset)
ACCESSORS(AccessorPair, setter, Object, kSetterOffset)
ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset)
ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset)
ACCESSORS(AccessCheckInfo, data, Object, kDataOffset)
ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset)
ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset)
ACCESSORS(InterceptorInfo, query, Object, kQueryOffset)
ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset)
ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset)
ACCESSORS(InterceptorInfo, data, Object, kDataOffset)
ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset)
ACCESSORS(CallHandlerInfo, data, Object, kDataOffset)
ACCESSORS(TemplateInfo, tag, Object, kTagOffset)
ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset)
ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset)
ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset)
ACCESSORS(FunctionTemplateInfo, property_accessors, Object,
kPropertyAccessorsOffset)
ACCESSORS(FunctionTemplateInfo, prototype_template, Object,
kPrototypeTemplateOffset)
ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset)
ACCESSORS(FunctionTemplateInfo, named_property_handler, Object,
kNamedPropertyHandlerOffset)
ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object,
kIndexedPropertyHandlerOffset)
ACCESSORS(FunctionTemplateInfo, instance_template, Object,
kInstanceTemplateOffset)
ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset)
ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset)
ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object,
kInstanceCallHandlerOffset)
ACCESSORS(FunctionTemplateInfo, access_check_info, Object,
kAccessCheckInfoOffset)
ACCESSORS_TO_SMI(FunctionTemplateInfo, flag, kFlagOffset)
ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset)
ACCESSORS(ObjectTemplateInfo, internal_field_count, Object,
kInternalFieldCountOffset)
ACCESSORS(SignatureInfo, receiver, Object, kReceiverOffset)
ACCESSORS(SignatureInfo, args, Object, kArgsOffset)
ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset)
ACCESSORS(Script, source, Object, kSourceOffset)
ACCESSORS(Script, name, Object, kNameOffset)
ACCESSORS(Script, id, Object, kIdOffset)
ACCESSORS_TO_SMI(Script, line_offset, kLineOffsetOffset)
ACCESSORS_TO_SMI(Script, column_offset, kColumnOffsetOffset)
ACCESSORS(Script, data, Object, kDataOffset)
ACCESSORS(Script, context_data, Object, kContextOffset)
ACCESSORS(Script, wrapper, Foreign, kWrapperOffset)
ACCESSORS_TO_SMI(Script, type, kTypeOffset)
ACCESSORS_TO_SMI(Script, compilation_type, kCompilationTypeOffset)
ACCESSORS_TO_SMI(Script, compilation_state, kCompilationStateOffset)
ACCESSORS(Script, line_ends, Object, kLineEndsOffset)
ACCESSORS(Script, eval_from_shared, Object, kEvalFromSharedOffset)
ACCESSORS_TO_SMI(Script, eval_from_instructions_offset,
kEvalFrominstructionsOffsetOffset)
#ifdef ENABLE_DEBUGGER_SUPPORT
ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex)
ACCESSORS(DebugInfo, original_code, Code, kOriginalCodeIndex)
ACCESSORS(DebugInfo, code, Code, kPatchedCodeIndex)
ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex)
ACCESSORS_TO_SMI(BreakPointInfo, code_position, kCodePositionIndex)
ACCESSORS_TO_SMI(BreakPointInfo, source_position, kSourcePositionIndex)
ACCESSORS_TO_SMI(BreakPointInfo, statement_position, kStatementPositionIndex)
ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex)
#endif
ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset)
ACCESSORS(SharedFunctionInfo, optimized_code_map, Object,
kOptimizedCodeMapOffset)
ACCESSORS(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset)
ACCESSORS(SharedFunctionInfo, initial_map, Object, kInitialMapOffset)
ACCESSORS(SharedFunctionInfo, instance_class_name, Object,
kInstanceClassNameOffset)
ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset)
ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset)
ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset)
ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset)
ACCESSORS(SharedFunctionInfo, this_property_assignments, Object,
kThisPropertyAssignmentsOffset)
SMI_ACCESSORS(SharedFunctionInfo, ast_node_count, kAstNodeCountOffset)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype,
kHiddenPrototypeBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check,
kNeedsAccessCheckBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, read_only_prototype,
kReadOnlyPrototypeBit)
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression,
kIsExpressionBit)
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel,
kIsTopLevelBit)
BOOL_GETTER(SharedFunctionInfo,
compiler_hints,
has_only_simple_this_property_assignments,
kHasOnlySimpleThisPropertyAssignments)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
allows_lazy_compilation,
kAllowLazyCompilation)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
allows_lazy_compilation_without_context,
kAllowLazyCompilationWithoutContext)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
uses_arguments,
kUsesArguments)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
has_duplicate_parameters,
kHasDuplicateParameters)
#if V8_HOST_ARCH_32_BIT
SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset)
SMI_ACCESSORS(SharedFunctionInfo, formal_parameter_count,
kFormalParameterCountOffset)
SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties,
kExpectedNofPropertiesOffset)
SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type,
kStartPositionAndTypeOffset)
SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset)
SMI_ACCESSORS(SharedFunctionInfo, function_token_position,
kFunctionTokenPositionOffset)
SMI_ACCESSORS(SharedFunctionInfo, compiler_hints,
kCompilerHintsOffset)
SMI_ACCESSORS(SharedFunctionInfo, this_property_assignments_count,
kThisPropertyAssignmentsCountOffset)
SMI_ACCESSORS(SharedFunctionInfo, opt_count, kOptCountOffset)
SMI_ACCESSORS(SharedFunctionInfo, counters, kCountersOffset)
SMI_ACCESSORS(SharedFunctionInfo,
stress_deopt_counter,
kStressDeoptCounterOffset)
#else
#define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \
STATIC_ASSERT(holder::offset % kPointerSize == 0); \
int holder::name() { \
int value = READ_INT_FIELD(this, offset); \
ASSERT(kHeapObjectTag == 1); \
ASSERT((value & kHeapObjectTag) == 0); \
return value >> 1; \
} \
void holder::set_##name(int value) { \
ASSERT(kHeapObjectTag == 1); \
ASSERT((value & 0xC0000000) == 0xC0000000 || \
(value & 0xC0000000) == 0x000000000); \
WRITE_INT_FIELD(this, \
offset, \
(value << 1) & ~kHeapObjectTag); \
}
#define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \
STATIC_ASSERT(holder::offset % kPointerSize == kIntSize); \
INT_ACCESSORS(holder, name, offset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
formal_parameter_count,
kFormalParameterCountOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
expected_nof_properties,
kExpectedNofPropertiesOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
start_position_and_type,
kStartPositionAndTypeOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
function_token_position,
kFunctionTokenPositionOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
compiler_hints,
kCompilerHintsOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
this_property_assignments_count,
kThisPropertyAssignmentsCountOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, opt_count, kOptCountOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, counters, kCountersOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
stress_deopt_counter,
kStressDeoptCounterOffset)
#endif
int SharedFunctionInfo::construction_count() {
return READ_BYTE_FIELD(this, kConstructionCountOffset);
}
void SharedFunctionInfo::set_construction_count(int value) {
ASSERT(0 <= value && value < 256);
WRITE_BYTE_FIELD(this, kConstructionCountOffset, static_cast<byte>(value));
}
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
live_objects_may_exist,
kLiveObjectsMayExist)
bool SharedFunctionInfo::IsInobjectSlackTrackingInProgress() {
return initial_map() != GetHeap()->undefined_value();
}
BOOL_GETTER(SharedFunctionInfo,
compiler_hints,
optimization_disabled,
kOptimizationDisabled)
void SharedFunctionInfo::set_optimization_disabled(bool disable) {
set_compiler_hints(BooleanBit::set(compiler_hints(),
kOptimizationDisabled,
disable));
// If disabling optimizations we reflect that in the code object so
// it will not be counted as optimizable code.
