This source file includes following definitions.
- destroy
- init
- initializeGeoms
- startCompressFrame
- threadMain
- processTasks
- getBsLength
- compressFrame
- encodeSlice
- processRow
- processRowEncoder
- collectCTUStatistics
- noiseReductionUpdate
- getEncodedPicture
#include "common.h"
#include "frame.h"
#include "framedata.h"
#include "wavefront.h"
#include "param.h"
#include "encoder.h"
#include "frameencoder.h"
#include "common.h"
#include "slicetype.h"
#include "nal.h"
namespace X265_NS {
void weightAnalyse(Slice& slice, Frame& frame, x265_param& param);
FrameEncoder::FrameEncoder()
{
m_prevOutputTime = x265_mdate();
m_reconfigure = false;
m_isFrameEncoder = true;
m_threadActive = true;
m_slicetypeWaitTime = 0;
m_activeWorkerCount = 0;
m_completionCount = 0;
m_bAllRowsStop = false;
m_vbvResetTriggerRow = -1;
m_outStreams = NULL;
m_backupStreams = NULL;
m_substreamSizes = NULL;
m_nr = NULL;
m_tld = NULL;
m_rows = NULL;
m_top = NULL;
m_param = NULL;
m_frame = NULL;
m_cuGeoms = NULL;
m_ctuGeomMap = NULL;
m_localTldIdx = 0;
memset(&m_rce, 0, sizeof(RateControlEntry));
}
void FrameEncoder::destroy()
{
if (m_pool)
{
if (!m_jpId)
{
int numTLD = m_pool->m_numWorkers;
if (!m_param->bEnableWavefront)
numTLD += m_pool->m_numProviders;
for (int i = 0; i < numTLD; i++)
m_tld[i].destroy();
delete [] m_tld;
}
}
else
{
m_tld->destroy();
delete m_tld;
}
delete[] m_rows;
delete[] m_outStreams;
delete[] m_backupStreams;
X265_FREE(m_sliceBaseRow);
X265_FREE(m_cuGeoms);
X265_FREE(m_ctuGeomMap);
X265_FREE(m_substreamSizes);
X265_FREE(m_nr);
m_frameFilter.destroy();
if (m_param->bEmitHRDSEI || !!m_param->interlaceMode)
{
delete m_rce.picTimingSEI;
delete m_rce.hrdTiming;
}
}
bool FrameEncoder::init(Encoder *top, int numRows, int numCols)
{
m_top = top;
m_param = top->m_param;
m_numRows = numRows;
m_numCols = numCols;
m_reconfigure = false;
m_filterRowDelay = ((m_param->bEnableSAO && m_param->bSaoNonDeblocked)
|| (!m_param->bEnableLoopFilter && m_param->bEnableSAO)) ?
2 : (m_param->bEnableSAO || m_param->bEnableLoopFilter ? 1 : 0);
m_filterRowDelayCus = m_filterRowDelay * numCols;
m_rows = new CTURow[m_numRows];
bool ok = !!m_numRows;
m_sliceBaseRow = X265_MALLOC(uint32_t, m_param->maxSlices + 1);
ok &= !!m_sliceBaseRow;
int range = m_param->searchRange;
range += !!(m_param->searchMethod < 2);
range += NTAPS_LUMA / 2;
range += 2 + (MotionEstimate::hpelIterationCount(m_param->subpelRefine) + 1) / 2;
m_refLagRows = 1 + ((range + m_param->maxCUSize - 1) / m_param->maxCUSize);
if (!WaveFront::init(m_numRows * 2))
{
x265_log(m_param, X265_LOG_ERROR, "unable to initialize wavefront queue\n");
m_pool = NULL;
}
m_frameFilter.init(top, this, numRows, numCols);
if (m_param->bEmitHRDSEI || !!m_param->interlaceMode)
{
m_rce.picTimingSEI = new SEIPictureTiming;
m_rce.hrdTiming = new HRDTiming;
ok &= m_rce.picTimingSEI && m_rce.hrdTiming;
}
if (m_param->noiseReductionIntra || m_param->noiseReductionInter || m_param->rc.vbvBufferSize)
m_nr = X265_MALLOC(NoiseReduction, 1);
if (m_nr)
memset(m_nr, 0, sizeof(NoiseReduction));
else
m_param->noiseReductionIntra = m_param->noiseReductionInter = 0;
{
unsigned long tmp;
CLZ(tmp, (numRows * numCols - 1));
m_sliceAddrBits = (uint16_t)(tmp + 1);
}
return ok;
}
bool FrameEncoder::initializeGeoms()
{
int maxCUSize = m_param->maxCUSize;
int minCUSize = m_param->minCUSize;
int heightRem = m_param->sourceHeight & (maxCUSize - 1);
int widthRem = m_param->sourceWidth & (maxCUSize - 1);
int allocGeoms = 1;
if (heightRem && widthRem)
allocGeoms = 4;
else if (heightRem || widthRem)
allocGeoms = 2;
m_ctuGeomMap = X265_MALLOC(uint32_t, m_numRows * m_numCols);
m_cuGeoms = X265_MALLOC(CUGeom, allocGeoms * CUGeom::MAX_GEOMS);
if (!m_cuGeoms || !m_ctuGeomMap)
return false;
CUData::calcCTUGeoms(maxCUSize, maxCUSize, maxCUSize, minCUSize, m_cuGeoms);
memset(m_ctuGeomMap, 0, sizeof(uint32_t) * m_numRows * m_numCols);
if (allocGeoms == 1)
return true;
int countGeoms = 1;
if (widthRem)
{
CUData::calcCTUGeoms(widthRem, maxCUSize, maxCUSize, minCUSize, m_cuGeoms + countGeoms * CUGeom::MAX_GEOMS);
for (uint32_t i = 0; i < m_numRows; i++)
{
uint32_t ctuAddr = m_numCols * (i + 1) - 1;
m_ctuGeomMap[ctuAddr] = countGeoms * CUGeom::MAX_GEOMS;
}
countGeoms++;
}
if (heightRem)
{
CUData::calcCTUGeoms(maxCUSize, heightRem, maxCUSize, minCUSize, m_cuGeoms + countGeoms * CUGeom::MAX_GEOMS);
for (uint32_t i = 0; i < m_numCols; i++)
{
uint32_t ctuAddr = m_numCols * (m_numRows - 1) + i;
m_ctuGeomMap[ctuAddr] = countGeoms * CUGeom::MAX_GEOMS;
}
countGeoms++;
if (widthRem)
{
CUData::calcCTUGeoms(widthRem, heightRem, maxCUSize, minCUSize, m_cuGeoms + countGeoms * CUGeom::MAX_GEOMS);
uint32_t ctuAddr = m_numCols * m_numRows - 1;
m_ctuGeomMap[ctuAddr] = countGeoms * CUGeom::MAX_GEOMS;
countGeoms++;
}
X265_CHECK(countGeoms == allocGeoms, "geometry match check failure\n");
}
return true;
}
bool FrameEncoder::startCompressFrame(Frame* curFrame)
{
m_slicetypeWaitTime = x265_mdate() - m_prevOutputTime;
m_frame = curFrame;
m_sliceType = curFrame->m_lowres.sliceType;
curFrame->m_encData->m_frameEncoderID = m_jpId;
curFrame->m_encData->m_jobProvider = this;
curFrame->m_encData->m_slice->m_mref = m_mref;
if (!m_cuGeoms)
{
if (!initializeGeoms())
return false;
}
m_enable.trigger();
return true;
}
void FrameEncoder::threadMain()
{
THREAD_NAME("Frame", m_jpId);
if (m_pool)
{
m_pool->setCurrentThreadAffinity();
if (!m_jpId)
{
int numTLD = m_pool->m_numWorkers;
if (!m_param->bEnableWavefront)
numTLD += m_pool->m_numProviders;
m_tld = new ThreadLocalData[numTLD];
for (int i = 0; i < numTLD; i++)
{
m_tld[i].analysis.initSearch(*m_param, m_top->m_scalingList);
m_tld[i].analysis.create(m_tld);
}
for (int i = 0; i < m_pool->m_numProviders; i++)
{
if (m_pool->m_jpTable[i]->m_isFrameEncoder)
{
FrameEncoder *peer = dynamic_cast<FrameEncoder*>(m_pool->m_jpTable[i]);
peer->m_tld = m_tld;
}
}
}
if (m_param->bEnableWavefront)
m_localTldIdx = -1;
else
m_localTldIdx = m_pool->m_numWorkers + m_jpId;
}
else
{
m_tld = new ThreadLocalData;
m_tld->analysis.initSearch(*m_param, m_top->m_scalingList);
m_tld->analysis.create(NULL);
m_localTldIdx = 0;
}
m_done.trigger();
m_enable.wait();
while (m_threadActive)
{
if (m_param->bCTUInfo)
{
while (!m_frame->m_ctuInfo)
m_frame->m_copied.wait();
}
compressFrame();
m_done.trigger();
m_enable.wait();
}
}
void FrameEncoder::WeightAnalysis::processTasks(int )
{
Frame* frame = master.m_frame;
weightAnalyse(*frame->m_encData->m_slice, *frame, *master.m_param);
}
uint32_t getBsLength( int32_t code )
{
uint32_t ucode = (code <= 0) ? -code << 1 : (code << 1) - 1;
++ucode;
unsigned long idx;
CLZ( idx, ucode );
uint32_t length = (uint32_t)idx * 2 + 1;
return length;
}
void FrameEncoder::compressFrame()
{
ProfileScopeEvent(frameThread);
m_startCompressTime = x265_mdate();
m_totalActiveWorkerCount = 0;
m_activeWorkerCountSamples = 0;
m_totalWorkerElapsedTime = 0;
m_totalNoWorkerTime = 0;
m_countRowBlocks = 0;
m_allRowsAvailableTime = 0;
m_stallStartTime = 0;
m_completionCount = 0;
m_bAllRowsStop = false;
m_vbvResetTriggerRow = -1;
m_SSDY = m_SSDU = m_SSDV = 0;
m_ssim = 0;
m_ssimCnt = 0;
memset(&(m_frame->m_encData->m_frameStats), 0, sizeof(m_frame->m_encData->m_frameStats));
Slice* slice = m_frame->m_encData->m_slice;
if (m_param->bEnableAccessUnitDelimiters && (m_frame->m_poc || m_param->bRepeatHeaders))
{
m_bs.resetBits();
m_entropyCoder.setBitstream(&m_bs);
m_entropyCoder.codeAUD(*slice);
m_bs.writeByteAlignment();
m_nalList.serialize(NAL_UNIT_ACCESS_UNIT_DELIMITER, m_bs);
}
if (m_frame->m_lowres.bKeyframe && m_param->bRepeatHeaders)
{
if (m_param->bOptRefListLengthPPS)
{
ScopedLock refIdxLock(m_top->m_sliceRefIdxLock);
m_top->updateRefIdx();
}
if (m_top->m_param->rc.bStatRead && m_top->m_param->bMultiPassOptRPS)
{
ScopedLock refIdxLock(m_top->m_rpsInSpsLock);
if (!m_top->computeSPSRPSIndex())
{
x265_log(m_param, X265_LOG_ERROR, "compute commonly RPS failed!\n");
m_top->m_aborted = true;
}
m_top->getStreamHeaders(m_nalList, m_entropyCoder, m_bs);
}
else
m_top->getStreamHeaders(m_nalList, m_entropyCoder, m_bs);
}
if (m_top->m_param->rc.bStatRead && m_top->m_param->bMultiPassOptRPS)
m_frame->m_encData->m_slice->m_rpsIdx = (m_top->m_rateControl->m_rce2Pass + m_frame->m_encodeOrder)->rpsIdx;
bool bUseWeightP = slice->m_sliceType == P_SLICE && slice->m_pps->bUseWeightPred;
bool bUseWeightB = slice->m_sliceType == B_SLICE && slice->m_pps->bUseWeightedBiPred;
WeightParam* reuseWP = NULL;
if (m_param->analysisReuseMode && (bUseWeightP || bUseWeightB))
reuseWP = (WeightParam*)m_frame->m_analysisData.wt;
if (bUseWeightP || bUseWeightB)
{
#if DETAILED_CU_STATS
m_cuStats.countWeightAnalyze++;
ScopedElapsedTime time(m_cuStats.weightAnalyzeTime);
#endif
if (m_param->analysisReuseMode == X265_ANALYSIS_LOAD)
{
for (int list = 0; list < slice->isInterB() + 1; list++)
{
for (int plane = 0; plane < (m_param->internalCsp != X265_CSP_I400 ? 3 : 1); plane++)
{
for (int ref = 1; ref < slice->m_numRefIdx[list]; ref++)
SET_WEIGHT(slice->m_weightPredTable[list][ref][plane], false, 1 << reuseWP->log2WeightDenom, reuseWP->log2WeightDenom, 0);
slice->m_weightPredTable[list][0][plane] = *(reuseWP++);
}
}
}
else
{
WeightAnalysis wa(*this);
if (m_pool && wa.tryBondPeers(*this, 1))