if ((code()->kind() == Code::FUNCTION) && disable) {
code()->set_optimizable(false);
}
}
int SharedFunctionInfo::profiler_ticks() {
if (code()->kind() != Code::FUNCTION) return 0;
return code()->profiler_ticks();
}
LanguageMode SharedFunctionInfo::language_mode() {
int hints = compiler_hints();
if (BooleanBit::get(hints, kExtendedModeFunction)) {
ASSERT(BooleanBit::get(hints, kStrictModeFunction));
return EXTENDED_MODE;
}
return BooleanBit::get(hints, kStrictModeFunction)
? STRICT_MODE : CLASSIC_MODE;
}
void SharedFunctionInfo::set_language_mode(LanguageMode language_mode) {
// We only allow language mode transitions that go set the same language mode
// again or go up in the chain:
// CLASSIC_MODE -> STRICT_MODE -> EXTENDED_MODE.
ASSERT(this->language_mode() == CLASSIC_MODE ||
this->language_mode() == language_mode ||
language_mode == EXTENDED_MODE);
int hints = compiler_hints();
hints = BooleanBit::set(
hints, kStrictModeFunction, language_mode != CLASSIC_MODE);
hints = BooleanBit::set(
hints, kExtendedModeFunction, language_mode == EXTENDED_MODE);
set_compiler_hints(hints);
}
bool SharedFunctionInfo::is_classic_mode() {
return !BooleanBit::get(compiler_hints(), kStrictModeFunction);
}
BOOL_GETTER(SharedFunctionInfo, compiler_hints, is_extended_mode,
kExtendedModeFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, native, kNative)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints,
name_should_print_as_anonymous,
kNameShouldPrintAsAnonymous)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, bound, kBoundFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_anonymous, kIsAnonymous)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_function, kIsFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_optimize,
kDontOptimize)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_inline, kDontInline)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_cache, kDontCache)
void SharedFunctionInfo::BeforeVisitingPointers() {
if (IsInobjectSlackTrackingInProgress()) DetachInitialMap();
// Flush optimized code map on major GC.
// Note: we may experiment with rebuilding it or retaining entries
// which should survive as we iterate through optimized functions
// anyway.
set_optimized_code_map(Smi::FromInt(0));
}
ACCESSORS(CodeCache, default_cache, FixedArray, kDefaultCacheOffset)
ACCESSORS(CodeCache, normal_type_cache, Object, kNormalTypeCacheOffset)
ACCESSORS(PolymorphicCodeCache, cache, Object, kCacheOffset)
bool Script::HasValidSource() {
Object* src = this->source();
if (!src->IsString()) return true;
String* src_str = String::cast(src);
if (!StringShape(src_str).IsExternal()) return true;
if (src_str->IsAsciiRepresentation()) {
return ExternalAsciiString::cast(src)->resource() != NULL;
} else if (src_str->IsTwoByteRepresentation()) {
return ExternalTwoByteString::cast(src)->resource() != NULL;
}
return true;
}
void SharedFunctionInfo::DontAdaptArguments() {
ASSERT(code()->kind() == Code::BUILTIN);
set_formal_parameter_count(kDontAdaptArgumentsSentinel);
}
int SharedFunctionInfo::start_position() {
return start_position_and_type() >> kStartPositionShift;
}
void SharedFunctionInfo::set_start_position(int start_position) {
set_start_position_and_type((start_position << kStartPositionShift)
| (start_position_and_type() & ~kStartPositionMask));
}
Code* SharedFunctionInfo::code() {
return Code::cast(READ_FIELD(this, kCodeOffset));
}
Code* SharedFunctionInfo::unchecked_code() {
return reinterpret_cast<Code*>(READ_FIELD(this, kCodeOffset));
}
void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kCodeOffset, value);
CONDITIONAL_WRITE_BARRIER(value->GetHeap(), this, kCodeOffset, value, mode);
}
ScopeInfo* SharedFunctionInfo::scope_info() {
return reinterpret_cast<ScopeInfo*>(READ_FIELD(this, kScopeInfoOffset));
}
void SharedFunctionInfo::set_scope_info(ScopeInfo* value,
WriteBarrierMode mode) {
WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast<Object*>(value));
CONDITIONAL_WRITE_BARRIER(GetHeap(),
this,
kScopeInfoOffset,
reinterpret_cast<Object*>(value),
mode);
}
bool SharedFunctionInfo::is_compiled() {
return code() !=
Isolate::Current()->builtins()->builtin(Builtins::kLazyCompile);
}
bool SharedFunctionInfo::IsApiFunction() {
return function_data()->IsFunctionTemplateInfo();
}
FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() {
ASSERT(IsApiFunction());
return FunctionTemplateInfo::cast(function_data());
}
bool SharedFunctionInfo::HasBuiltinFunctionId() {
return function_data()->IsSmi();
}
BuiltinFunctionId SharedFunctionInfo::builtin_function_id() {