wa.waitForExit();
else
weightAnalyse(*slice, *m_frame, *m_param);
}
}
else
slice->disableWeights();
int numPredDir = slice->isInterP() ? 1 : slice->isInterB() ? 2 : 0;
for (int l = 0; l < numPredDir; l++)
{
for (int ref = 0; ref < slice->m_numRefIdx[l]; ref++)
{
WeightParam *w = NULL;
if ((bUseWeightP || bUseWeightB) && slice->m_weightPredTable[l][ref][0].bPresentFlag)
w = slice->m_weightPredTable[l][ref];
slice->m_refReconPicList[l][ref] = slice->m_refFrameList[l][ref]->m_reconPic;
m_mref[l][ref].init(slice->m_refReconPicList[l][ref], w, *m_param);
}
if (m_param->analysisReuseMode == X265_ANALYSIS_SAVE && (bUseWeightP || bUseWeightB))
{
for (int i = 0; i < (m_param->internalCsp != X265_CSP_I400 ? 3 : 1); i++)
*(reuseWP++) = slice->m_weightPredTable[l][0][i];
}
}
int numTLD;
if (m_pool)
numTLD = m_param->bEnableWavefront ? m_pool->m_numWorkers : m_pool->m_numWorkers + m_pool->m_numProviders;
else
numTLD = 1;
m_rce.encodeOrder = m_frame->m_encodeOrder;
bool payloadChange = false;
bool writeSei = true;
if (m_param->bDhdr10opt)
{
for (int i = 0; i < m_frame->m_userSEI.numPayloads; i++)
{
x265_sei_payload *payload = &m_frame->m_userSEI.payloads[i];
if(payload->payloadType == USER_DATA_REGISTERED_ITU_T_T35)
{
if (m_top->m_prevTonemapPayload.payload != NULL && payload->payloadSize == m_top->m_prevTonemapPayload.payloadSize)
{
if (memcmp(m_top->m_prevTonemapPayload.payload, payload->payload, payload->payloadSize) != 0)
payloadChange = true;
}
else
{
payloadChange = true;
if (m_top->m_prevTonemapPayload.payload != NULL)
x265_free(m_top->m_prevTonemapPayload.payload);
m_top->m_prevTonemapPayload.payload = (uint8_t*)x265_malloc(sizeof(uint8_t) * payload->payloadSize);
}
if (payloadChange)
{
m_top->m_prevTonemapPayload.payloadType = payload->payloadType;
m_top->m_prevTonemapPayload.payloadSize = payload->payloadSize;
memcpy(m_top->m_prevTonemapPayload.payload, payload->payload, payload->payloadSize);
}
bool isIDR = m_frame->m_lowres.sliceType == X265_TYPE_IDR;
writeSei = payloadChange || isIDR;
}
}
}
int qp = m_top->m_rateControl->rateControlStart(m_frame, &m_rce, m_top);
m_rce.newQp = qp;
if (m_nr)
{
if (qp > QP_MAX_SPEC && m_frame->m_param->rc.vbvBufferSize)
{
for (int i = 0; i < numTLD; i++)
{
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].offset = m_top->m_offsetEmergency[qp - QP_MAX_SPEC - 1];
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].residualSum = m_top->m_residualSumEmergency;
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].count = m_top->m_countEmergency;
}
}
else
{
if (m_param->noiseReductionIntra || m_param->noiseReductionInter)
{
for (int i = 0; i < numTLD; i++)
{
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].offset = m_tld[i].analysis.m_quant.m_frameNr[m_jpId].nrOffsetDenoise;
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].residualSum = m_tld[i].analysis.m_quant.m_frameNr[m_jpId].nrResidualSum;
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].count = m_tld[i].analysis.m_quant.m_frameNr[m_jpId].nrCount;
}
}
else
{
for (int i = 0; i < numTLD; i++)
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].offset = NULL;
}
}
}
slice->m_sliceQp = x265_clip3(-QP_BD_OFFSET, QP_MAX_SPEC, qp);
if (m_param->bHDROpt)
{
int qpCb = x265_clip3(-12, 0, (int)floor((m_top->m_cB * ((-.46) * qp + 9.26)) + 0.5 ));
int qpCr = x265_clip3(-12, 0, (int)floor((m_top->m_cR * ((-.46) * qp + 9.26)) + 0.5 ));
slice->m_chromaQpOffset[0] = slice->m_pps->chromaQpOffset[0] + qpCb < -12 ? (qpCb + (-12 - (slice->m_pps->chromaQpOffset[0] + qpCb))) : qpCb;
slice->m_chromaQpOffset[1] = slice->m_pps->chromaQpOffset[1] + qpCr < -12 ? (qpCr + (-12 - (slice->m_pps->chromaQpOffset[1] + qpCr))) : qpCr;
}
if (m_param->bOptQpPPS && m_param->bRepeatHeaders)
{
ScopedLock qpLock(m_top->m_sliceQpLock);
for (int i = 0; i < (QP_MAX_MAX + 1); i++)
{
int delta = slice->m_sliceQp - (i + 1);
int codeLength = getBsLength( delta );
m_top->m_iBitsCostSum[i] += codeLength;
}
m_top->m_iFrameNum++;
}
m_initSliceContext.resetEntropy(*slice);
m_frameFilter.start(m_frame, m_initSliceContext);
WaveFront::clearEnabledRowMask();
m_entropyCoder.load(m_initSliceContext);
const uint32_t sliceGroupSize = (m_numRows + m_param->maxSlices - 1) / m_param->maxSlices;
const uint32_t sliceGroupSizeAccu = (m_numRows << 8) / m_param->maxSlices;
m_sliceGroupSize = (uint16_t)sliceGroupSize;
uint32_t rowSum = sliceGroupSizeAccu;
uint32_t sidx = 0;
for (uint32_t i = 0; i < m_numRows; i++)
{
const uint32_t rowRange = (rowSum >> 8);
if ((i >= rowRange) & (sidx != m_param->maxSlices - 1))
{
rowSum += sliceGroupSizeAccu;
m_sliceBaseRow[++sidx] = i;
}
m_rows[i].init(m_initSliceContext, sidx);
}
X265_CHECK(sidx < m_param->maxSlices, "sliceID check failed!");
m_sliceBaseRow[0] = 0;
m_sliceBaseRow[m_param->maxSlices] = m_numRows;
uint32_t numSubstreams = m_param->bEnableWavefront ? slice->m_sps->numCuInHeight : m_param->maxSlices;
X265_CHECK(m_param->bEnableWavefront || (m_param->maxSlices == 1), "Multiple slices without WPP unsupport now!");
if (!m_outStreams)
{
m_outStreams = new Bitstream[numSubstreams];
if (!m_param->bEnableWavefront)
m_backupStreams = new Bitstream[numSubstreams];
m_substreamSizes = X265_MALLOC(uint32_t, numSubstreams);
if (!m_param->bEnableSAO)
for (uint32_t i = 0; i < numSubstreams; i++)
m_rows[i].rowGoOnCoder.setBitstream(&m_outStreams[i]);
}
else
for (uint32_t i = 0; i < numSubstreams; i++)
m_outStreams[i].resetBits();
int prevBPSEI = m_rce.encodeOrder ? m_top->m_lastBPSEI : 0;
if (m_frame->m_lowres.bKeyframe)
{
if (m_param->bEmitHRDSEI)
{
SEIBufferingPeriod* bpSei = &m_top->m_rateControl->m_bufPeriodSEI;
bpSei->m_auCpbRemovalDelayDelta = 1;
bpSei->m_cpbDelayOffset = 0;
bpSei->m_dpbDelayOffset = 0;
m_top->m_rateControl->hrdFullness(bpSei);
m_bs.resetBits();
bpSei->write(m_bs, *slice->m_sps);
m_bs.writeByteAlignment();
m_nalList.serialize(NAL_UNIT_PREFIX_SEI, m_bs);
m_top->m_lastBPSEI = m_rce.encodeOrder;
}
}
if ((m_param->bEmitHRDSEI || !!m_param->interlaceMode))
{
SEIPictureTiming *sei = m_rce.picTimingSEI;
const VUI *vui = &slice->m_sps->vuiParameters;
const HRDInfo *hrd = &vui->hrdParameters;
int poc = slice->m_poc;
if (vui->frameFieldInfoPresentFlag)
{
if (m_param->interlaceMode == 2)
sei->m_picStruct = (poc & 1) ? 1 : 2 ;
else if (m_param->interlaceMode == 1)
sei->m_picStruct = (poc & 1) ? 2 : 1 ;
else
sei->m_picStruct = 0;
sei->m_sourceScanType = 0;
sei->m_duplicateFlag = false;
}
if (vui->hrdParametersPresentFlag)
{
sei->m_auCpbRemovalDelay = X265_MIN(X265_MAX(1, m_rce.encodeOrder - prevBPSEI), (1 << hrd->cpbRemovalDelayLength));
sei->m_picDpbOutputDelay = slice->m_sps->numReorderPics + poc - m_rce.encodeOrder;
}
m_bs.resetBits();
sei->write(m_bs, *slice->m_sps);
m_bs.writeByteAlignment();
m_nalList.serialize(NAL_UNIT_PREFIX_SEI, m_bs);
}
for (int i = 0; i < m_frame->m_userSEI.numPayloads; i++)
{
x265_sei_payload *payload = &m_frame->m_userSEI.payloads[i];
if (payload->payloadType == USER_DATA_UNREGISTERED)
{
SEIuserDataUnregistered sei;
sei.m_userData = payload->payload;
m_bs.resetBits();
sei.setSize(payload->payloadSize);
sei.write(m_bs, *slice->m_sps);
m_bs.writeByteAlignment();
m_nalList.serialize(NAL_UNIT_PREFIX_SEI, m_bs);
}
else if (payload->payloadType == USER_DATA_REGISTERED_ITU_T_T35)
{
if (writeSei)
{
SEICreativeIntentMeta sei;
sei.m_payload = payload->payload;
m_bs.resetBits();
sei.setSize(payload->payloadSize);
sei.write(m_bs, *slice->m_sps);
m_bs.writeByteAlignment();
m_nalList.serialize(NAL_UNIT_PREFIX_SEI, m_bs);
}
}
else
x265_log(m_param, X265_LOG_ERROR, "Unrecognized SEI type\n");
}
if (m_param->rc.rateControlMode != X265_RC_ABR && !m_top->m_rateControl->m_isVbv)
{
m_top->m_rateControl->m_startEndOrder.incr();
if (m_rce.encodeOrder < m_param->frameNumThreads - 1)
m_top->m_rateControl->m_startEndOrder.incr();
}
for (uint32_t sliceId = 0; sliceId < m_param->maxSlices; sliceId++)
{
m_rows[m_sliceBaseRow[sliceId]].active = true;
}
if (m_param->bEnableWavefront)
{
for (uint32_t rowInSlice = 0; rowInSlice < m_sliceGroupSize; rowInSlice++)
{
for (uint32_t sliceId = 0; sliceId < m_param->maxSlices; sliceId++)
{
const uint32_t sliceStartRow = m_sliceBaseRow[sliceId];
const uint32_t sliceEndRow = m_sliceBaseRow[sliceId + 1] - 1;
const uint32_t row = sliceStartRow + rowInSlice;
X265_CHECK(row < m_numRows, "slices row fault was detected");
if (row > sliceEndRow)
continue;
for (int l = 0; l < numPredDir; l++)
{
for (int ref = 0; ref < slice->m_numRefIdx[l]; ref++)
{
Frame *refpic = slice->m_refFrameList[l][ref];
const int rowIdx = X265_MIN(sliceEndRow, (row + m_refLagRows));
while (refpic->m_reconRowFlag[rowIdx].get() == 0)
refpic->m_reconRowFlag[rowIdx].waitForChange(0);
if ((bUseWeightP || bUseWeightB) && m_mref[l][ref].isWeighted)
m_mref[l][ref].applyWeight(rowIdx, m_numRows, sliceEndRow, sliceId);
}
}
enableRowEncoder(row);
if (!rowInSlice)
{
m_row0WaitTime = x265_mdate();
enqueueRowEncoder(row);
}
tryWakeOne();
}
}
m_allRowsAvailableTime = x265_mdate();
tryWakeOne();
static const int block_ms = 250;
while (m_completionEvent.timedWait(block_ms))
tryWakeOne();
}
else
{
for (uint32_t i = 0; i < m_numRows + m_filterRowDelay; i++)
{
if (i < m_numRows)
{
for (int l = 0; l < numPredDir; l++)
{