ASSERT(HasBuiltinFunctionId());
return static_cast<BuiltinFunctionId>(Smi::cast(function_data())->value());
}
int SharedFunctionInfo::code_age() {
return (compiler_hints() >> kCodeAgeShift) & kCodeAgeMask;
}
void SharedFunctionInfo::set_code_age(int code_age) {
int hints = compiler_hints() & ~(kCodeAgeMask << kCodeAgeShift);
set_compiler_hints(hints | ((code_age & kCodeAgeMask) << kCodeAgeShift));
}
int SharedFunctionInfo::ic_age() {
return ICAgeBits::decode(counters());
}
void SharedFunctionInfo::set_ic_age(int ic_age) {
set_counters(ICAgeBits::update(counters(), ic_age));
}
int SharedFunctionInfo::deopt_count() {
return DeoptCountBits::decode(counters());
}
void SharedFunctionInfo::set_deopt_count(int deopt_count) {
set_counters(DeoptCountBits::update(counters(), deopt_count));
}
void SharedFunctionInfo::increment_deopt_count() {
int value = counters();
int deopt_count = DeoptCountBits::decode(value);
deopt_count = (deopt_count + 1) & DeoptCountBits::kMax;
set_counters(DeoptCountBits::update(value, deopt_count));
}
int SharedFunctionInfo::opt_reenable_tries() {
return OptReenableTriesBits::decode(counters());
}
void SharedFunctionInfo::set_opt_reenable_tries(int tries) {
set_counters(OptReenableTriesBits::update(counters(), tries));
}
bool SharedFunctionInfo::has_deoptimization_support() {
Code* code = this->code();
return code->kind() == Code::FUNCTION && code->has_deoptimization_support();
}
void SharedFunctionInfo::TryReenableOptimization() {
int tries = opt_reenable_tries();
set_opt_reenable_tries((tries + 1) & OptReenableTriesBits::kMax);
// We reenable optimization whenever the number of tries is a large
// enough power of 2.
if (tries >= 16 && (((tries - 1) & tries) == 0)) {
set_optimization_disabled(false);
set_opt_count(0);
set_deopt_count(0);
code()->set_optimizable(true);
}
}
bool JSFunction::IsBuiltin() {
return context()->global()->IsJSBuiltinsObject();
}
bool JSFunction::NeedsArgumentsAdaption() {
return shared()->formal_parameter_count() !=
SharedFunctionInfo::kDontAdaptArgumentsSentinel;
}
bool JSFunction::IsOptimized() {
return code()->kind() == Code::OPTIMIZED_FUNCTION;
}
bool JSFunction::IsOptimizable() {
return code()->kind() == Code::FUNCTION && code()->optimizable();
}
bool JSFunction::IsMarkedForLazyRecompilation() {
return code() == GetIsolate()->builtins()->builtin(Builtins::kLazyRecompile);
}
Code* JSFunction::code() {
return Code::cast(unchecked_code());
}
Code* JSFunction::unchecked_code() {
return reinterpret_cast<Code*>(
Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset)));
}
void JSFunction::set_code(Code* value) {
ASSERT(!HEAP->InNewSpace(value));
Address entry = value->entry();
WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry));
GetHeap()->incremental_marking()->RecordWriteOfCodeEntry(
this,
HeapObject::RawField(this, kCodeEntryOffset),
value);
}
void JSFunction::ReplaceCode(Code* code) {
bool was_optimized = IsOptimized();
bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION;
set_code(code);
// Add/remove the function from the list of optimized functions for this
// context based on the state change.
if (!was_optimized && is_optimized) {
context()->global_context()->AddOptimizedFunction(this);
}
if (was_optimized && !is_optimized) {
context()->global_context()->RemoveOptimizedFunction(this);
}
}
Context* JSFunction::context() {
return Context::cast(READ_FIELD(this, kContextOffset));
}
Object* JSFunction::unchecked_context() {
return READ_FIELD(this, kContextOffset);
}
SharedFunctionInfo* JSFunction::unchecked_shared() {
return reinterpret_cast<SharedFunctionInfo*>(
READ_FIELD(this, kSharedFunctionInfoOffset));
}
void JSFunction::set_context(Object* value) {
ASSERT(value->IsUndefined() || value->IsContext());
WRITE_FIELD(this, kContextOffset, value);
WRITE_BARRIER(GetHeap(), this, kContextOffset, value);
}
ACCESSORS(JSFunction, prototype_or_initial_map, Object,
kPrototypeOrInitialMapOffset)
Map* JSFunction::initial_map() {
return Map::cast(prototype_or_initial_map());
}
void JSFunction::set_initial_map(Map* value) {
set_prototype_or_initial_map(value);
}
MaybeObject* JSFunction::set_initial_map_and_cache_transitions(
Map* initial_map) {
Context* global_context = context()->global_context();
Object* array_function =
global_context->get(Context::ARRAY_FUNCTION_INDEX);
if (array_function->IsJSFunction() &&
this == JSFunction::cast(array_function)) {
// Replace all of the cached initial array maps in the global context with
// the appropriate transitioned elements kind maps.