int list = l;
for (int ref = 0; ref < slice->m_numRefIdx[list]; ref++)
{
Frame *refpic = slice->m_refFrameList[list][ref];
const int rowIdx = X265_MIN(m_numRows - 1, (i + m_refLagRows));
while (refpic->m_reconRowFlag[rowIdx].get() == 0)
refpic->m_reconRowFlag[rowIdx].waitForChange(0);
if ((bUseWeightP || bUseWeightB) && m_mref[l][ref].isWeighted)
m_mref[list][ref].applyWeight(rowIdx, m_numRows, m_numRows, 0);
}
}
if (!i)
m_row0WaitTime = x265_mdate();
else if (i == m_numRows - 1)
m_allRowsAvailableTime = x265_mdate();
processRowEncoder(i, m_tld[m_localTldIdx]);
}
if (i >= m_filterRowDelay)
m_frameFilter.processRow(i - m_filterRowDelay);
}
}
if (m_param->maxSlices > 1)
{
PicYuv *reconPic = m_frame->m_reconPic;
uint32_t height = reconPic->m_picHeight;
uint32_t width = reconPic->m_picWidth;
intptr_t stride = reconPic->m_stride;
const uint32_t hChromaShift = CHROMA_H_SHIFT(m_param->internalCsp);
const uint32_t vChromaShift = CHROMA_V_SHIFT(m_param->internalCsp);
if (m_param->decodedPictureHashSEI == 1)
{
MD5Init(&m_state[0]);
updateMD5Plane(m_state[0], reconPic->m_picOrg[0], width, height, stride);
if (m_param->internalCsp != X265_CSP_I400)
{
MD5Init(&m_state[1]);
MD5Init(&m_state[2]);
width >>= hChromaShift;
height >>= vChromaShift;
stride = reconPic->m_strideC;
updateMD5Plane(m_state[1], reconPic->m_picOrg[1], width, height, stride);
updateMD5Plane(m_state[2], reconPic->m_picOrg[2], width, height, stride);
}
}
else if (m_param->decodedPictureHashSEI == 2)
{
m_crc[0] = 0xffff;
updateCRC(reconPic->m_picOrg[0], m_crc[0], height, width, stride);
if (m_param->internalCsp != X265_CSP_I400)
{
width >>= hChromaShift;
height >>= vChromaShift;
stride = reconPic->m_strideC;
m_crc[1] = m_crc[2] = 0xffff;
updateCRC(reconPic->m_picOrg[1], m_crc[1], height, width, stride);
updateCRC(reconPic->m_picOrg[2], m_crc[2], height, width, stride);
}
}
else if (m_param->decodedPictureHashSEI == 3)
{
uint32_t cuHeight = m_param->maxCUSize;
m_checksum[0] = 0;
updateChecksum(reconPic->m_picOrg[0], m_checksum[0], height, width, stride, 0, cuHeight);
if (m_param->internalCsp != X265_CSP_I400)
{
width >>= hChromaShift;
height >>= vChromaShift;
stride = reconPic->m_strideC;
cuHeight >>= vChromaShift;
m_checksum[1] = m_checksum[2] = 0;
updateChecksum(reconPic->m_picOrg[1], m_checksum[1], height, width, stride, 0, cuHeight);
updateChecksum(reconPic->m_picOrg[2], m_checksum[2], height, width, stride, 0, cuHeight);
}
}
}
if (m_param->rc.bStatWrite)
{
int totalI = 0, totalP = 0, totalSkip = 0;
for (uint32_t i = 0; i < m_numRows; i++)
{
m_frame->m_encData->m_frameStats.mvBits += m_rows[i].rowStats.mvBits;
m_frame->m_encData->m_frameStats.coeffBits += m_rows[i].rowStats.coeffBits;
m_frame->m_encData->m_frameStats.miscBits += m_rows[i].rowStats.miscBits;
totalI += m_rows[i].rowStats.intra8x8Cnt;
totalP += m_rows[i].rowStats.inter8x8Cnt;
totalSkip += m_rows[i].rowStats.skip8x8Cnt;
}
int totalCuCount = totalI + totalP + totalSkip;
m_frame->m_encData->m_frameStats.percent8x8Intra = (double)totalI / totalCuCount;
m_frame->m_encData->m_frameStats.percent8x8Inter = (double)totalP / totalCuCount;
m_frame->m_encData->m_frameStats.percent8x8Skip = (double)totalSkip / totalCuCount;
}
if (m_param->csvLogLevel >= 1)
{
for (uint32_t i = 0; i < m_numRows; i++)
{
m_frame->m_encData->m_frameStats.cntIntraNxN += m_rows[i].rowStats.cntIntraNxN;
m_frame->m_encData->m_frameStats.totalCu += m_rows[i].rowStats.totalCu;
m_frame->m_encData->m_frameStats.totalCtu += m_rows[i].rowStats.totalCtu;
m_frame->m_encData->m_frameStats.lumaDistortion += m_rows[i].rowStats.lumaDistortion;
m_frame->m_encData->m_frameStats.chromaDistortion += m_rows[i].rowStats.chromaDistortion;
m_frame->m_encData->m_frameStats.psyEnergy += m_rows[i].rowStats.psyEnergy;
m_frame->m_encData->m_frameStats.ssimEnergy += m_rows[i].rowStats.ssimEnergy;
m_frame->m_encData->m_frameStats.resEnergy += m_rows[i].rowStats.resEnergy;
for (uint32_t depth = 0; depth <= m_param->maxCUDepth; depth++)
{
m_frame->m_encData->m_frameStats.cntSkipCu[depth] += m_rows[i].rowStats.cntSkipCu[depth];
m_frame->m_encData->m_frameStats.cntMergeCu[depth] += m_rows[i].rowStats.cntMergeCu[depth];
for (int m = 0; m < INTER_MODES; m++)
m_frame->m_encData->m_frameStats.cuInterDistribution[depth][m] += m_rows[i].rowStats.cuInterDistribution[depth][m];
for (int n = 0; n < INTRA_MODES; n++)
m_frame->m_encData->m_frameStats.cuIntraDistribution[depth][n] += m_rows[i].rowStats.cuIntraDistribution[depth][n];
}
}
m_frame->m_encData->m_frameStats.percentIntraNxN = (double)(m_frame->m_encData->m_frameStats.cntIntraNxN * 100) / m_frame->m_encData->m_frameStats.totalCu;