Heap* heap = GetHeap();
MaybeObject* maybe_maps =
heap->AllocateFixedArrayWithHoles(kElementsKindCount);
FixedArray* maps;
if (!maybe_maps->To(&maps)) return maybe_maps;
Map* current_map = initial_map;
ElementsKind kind = current_map->elements_kind();
ASSERT(kind == GetInitialFastElementsKind());
maps->set(kind, current_map);
for (int i = GetSequenceIndexFromFastElementsKind(kind) + 1;
i < kFastElementsKindCount; ++i) {
Map* new_map;
ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(i);
MaybeObject* maybe_new_map =
current_map->CopyAsElementsKind(next_kind, INSERT_TRANSITION);
if (!maybe_new_map->To(&new_map)) return maybe_new_map;
maps->set(next_kind, new_map);
current_map = new_map;
}
global_context->set_js_array_maps(maps);
}
set_initial_map(initial_map);
return this;
}
bool JSFunction::has_initial_map() {
return prototype_or_initial_map()->IsMap();
}
bool JSFunction::has_instance_prototype() {
return has_initial_map() || !prototype_or_initial_map()->IsTheHole();
}
bool JSFunction::has_prototype() {
return map()->has_non_instance_prototype() || has_instance_prototype();
}
Object* JSFunction::instance_prototype() {
ASSERT(has_instance_prototype());
if (has_initial_map()) return initial_map()->prototype();
// When there is no initial map and the prototype is a JSObject, the
// initial map field is used for the prototype field.
return prototype_or_initial_map();
}
Object* JSFunction::prototype() {
ASSERT(has_prototype());
// If the function's prototype property has been set to a non-JSObject
// value, that value is stored in the constructor field of the map.
if (map()->has_non_instance_prototype()) return map()->constructor();
return instance_prototype();
}
bool JSFunction::should_have_prototype() {
return map()->function_with_prototype();
}
bool JSFunction::is_compiled() {
return code() != GetIsolate()->builtins()->builtin(Builtins::kLazyCompile);
}
FixedArray* JSFunction::literals() {
ASSERT(!shared()->bound());
return literals_or_bindings();
}
void JSFunction::set_literals(FixedArray* literals) {
ASSERT(!shared()->bound());
set_literals_or_bindings(literals);
}
FixedArray* JSFunction::function_bindings() {
ASSERT(shared()->bound());
return literals_or_bindings();
}
void JSFunction::set_function_bindings(FixedArray* bindings) {
ASSERT(shared()->bound());
// Bound function literal may be initialized to the empty fixed array
// before the bindings are set.
ASSERT(bindings == GetHeap()->empty_fixed_array() ||
bindings->map() == GetHeap()->fixed_cow_array_map());
set_literals_or_bindings(bindings);
}
int JSFunction::NumberOfLiterals() {
ASSERT(!shared()->bound());
return literals()->length();
}
Object* JSBuiltinsObject::javascript_builtin(Builtins::JavaScript id) {
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
return READ_FIELD(this, OffsetOfFunctionWithId(id));
}
void JSBuiltinsObject::set_javascript_builtin(Builtins::JavaScript id,
Object* value) {
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
WRITE_FIELD(this, OffsetOfFunctionWithId(id), value);
WRITE_BARRIER(GetHeap(), this, OffsetOfFunctionWithId(id), value);
}
Code* JSBuiltinsObject::javascript_builtin_code(Builtins::JavaScript id) {
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
return Code::cast(READ_FIELD(this, OffsetOfCodeWithId(id)));
}
void JSBuiltinsObject::set_javascript_builtin_code(Builtins::JavaScript id,
Code* value) {
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
WRITE_FIELD(this, OffsetOfCodeWithId(id), value);
ASSERT(!HEAP->InNewSpace(value));
}
ACCESSORS(JSProxy, handler, Object, kHandlerOffset)
ACCESSORS(JSProxy, hash, Object, kHashOffset)
ACCESSORS(JSFunctionProxy, call_trap, Object, kCallTrapOffset)
ACCESSORS(JSFunctionProxy, construct_trap, Object, kConstructTrapOffset)
void JSProxy::InitializeBody(int object_size, Object* value) {
ASSERT(!value->IsHeapObject() || !GetHeap()->InNewSpace(value));
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
WRITE_FIELD(this, offset, value);
}
}
ACCESSORS(JSSet, table, Object, kTableOffset)
ACCESSORS(JSMap, table, Object, kTableOffset)
ACCESSORS(JSWeakMap, table, Object, kTableOffset)
ACCESSORS(JSWeakMap, next, Object, kNextOffset)
Address Foreign::foreign_address() {
return AddressFrom<Address>(READ_INTPTR_FIELD(this, kForeignAddressOffset));
}
void Foreign::set_foreign_address(Address value) {
WRITE_INTPTR_FIELD(this, kForeignAddressOffset, OffsetFrom(value));
}
ACCESSORS(JSModule, context, Object, kContextOffset)
ACCESSORS(JSModule, scope_info, ScopeInfo, kScopeInfoOffset)
JSModule* JSModule::cast(Object* obj) {
ASSERT(obj->IsJSModule());
ASSERT(HeapObject::cast(obj)->Size() == JSModule::kSize);
return reinterpret_cast<JSModule*>(obj);
}
ACCESSORS(JSValue, value, Object, kValueOffset)
JSValue* JSValue::cast(Object* obj) {
ASSERT(obj->IsJSValue());
ASSERT(HeapObject::cast(obj)->Size() == JSValue::kSize);
return reinterpret_cast<JSValue*>(obj);
}
ACCESSORS(JSDate, value, Object, kValueOffset)
ACCESSORS(JSDate, cache_stamp, Object, kCacheStampOffset)
ACCESSORS(JSDate, year, Object, kYearOffset)
ACCESSORS(JSDate, month, Object, kMonthOffset)
ACCESSORS(JSDate, day, Object, kDayOffset)
ACCESSORS(JSDate, weekday, Object, kWeekdayOffset)
ACCESSORS(JSDate, hour, Object, kHourOffset)
ACCESSORS(JSDate, min, Object, kMinOffset)
ACCESSORS(JSDate, sec, Object, kSecOffset)
JSDate* JSDate::cast(Object* obj) {
ASSERT(obj->IsJSDate());
ASSERT(HeapObject::cast(obj)->Size() == JSDate::kSize);
return reinterpret_cast<JSDate*>(obj);
}