for (uint32_t depth = 0; depth <= m_param->maxCUDepth; depth++)
{
m_frame->m_encData->m_frameStats.percentSkipCu[depth] = (double)(m_frame->m_encData->m_frameStats.cntSkipCu[depth] * 100) / m_frame->m_encData->m_frameStats.totalCu;
m_frame->m_encData->m_frameStats.percentMergeCu[depth] = (double)(m_frame->m_encData->m_frameStats.cntMergeCu[depth] * 100) / m_frame->m_encData->m_frameStats.totalCu;
for (int n = 0; n < INTRA_MODES; n++)
m_frame->m_encData->m_frameStats.percentIntraDistribution[depth][n] = (double)(m_frame->m_encData->m_frameStats.cuIntraDistribution[depth][n] * 100) / m_frame->m_encData->m_frameStats.totalCu;
uint64_t cuInterRectCnt = 0;
cuInterRectCnt += m_frame->m_encData->m_frameStats.cuInterDistribution[depth][1] + m_frame->m_encData->m_frameStats.cuInterDistribution[depth][2];
m_frame->m_encData->m_frameStats.percentInterDistribution[depth][0] = (double)(m_frame->m_encData->m_frameStats.cuInterDistribution[depth][0] * 100) / m_frame->m_encData->m_frameStats.totalCu;
m_frame->m_encData->m_frameStats.percentInterDistribution[depth][1] = (double)(cuInterRectCnt * 100) / m_frame->m_encData->m_frameStats.totalCu;
m_frame->m_encData->m_frameStats.percentInterDistribution[depth][2] = (double)(m_frame->m_encData->m_frameStats.cuInterDistribution[depth][3] * 100) / m_frame->m_encData->m_frameStats.totalCu;
}
}
if (m_param->csvLogLevel >= 2)
{
m_frame->m_encData->m_frameStats.avgLumaDistortion = (double)(m_frame->m_encData->m_frameStats.lumaDistortion) / m_frame->m_encData->m_frameStats.totalCtu;
m_frame->m_encData->m_frameStats.avgChromaDistortion = (double)(m_frame->m_encData->m_frameStats.chromaDistortion) / m_frame->m_encData->m_frameStats.totalCtu;
m_frame->m_encData->m_frameStats.avgPsyEnergy = (double)(m_frame->m_encData->m_frameStats.psyEnergy) / m_frame->m_encData->m_frameStats.totalCtu;
m_frame->m_encData->m_frameStats.avgSsimEnergy = (double)(m_frame->m_encData->m_frameStats.ssimEnergy) / m_frame->m_encData->m_frameStats.totalCtu;
m_frame->m_encData->m_frameStats.avgResEnergy = (double)(m_frame->m_encData->m_frameStats.resEnergy) / m_frame->m_encData->m_frameStats.totalCtu;
}
m_bs.resetBits();
m_entropyCoder.load(m_initSliceContext);
m_entropyCoder.setBitstream(&m_bs);
if (m_param->bEnableSAO)
encodeSlice(0);
m_entropyCoder.setBitstream(&m_bs);
if (m_param->maxSlices > 1)
{
uint32_t nextSliceRow = 0;
for(uint32_t sliceId = 0; sliceId < m_param->maxSlices; sliceId++)
{
m_bs.resetBits();
const uint32_t sliceAddr = nextSliceRow * m_numCols;
if (m_param->bOptRefListLengthPPS)
{
ScopedLock refIdxLock(m_top->m_sliceRefIdxLock);
m_top->analyseRefIdx(slice->m_numRefIdx);
}
m_entropyCoder.codeSliceHeader(*slice, *m_frame->m_encData, sliceAddr, m_sliceAddrBits, slice->m_sliceQp);
const uint32_t prevSliceRow = nextSliceRow;
while(nextSliceRow < m_numRows && m_rows[nextSliceRow].sliceId == sliceId)
nextSliceRow++;
uint32_t maxStreamSize = m_nalList.serializeSubstreams(&m_substreamSizes[prevSliceRow], (nextSliceRow - prevSliceRow), &m_outStreams[prevSliceRow]);
m_entropyCoder.setBitstream(&m_bs);
if (slice->m_pps->bEntropyCodingSyncEnabled)
{
m_entropyCoder.codeSliceHeaderWPPEntryPoints(&m_substreamSizes[prevSliceRow], (nextSliceRow - prevSliceRow - 1), maxStreamSize);
}
m_bs.writeByteAlignment();
m_nalList.serialize(slice->m_nalUnitType, m_bs);
}
}
else
{
if (m_param->bOptRefListLengthPPS)
{
ScopedLock refIdxLock(m_top->m_sliceRefIdxLock);
m_top->analyseRefIdx(slice->m_numRefIdx);
}
m_entropyCoder.codeSliceHeader(*slice, *m_frame->m_encData, 0, 0, slice->m_sliceQp);
uint32_t maxStreamSize = m_nalList.serializeSubstreams(m_substreamSizes, numSubstreams, m_outStreams);
m_entropyCoder.setBitstream(&m_bs);
if (slice->m_pps->bEntropyCodingSyncEnabled)
m_entropyCoder.codeSliceHeaderWPPEntryPoints(m_substreamSizes, (slice->m_sps->numCuInHeight - 1), maxStreamSize);
m_bs.writeByteAlignment();
m_nalList.serialize(slice->m_nalUnitType, m_bs);
}
if (m_param->decodedPictureHashSEI)
{
int planes = (m_frame->m_param->internalCsp != X265_CSP_I400) ? 3 : 1;
int32_t payloadSize = 0;
if (m_param->decodedPictureHashSEI == 1)
{
m_seiReconPictureDigest.m_method = SEIDecodedPictureHash::MD5;
for (int i = 0; i < planes; i++)
MD5Final(&m_state[i], m_seiReconPictureDigest.m_digest[i]);
payloadSize = 1 + 16 * planes;
}
else if (m_param->decodedPictureHashSEI == 2)
{
m_seiReconPictureDigest.m_method = SEIDecodedPictureHash::CRC;
for (int i = 0; i < planes; i++)
crcFinish(m_crc[i], m_seiReconPictureDigest.m_digest[i]);
payloadSize = 1 + 2 * planes;
}
else if (m_param->decodedPictureHashSEI == 3)
{