ACCESSORS(JSMessageObject, type, String, kTypeOffset)
ACCESSORS(JSMessageObject, arguments, JSArray, kArgumentsOffset)
ACCESSORS(JSMessageObject, script, Object, kScriptOffset)
ACCESSORS(JSMessageObject, stack_trace, Object, kStackTraceOffset)
ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset)
SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset)
SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset)
JSMessageObject* JSMessageObject::cast(Object* obj) {
ASSERT(obj->IsJSMessageObject());
ASSERT(HeapObject::cast(obj)->Size() == JSMessageObject::kSize);
return reinterpret_cast<JSMessageObject*>(obj);
}
INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset)
ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset)
ACCESSORS(Code, handler_table, FixedArray, kHandlerTableOffset)
ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset)
ACCESSORS(Code, type_feedback_info, Object, kTypeFeedbackInfoOffset)
ACCESSORS(Code, gc_metadata, Object, kGCMetadataOffset)
INT_ACCESSORS(Code, ic_age, kICAgeOffset)
byte* Code::instruction_start() {
return FIELD_ADDR(this, kHeaderSize);
}
byte* Code::instruction_end() {
return instruction_start() + instruction_size();
}
int Code::body_size() {
return RoundUp(instruction_size(), kObjectAlignment);
}
FixedArray* Code::unchecked_deoptimization_data() {
return reinterpret_cast<FixedArray*>(
READ_FIELD(this, kDeoptimizationDataOffset));
}
ByteArray* Code::unchecked_relocation_info() {
return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset));
}
byte* Code::relocation_start() {
return unchecked_relocation_info()->GetDataStartAddress();
}
int Code::relocation_size() {
return unchecked_relocation_info()->length();
}
byte* Code::entry() {
return instruction_start();
}
bool Code::contains(byte* inner_pointer) {
return (address() <= inner_pointer) && (inner_pointer <= address() + Size());
}
ACCESSORS(JSArray, length, Object, kLengthOffset)
ACCESSORS(JSRegExp, data, Object, kDataOffset)
JSRegExp::Type JSRegExp::TypeTag() {
Object* data = this->data();
if (data->IsUndefined()) return JSRegExp::NOT_COMPILED;
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex));
return static_cast<JSRegExp::Type>(smi->value());
}
JSRegExp::Type JSRegExp::TypeTagUnchecked() {
Smi* smi = Smi::cast(DataAtUnchecked(kTagIndex));
return static_cast<JSRegExp::Type>(smi->value());
}
int JSRegExp::CaptureCount() {
switch (TypeTag()) {
case ATOM:
return 0;
case IRREGEXP:
return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value();
default:
UNREACHABLE();
return -1;
}
}
JSRegExp::Flags JSRegExp::GetFlags() {
ASSERT(this->data()->IsFixedArray());
Object* data = this->data();
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex));
return Flags(smi->value());
}
String* JSRegExp::Pattern() {
ASSERT(this->data()->IsFixedArray());
Object* data = this->data();
String* pattern= String::cast(FixedArray::cast(data)->get(kSourceIndex));
return pattern;
}
Object* JSRegExp::DataAt(int index) {
ASSERT(TypeTag() != NOT_COMPILED);
return FixedArray::cast(data())->get(index);
}
Object* JSRegExp::DataAtUnchecked(int index) {
FixedArray* fa = reinterpret_cast<FixedArray*>(data());
int offset = FixedArray::kHeaderSize + index * kPointerSize;
return READ_FIELD(fa, offset);
}
void JSRegExp::SetDataAt(int index, Object* value) {
ASSERT(TypeTag() != NOT_COMPILED);
ASSERT(index >= kDataIndex); // Only implementation data can be set this way.
FixedArray::cast(data())->set(index, value);
}
void JSRegExp::SetDataAtUnchecked(int index, Object* value, Heap* heap) {
ASSERT(index >= kDataIndex); // Only implementation data can be set this way.
FixedArray* fa = reinterpret_cast<FixedArray*>(data());
if (value->IsSmi()) {
fa->set_unchecked(index, Smi::cast(value));
} else {
// We only do this during GC, so we don't need to notify the write barrier.
fa->set_unchecked(heap, index, value, SKIP_WRITE_BARRIER);
}
}
ElementsKind JSObject::GetElementsKind() {
ElementsKind kind = map()->elements_kind();
#if DEBUG
FixedArrayBase* fixed_array =
reinterpret_cast<FixedArrayBase*>(READ_FIELD(this, kElementsOffset));
Map* map = fixed_array->map();
ASSERT((IsFastSmiOrObjectElementsKind(kind) &&
(map == GetHeap()->fixed_array_map() ||
map == GetHeap()->fixed_cow_array_map())) ||
(IsFastDoubleElementsKind(kind) &&
(fixed_array->IsFixedDoubleArray() ||
fixed_array == GetHeap()->empty_fixed_array())) ||
(kind == DICTIONARY_ELEMENTS &&
fixed_array->IsFixedArray() &&
fixed_array->IsDictionary()) ||
(kind > DICTIONARY_ELEMENTS));
ASSERT((kind != NON_STRICT_ARGUMENTS_ELEMENTS) ||
(elements()->IsFixedArray() && elements()->length() >= 2));
#endif
return kind;
}
ElementsAccessor* JSObject::GetElementsAccessor() {
return ElementsAccessor::ForKind(GetElementsKind());
}
bool JSObject::HasFastObjectElements() {
return IsFastObjectElementsKind(GetElementsKind());
}
bool JSObject::HasFastSmiElements() {
return IsFastSmiElementsKind(GetElementsKind());
}
bool JSObject::HasFastSmiOrObjectElements() {
return IsFastSmiOrObjectElementsKind(GetElementsKind());
}
bool JSObject::HasFastDoubleElements() {
return IsFastDoubleElementsKind(GetElementsKind());
}
bool JSObject::HasFastHoleyElements() {
return IsFastHoleyElementsKind(GetElementsKind());
}
bool JSObject::HasDictionaryElements() {
return GetElementsKind() == DICTIONARY_ELEMENTS;
}
bool JSObject::HasNonStrictArgumentsElements() {
return GetElementsKind() == NON_STRICT_ARGUMENTS_ELEMENTS;
}
bool JSObject::HasExternalArrayElements() {
HeapObject* array = elements();
ASSERT(array != NULL);
return array->IsExternalArray();
}
#define EXTERNAL_ELEMENTS_CHECK(name, type) \
bool JSObject::HasExternal##name##Elements() { \
HeapObject* array = elements(); \
ASSERT(array != NULL); \
if (!array->IsHeapObject()) \
return false; \
return array->map()->instance_type() == type; \
}
EXTERNAL_ELEMENTS_CHECK(Byte, EXTERNAL_BYTE_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(UnsignedByte, EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(Short, EXTERNAL_SHORT_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(UnsignedShort,
EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(Int, EXTERNAL_INT_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(UnsignedInt,
EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(Float,
EXTERNAL_FLOAT_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(Double,
EXTERNAL_DOUBLE_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(Pixel, EXTERNAL_PIXEL_ARRAY_TYPE)
bool JSObject::HasNamedInterceptor() {
return map()->has_named_interceptor();
}
bool JSObject::HasIndexedInterceptor() {
return map()->has_indexed_interceptor();
}
MaybeObject* JSObject::EnsureWritableFastElements() {
ASSERT(HasFastSmiOrObjectElements());
FixedArray* elems = FixedArray::cast(elements());
Isolate* isolate = GetIsolate();
if (elems->map() != isolate->heap()->fixed_cow_array_map()) return elems;
Object* writable_elems;
{ MaybeObject* maybe_writable_elems = isolate->heap()->CopyFixedArrayWithMap(
elems, isolate->heap()->fixed_array_map());
if (!maybe_writable_elems->ToObject(&writable_elems)) {
return maybe_writable_elems;
}
}
set_elements(FixedArray::cast(writable_elems));
isolate->counters()->cow_arrays_converted()->Increment();
return writable_elems;
}
StringDictionary* JSObject::property_dictionary() {
ASSERT(!HasFastProperties());
return StringDictionary::cast(properties());
}
SeededNumberDictionary* JSObject::element_dictionary() {
ASSERT(HasDictionaryElements());
return SeededNumberDictionary::cast(elements());
}
bool String::IsHashFieldComputed(uint32_t field) {
return (field & kHashNotComputedMask) == 0;
}
bool String::HasHashCode() {
return IsHashFieldComputed(hash_field());
}
uint32_t String::Hash() {
// Fast case: has hash code already been computed?
uint32_t field = hash_field();
if (IsHashFieldComputed(field)) return field >> kHashShift;
// Slow case: compute hash code and set it.
return ComputeAndSetHash();
}
StringHasher::StringHasher(int length, uint32_t seed)
: length_(length),
raw_running_hash_(seed),
array_index_(0),
is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize),
is_first_char_(true),
is_valid_(true) {
ASSERT(FLAG_randomize_hashes || raw_running_hash_ == 0);
}
bool StringHasher::has_trivial_hash() {
return length_ > String::kMaxHashCalcLength;
}
void StringHasher::AddCharacter(uint32_t c) {
if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) {
AddSurrogatePair(c); // Not inlined.
return;
}
// Use the Jenkins one-at-a-time hash function to update the hash
// for the given character.
raw_running_hash_ += c;
raw_running_hash_ += (raw_running_hash_ << 10);
raw_running_hash_ ^= (raw_running_hash_ >> 6);
// Incremental array index computation.
if (is_array_index_) {
if (c < '0' || c > '9') {
is_array_index_ = false;
} else {
int d = c - '0';
if (is_first_char_) {
is_first_char_ = false;
if (c == '0' && length_ > 1) {
is_array_index_ = false;
return;
}
}
if (array_index_ > 429496729U - ((d + 2) >> 3)) {
is_array_index_ = false;
} else {
array_index_ = array_index_ * 10 + d;
}
}
}
}
void StringHasher::AddCharacterNoIndex(uint32_t c) {
ASSERT(!is_array_index());
if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) {
AddSurrogatePairNoIndex(c); // Not inlined.
return;
}
raw_running_hash_ += c;
raw_running_hash_ += (raw_running_hash_ << 10);
raw_running_hash_ ^= (raw_running_hash_ >> 6);
}
uint32_t StringHasher::GetHash() {
// Get the calculated raw hash value and do some more bit ops to distribute
// the hash further. Ensure that we never return zero as the hash value.
uint32_t result = raw_running_hash_;
result += (result << 3);
result ^= (result >> 11);
result += (result << 15);
if ((result & String::kHashBitMask) == 0) {
result = 27;
}
return result;
}
template <typename schar>
uint32_t HashSequentialString(const schar* chars, int length, uint32_t seed) {
StringHasher hasher(length, seed);
if (!hasher.has_trivial_hash()) {
int i;
for (i = 0; hasher.is_array_index() && (i < length); i++) {
hasher.AddCharacter(chars[i]);
}
for (; i < length; i++) {
hasher.AddCharacterNoIndex(chars[i]);
}
}
return hasher.GetHashField();
}
bool String::AsArrayIndex(uint32_t* index) {
uint32_t field = hash_field();
if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) {
return false;
}
return SlowAsArrayIndex(index);
}
Object* JSReceiver::GetPrototype() {
return map()->prototype();
}
Object* JSReceiver::GetConstructor() {
return map()->constructor();
}
bool JSReceiver::HasProperty(String* name) {
if (IsJSProxy()) {
return JSProxy::cast(this)->HasPropertyWithHandler(name);
}
return GetPropertyAttribute(name) != ABSENT;
}
bool JSReceiver::HasLocalProperty(String* name) {
if (IsJSProxy()) {
return JSProxy::cast(this)->HasPropertyWithHandler(name);
}
return GetLocalPropertyAttribute(name) != ABSENT;
}
PropertyAttributes JSReceiver::GetPropertyAttribute(String* key) {
return GetPropertyAttributeWithReceiver(this, key);
}
// TODO(504): this may be useful in other places too where JSGlobalProxy
// is used.