m_seiReconPictureDigest.m_method = SEIDecodedPictureHash::CHECKSUM;
for (int i = 0; i < planes; i++)
checksumFinish(m_checksum[i], m_seiReconPictureDigest.m_digest[i]);
payloadSize = 1 + 4 * planes;
}
m_bs.resetBits();
m_seiReconPictureDigest.setSize(payloadSize);
m_seiReconPictureDigest.write(m_bs, *slice->m_sps);
m_bs.writeByteAlignment();
m_nalList.serialize(NAL_UNIT_SUFFIX_SEI, m_bs);
}
uint64_t bytes = 0;
for (uint32_t i = 0; i < m_nalList.m_numNal; i++)
{
int type = m_nalList.m_nal[i].type;
if (type != NAL_UNIT_PREFIX_SEI && type != NAL_UNIT_SUFFIX_SEI)
{
bytes += m_nalList.m_nal[i].sizeBytes;
bytes -= (!i || type == NAL_UNIT_SPS || type == NAL_UNIT_PPS) ? 4 : 3;
}
}
m_accessUnitBits = bytes << 3;
int filler = 0;
if (m_top->m_rateControl->rateControlEnd(m_frame, m_accessUnitBits, &m_rce, &filler) < 0)
m_top->m_aborted = true;
if (filler > 0)
{
filler = (filler - FILLER_OVERHEAD * 8) >> 3;
m_bs.resetBits();
while (filler > 0)
{
m_bs.write(0xff, 8);
filler--;
}
m_bs.writeByteAlignment();
m_nalList.serialize(NAL_UNIT_FILLER_DATA, m_bs);
bytes += m_nalList.m_nal[m_nalList.m_numNal - 1].sizeBytes;
bytes -= 3;
m_accessUnitBits = bytes << 3;
}
m_endCompressTime = x265_mdate();
for (int l = 0; l < numPredDir; l++)
{
for (int ref = 0; ref < slice->m_numRefIdx[l]; ref++)
{
Frame *refpic = slice->m_refFrameList[l][ref];
ATOMIC_DEC(&refpic->m_countRefEncoders);
}
}
if (m_nr)
{
bool nrEnabled = (m_rce.newQp < QP_MAX_SPEC || !m_param->rc.vbvBufferSize) && (m_param->noiseReductionIntra || m_param->noiseReductionInter);
if (nrEnabled)
{
for (int i = 0; i < numTLD; i++)
{
NoiseReduction* nr = &m_tld[i].analysis.m_quant.m_frameNr[m_jpId];
for (int cat = 0; cat < MAX_NUM_TR_CATEGORIES; cat++)
{
for (int coeff = 0; coeff < MAX_NUM_TR_COEFFS; coeff++)
m_nr->nrResidualSum[cat][coeff] += nr->nrResidualSum[cat][coeff];
m_nr->nrCount[cat] += nr->nrCount[cat];
}
}
noiseReductionUpdate();
for (int i = 0; i < numTLD; i++)
{
NoiseReduction* nr = &m_tld[i].analysis.m_quant.m_frameNr[m_jpId];
memcpy(nr->nrOffsetDenoise, m_nr->nrOffsetDenoise, sizeof(uint16_t)* MAX_NUM_TR_CATEGORIES * MAX_NUM_TR_COEFFS);
memset(nr->nrCount, 0, sizeof(uint32_t)* MAX_NUM_TR_CATEGORIES);
memset(nr->nrResidualSum, 0, sizeof(uint32_t)* MAX_NUM_TR_CATEGORIES * MAX_NUM_TR_COEFFS);
}
}
}
#if DETAILED_CU_STATS
for (int i = 0; i < numTLD; i++)
m_cuStats.accumulate(m_tld[i].analysis.m_stats[m_jpId], *m_param);
#endif
m_endFrameTime = x265_mdate();
}
void FrameEncoder::encodeSlice(uint32_t sliceAddr)
{
Slice* slice = m_frame->m_encData->m_slice;
const uint32_t widthInLCUs = slice->m_sps->numCuInWidth;
const uint32_t lastCUAddr = (slice->m_endCUAddr + m_param->num4x4Partitions - 1) / m_param->num4x4Partitions;
const uint32_t numSubstreams = m_param->bEnableWavefront ? slice->m_sps->numCuInHeight : 1;
SAOParam* saoParam = slice->m_sps->bUseSAO ? m_frame->m_encData->m_saoParam : NULL;
for (uint32_t cuAddr = sliceAddr; cuAddr < lastCUAddr; cuAddr++)
{
uint32_t col = cuAddr % widthInLCUs;
uint32_t row = cuAddr / widthInLCUs;
uint32_t subStrm = row % numSubstreams;
CUData* ctu = m_frame->m_encData->getPicCTU(cuAddr);
m_entropyCoder.setBitstream(&m_outStreams[subStrm]);
if (m_param->bEnableWavefront && !col && row)
{
m_entropyCoder.copyState(m_initSliceContext);
m_entropyCoder.loadContexts(m_rows[row - 1].bufferedEntropy);
}
if (ctu->m_bFirstRowInSlice && !col)
m_entropyCoder.load(m_initSliceContext);
if (saoParam)
{
if (saoParam->bSaoFlag[0] || saoParam->bSaoFlag[1])
{
int mergeLeft = col && saoParam->ctuParam[0][cuAddr].mergeMode == SAO_MERGE_LEFT;
int mergeUp = !ctu->m_bFirstRowInSlice && saoParam->ctuParam[0][cuAddr].mergeMode == SAO_MERGE_UP;
if (col)
m_entropyCoder.codeSaoMerge(mergeLeft);
if (!ctu->m_bFirstRowInSlice && !mergeLeft)
m_entropyCoder.codeSaoMerge(mergeUp);
if (!mergeLeft && !mergeUp)
{
if (saoParam->bSaoFlag[0])
m_entropyCoder.codeSaoOffset(saoParam->ctuParam[0][cuAddr], 0);
if (saoParam->bSaoFlag[1])
{
m_entropyCoder.codeSaoOffset(saoParam->ctuParam[1][cuAddr], 1);
m_entropyCoder.codeSaoOffset(saoParam->ctuParam[2][cuAddr], 2);
}
}
}
else
{
for (int i = 0; i < (m_param->internalCsp != X265_CSP_I400 ? 3 : 1); i++)
saoParam->ctuParam[i][cuAddr].reset();
}
}
m_entropyCoder.encodeCTU(*ctu, m_cuGeoms[m_ctuGeomMap[cuAddr]]);
if (m_param->bEnableWavefront)
{
if (col == 1)
m_rows[row].bufferedEntropy.loadContexts(m_entropyCoder);
if (col == widthInLCUs - 1)
m_entropyCoder.finishSlice();
}
}
if (!m_param->bEnableWavefront)
m_entropyCoder.finishSlice();
}
void FrameEncoder::processRow(int row, int threadId)
{
int64_t startTime = x265_mdate();