Object* JSObject::BypassGlobalProxy() {
if (IsJSGlobalProxy()) {
Object* proto = GetPrototype();
if (proto->IsNull()) return GetHeap()->undefined_value();
ASSERT(proto->IsJSGlobalObject());
return proto;
}
return this;
}
MaybeObject* JSReceiver::GetIdentityHash(CreationFlag flag) {
return IsJSProxy()
? JSProxy::cast(this)->GetIdentityHash(flag)
: JSObject::cast(this)->GetIdentityHash(flag);
}
bool JSReceiver::HasElement(uint32_t index) {
if (IsJSProxy()) {
return JSProxy::cast(this)->HasElementWithHandler(index);
}
return JSObject::cast(this)->HasElementWithReceiver(this, index);
}
bool AccessorInfo::all_can_read() {
return BooleanBit::get(flag(), kAllCanReadBit);
}
void AccessorInfo::set_all_can_read(bool value) {
set_flag(BooleanBit::set(flag(), kAllCanReadBit, value));
}
bool AccessorInfo::all_can_write() {
return BooleanBit::get(flag(), kAllCanWriteBit);
}
void AccessorInfo::set_all_can_write(bool value) {
set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value));
}
bool AccessorInfo::prohibits_overwriting() {
return BooleanBit::get(flag(), kProhibitsOverwritingBit);
}
void AccessorInfo::set_prohibits_overwriting(bool value) {
set_flag(BooleanBit::set(flag(), kProhibitsOverwritingBit, value));
}
PropertyAttributes AccessorInfo::property_attributes() {
return AttributesField::decode(static_cast<uint32_t>(flag()->value()));
}
void AccessorInfo::set_property_attributes(PropertyAttributes attributes) {
set_flag(Smi::FromInt(AttributesField::update(flag()->value(), attributes)));
}
bool AccessorInfo::IsCompatibleReceiver(Object* receiver) {
Object* function_template = expected_receiver_type();
if (!function_template->IsFunctionTemplateInfo()) return true;
return receiver->IsInstanceOf(FunctionTemplateInfo::cast(function_template));
}
template<typename Shape, typename Key>
void Dictionary<Shape, Key>::SetEntry(int entry,
Object* key,
Object* value) {
SetEntry(entry, key, value, PropertyDetails(Smi::FromInt(0)));
}
template<typename Shape, typename Key>
void Dictionary<Shape, Key>::SetEntry(int entry,
Object* key,
Object* value,
PropertyDetails details) {
ASSERT(!key->IsString() || details.IsDeleted() || details.index() > 0);
int index = HashTable<Shape, Key>::EntryToIndex(entry);
AssertNoAllocation no_gc;
WriteBarrierMode mode = FixedArray::GetWriteBarrierMode(no_gc);
FixedArray::set(index, key, mode);
FixedArray::set(index+1, value, mode);
FixedArray::set(index+2, details.AsSmi());
}
bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) {
ASSERT(other->IsNumber());
return key == static_cast<uint32_t>(other->Number());
}
uint32_t UnseededNumberDictionaryShape::Hash(uint32_t key) {
return ComputeIntegerHash(key, 0);
}
uint32_t UnseededNumberDictionaryShape::HashForObject(uint32_t key,
Object* other) {
ASSERT(other->IsNumber());
return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), 0);
}
uint32_t SeededNumberDictionaryShape::SeededHash(uint32_t key, uint32_t seed) {
return ComputeIntegerHash(key, seed);
}
uint32_t SeededNumberDictionaryShape::SeededHashForObject(uint32_t key,
uint32_t seed,
Object* other) {
ASSERT(other->IsNumber());
return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), seed);
}
MaybeObject* NumberDictionaryShape::AsObject(uint32_t key) {
return Isolate::Current()->heap()->NumberFromUint32(key);
}
bool StringDictionaryShape::IsMatch(String* key, Object* other) {
// We know that all entries in a hash table had their hash keys created.
// Use that knowledge to have fast failure.
if (key->Hash() != String::cast(other)->Hash()) return false;
return key->Equals(String::cast(other));
}
uint32_t StringDictionaryShape::Hash(String* key) {
return key->Hash();
}
uint32_t StringDictionaryShape::HashForObject(String* key, Object* other) {
return String::cast(other)->Hash();
}
MaybeObject* StringDictionaryShape::AsObject(String* key) {
return key;
}
template <int entrysize>
bool ObjectHashTableShape<entrysize>::IsMatch(Object* key, Object* other) {
return key->SameValue(other);
}
template <int entrysize>
uint32_t ObjectHashTableShape<entrysize>::Hash(Object* key) {
MaybeObject* maybe_hash = key->GetHash(OMIT_CREATION);
return Smi::cast(maybe_hash->ToObjectChecked())->value();
}
template <int entrysize>
uint32_t ObjectHashTableShape<entrysize>::HashForObject(Object* key,
Object* other) {
MaybeObject* maybe_hash = other->GetHash(OMIT_CREATION);
return Smi::cast(maybe_hash->ToObjectChecked())->value();
}
template <int entrysize>
MaybeObject* ObjectHashTableShape<entrysize>::AsObject(Object* key) {
return key;
}
void Map::ClearCodeCache(Heap* heap) {
// No write barrier is needed since empty_fixed_array is not in new space.
// Please note this function is used during marking:
// - MarkCompactCollector::MarkUnmarkedObject
// - IncrementalMarking::Step
ASSERT(!heap->InNewSpace(heap->raw_unchecked_empty_fixed_array()));
WRITE_FIELD(this, kCodeCacheOffset, heap->raw_unchecked_empty_fixed_array());
}
void JSArray::EnsureSize(int required_size) {
ASSERT(HasFastSmiOrObjectElements());
FixedArray* elts = FixedArray::cast(elements());
const int kArraySizeThatFitsComfortablyInNewSpace = 128;
if (elts->length() < required_size) {
// Doubling in size would be overkill, but leave some slack to avoid
// constantly growing.
Expand(required_size + (required_size >> 3));
// It's a performance benefit to keep a frequently used array in new-space.
} else if (!GetHeap()->new_space()->Contains(elts) &&
required_size < kArraySizeThatFitsComfortablyInNewSpace) {
// Expand will allocate a new backing store in new space even if the size
// we asked for isn't larger than what we had before.
Expand(required_size);
}
}
void JSArray::set_length(Smi* length) {
// Don't need a write barrier for a Smi.
set_length(static_cast<Object*>(length), SKIP_WRITE_BARRIER);
}
bool JSArray::AllowsSetElementsLength() {
bool result = elements()->IsFixedArray() || elements()->IsFixedDoubleArray();
ASSERT(result == !HasExternalArrayElements());
return result;
}
MaybeObject* JSArray::SetContent(FixedArrayBase* storage) {
MaybeObject* maybe_result = EnsureCanContainElements(
storage, storage->length(), ALLOW_COPIED_DOUBLE_ELEMENTS);
if (maybe_result->IsFailure()) return maybe_result;
ASSERT((storage->map() == GetHeap()->fixed_double_array_map() &&
IsFastDoubleElementsKind(GetElementsKind())) ||
((storage->map() != GetHeap()->fixed_double_array_map()) &&
(IsFastObjectElementsKind(GetElementsKind()) ||
(IsFastSmiElementsKind(GetElementsKind()) &&
FixedArray::cast(storage)->ContainsOnlySmisOrHoles()))));
set_elements(storage);
set_length(Smi::FromInt(storage->length()));
return this;
}
MaybeObject* FixedArray::Copy() {
if (length() == 0) return this;
return GetHeap()->CopyFixedArray(this);
}
MaybeObject* FixedDoubleArray::Copy() {
if (length() == 0) return this;
return GetHeap()->CopyFixedDoubleArray(this);
}
void TypeFeedbackCells::SetAstId(int index, Smi* id) {
set(1 + index * 2, id);
}
Smi* TypeFeedbackCells::AstId(int index) {
return Smi::cast(get(1 + index * 2));
}
void TypeFeedbackCells::SetCell(int index, JSGlobalPropertyCell* cell) {
set(index * 2, cell);
}
JSGlobalPropertyCell* TypeFeedbackCells::Cell(int index) {
return JSGlobalPropertyCell::cast(get(index * 2));
}
Handle<Object> TypeFeedbackCells::UninitializedSentinel(Isolate* isolate) {
return isolate->factory()->the_hole_value();
}
Handle<Object> TypeFeedbackCells::MegamorphicSentinel(Isolate* isolate) {
return isolate->factory()->undefined_value();
}
Object* TypeFeedbackCells::RawUninitializedSentinel(Heap* heap) {
return heap->raw_unchecked_the_hole_value();
}
SMI_ACCESSORS(TypeFeedbackInfo, ic_total_count, kIcTotalCountOffset)
SMI_ACCESSORS(TypeFeedbackInfo, ic_with_type_info_count,
kIcWithTypeinfoCountOffset)
ACCESSORS(TypeFeedbackInfo, type_feedback_cells, TypeFeedbackCells,
kTypeFeedbackCellsOffset)
SMI_ACCESSORS(AliasedArgumentsEntry, aliased_context_slot, kAliasedContextSlot)
Relocatable::Relocatable(Isolate* isolate) {
ASSERT(isolate == Isolate::Current());
isolate_ = isolate;
prev_ = isolate->relocatable_top();
isolate->set_relocatable_top(this);
}
Relocatable::~Relocatable() {
ASSERT(isolate_ == Isolate::Current());
ASSERT_EQ(isolate_->relocatable_top(), this);
isolate_->set_relocatable_top(prev_);
}
int JSObject::BodyDescriptor::SizeOf(Map* map, HeapObject* object) {
return map->instance_size();
}
void Foreign::ForeignIterateBody(ObjectVisitor* v) {
v->VisitExternalReference(
reinterpret_cast<Address*>(FIELD_ADDR(this, kForeignAddressOffset)));
}
template<typename StaticVisitor>
void Foreign::ForeignIterateBody() {
StaticVisitor::VisitExternalReference(
reinterpret_cast<Address*>(FIELD_ADDR(this, kForeignAddressOffset)));
}
void ExternalAsciiString::ExternalAsciiStringIterateBody(ObjectVisitor* v) {
typedef v8::String::ExternalAsciiStringResource Resource;
v->VisitExternalAsciiString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
template<typename StaticVisitor>
void ExternalAsciiString::ExternalAsciiStringIterateBody() {
typedef v8::String::ExternalAsciiStringResource Resource;
StaticVisitor::VisitExternalAsciiString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
void ExternalTwoByteString::ExternalTwoByteStringIterateBody(ObjectVisitor* v) {
typedef v8::String::ExternalStringResource Resource;
v->VisitExternalTwoByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
template<typename StaticVisitor>
void ExternalTwoByteString::ExternalTwoByteStringIterateBody() {
typedef v8::String::ExternalStringResource Resource;
StaticVisitor::VisitExternalTwoByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
#define SLOT_ADDR(obj, offset) \
reinterpret_cast<Object**>((obj)->address() + offset)
template<int start_offset, int end_offset, int size>
void FixedBodyDescriptor<start_offset, end_offset, size>::IterateBody(
HeapObject* obj,
ObjectVisitor* v) {
v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, end_offset));
}
template<int start_offset>
void FlexibleBodyDescriptor<start_offset>::IterateBody(HeapObject* obj,
int object_size,
ObjectVisitor* v) {
v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, object_size));
}
#undef SLOT_ADDR
#undef TYPE_CHECKER
#undef CAST_ACCESSOR
#undef INT_ACCESSORS
#undef ACCESSORS
#undef ACCESSORS_TO_SMI
#undef SMI_ACCESSORS
#undef BOOL_GETTER
#undef BOOL_ACCESSORS
#undef FIELD_ADDR
#undef READ_FIELD
#undef WRITE_FIELD
#undef WRITE_BARRIER
#undef CONDITIONAL_WRITE_BARRIER
#undef READ_DOUBLE_FIELD
#undef WRITE_DOUBLE_FIELD
#undef READ_INT_FIELD
#undef WRITE_INT_FIELD
#undef READ_INTPTR_FIELD
#undef WRITE_INTPTR_FIELD
#undef READ_UINT32_FIELD
#undef WRITE_UINT32_FIELD
#undef READ_SHORT_FIELD
#undef WRITE_SHORT_FIELD
#undef READ_BYTE_FIELD
#undef WRITE_BYTE_FIELD
} } // namespace v8::internal
#endif // V8_OBJECTS_INL_H_