if (ATOMIC_INC(&m_activeWorkerCount) == 1 && m_stallStartTime)
m_totalNoWorkerTime += x265_mdate() - m_stallStartTime;
const uint32_t realRow = row >> 1;
const uint32_t typeNum = row & 1;
if (!typeNum)
processRowEncoder(realRow, m_tld[threadId]);
else
{
m_frameFilter.processRow(realRow);
if (realRow != m_sliceBaseRow[m_rows[realRow].sliceId + 1] - 1)
enqueueRowFilter(realRow + 1);
}
if (ATOMIC_DEC(&m_activeWorkerCount) == 0)
m_stallStartTime = x265_mdate();
m_totalWorkerElapsedTime += x265_mdate() - startTime;
}
void FrameEncoder::processRowEncoder(int intRow, ThreadLocalData& tld)
{
const uint32_t row = (uint32_t)intRow;
CTURow& curRow = m_rows[row];
if (m_param->bEnableWavefront)
{
ScopedLock self(curRow.lock);
if (!curRow.active)
return;
if (curRow.busy)
{
x265_log(m_param, X265_LOG_WARNING,
"internal error - simultaneous row access detected. Please report HW to x265-devel@videolan.org\n");
return;
}
curRow.busy = true;
}
Entropy& rowCoder = m_param->bEnableWavefront ? curRow.rowGoOnCoder : m_rows[0].rowGoOnCoder;
FrameData& curEncData = *m_frame->m_encData;
Slice *slice = curEncData.m_slice;
const uint32_t numCols = m_numCols;
const uint32_t lineStartCUAddr = row * numCols;
bool bIsVbv = m_param->rc.vbvBufferSize > 0 && m_param->rc.vbvMaxBitrate > 0;
uint32_t maxBlockCols = (m_frame->m_fencPic->m_picWidth + (16 - 1)) / 16;
uint32_t maxBlockRows = (m_frame->m_fencPic->m_picHeight + (16 - 1)) / 16;
uint32_t noOfBlocks = m_param->maxCUSize / 16;
const uint32_t bFirstRowInSlice = ((row == 0) || (m_rows[row - 1].sliceId != curRow.sliceId)) ? 1 : 0;
const uint32_t bLastRowInSlice = ((row == m_numRows - 1) || (m_rows[row + 1].sliceId != curRow.sliceId)) ? 1 : 0;
const uint32_t sliceId = curRow.sliceId;
const uint32_t endRowInSlicePlus1 = m_sliceBaseRow[sliceId + 1];
const uint32_t rowInSlice = row - m_sliceBaseRow[sliceId];
if (bFirstRowInSlice && !curRow.completed)
{
rowCoder.load(m_initSliceContext);
}
if (m_param->bOptCUDeltaQP)
{
ScopedLock self(curRow.lock);
if (!curRow.avgQPComputed)
{
if (m_param->bEnableWavefront || !row)
{
double meanQPOff = 0;
uint32_t loopIncr, count = 0;
bool isReferenced = IS_REFERENCED(m_frame);
double *qpoffs = (isReferenced && m_param->rc.cuTree) ? m_frame->m_lowres.qpCuTreeOffset : m_frame->m_lowres.qpAqOffset;
if (qpoffs)
{
if (m_param->rc.qgSize == 8)
loopIncr = 8;
else
loopIncr = 16;
uint32_t cuYStart = 0, height = m_frame->m_fencPic->m_picHeight;
if (m_param->bEnableWavefront)
{
cuYStart = intRow * m_param->maxCUSize;
height = cuYStart + m_param->maxCUSize;
}
uint32_t qgSize = m_param->rc.qgSize, width = m_frame->m_fencPic->m_picWidth;
uint32_t maxOffsetCols = (m_frame->m_fencPic->m_picWidth + (loopIncr - 1)) / loopIncr;
for (uint32_t cuY = cuYStart; cuY < height && (cuY < m_frame->m_fencPic->m_picHeight); cuY += qgSize)
{
for (uint32_t cuX = 0; cuX < width; cuX += qgSize)
{
double qp_offset = 0;
uint32_t cnt = 0;
for (uint32_t block_yy = cuY; block_yy < cuY + qgSize && block_yy < m_frame->m_fencPic->m_picHeight; block_yy += loopIncr)
{
for (uint32_t block_xx = cuX; block_xx < cuX + qgSize && block_xx < width; block_xx += loopIncr)
{
int idx = ((block_yy / loopIncr) * (maxOffsetCols)) + (block_xx / loopIncr);
qp_offset += qpoffs[idx];
cnt++;
}
}
qp_offset /= cnt;
meanQPOff += qp_offset;
count++;
}
}
meanQPOff /= count;
}
rowCoder.m_meanQP = slice->m_sliceQp + meanQPOff;
}
else
{
rowCoder.m_meanQP = m_rows[0].rowGoOnCoder.m_meanQP;
}
curRow.avgQPComputed = 1;
}
}
tld.analysis.m_sliceMinY = -(int16_t)(rowInSlice * m_param->maxCUSize * 4) + 3 * 4;
tld.analysis.m_sliceMaxY = (int16_t)((endRowInSlicePlus1 - 1 - row) * (m_param->maxCUSize * 4) - 4 * 4);
if (tld.analysis.m_sliceMaxY < tld.analysis.m_sliceMinY)
tld.analysis.m_sliceMaxY = tld.analysis.m_sliceMinY = 0;
while (curRow.completed < numCols)
{
ProfileScopeEvent(encodeCTU);
const uint32_t col = curRow.completed;
const uint32_t cuAddr = lineStartCUAddr + col;
CUData* ctu = curEncData.getPicCTU(cuAddr);
const uint32_t bLastCuInSlice = (bLastRowInSlice & (col == numCols - 1)) ? 1 : 0;
ctu->initCTU(*m_frame, cuAddr, slice->m_sliceQp, bFirstRowInSlice, bLastRowInSlice, bLastCuInSlice);
if (bIsVbv)
{
if (col == 0 && !m_param->bEnableWavefront)
{
m_backupStreams[0].copyBits(&m_outStreams[0]);
curRow.bufferedEntropy.copyState(rowCoder);
curRow.bufferedEntropy.loadContexts(rowCoder);
}
if (!row && m_vbvResetTriggerRow != intRow)
{
curEncData.m_rowStat[row].rowQp = curEncData.m_avgQpRc;
curEncData.m_rowStat[row].rowQpScale = x265_qp2qScale(curEncData.m_avgQpRc);
}
FrameData::RCStatCU& cuStat = curEncData.m_cuStat[cuAddr];
if (m_param->bEnableWavefront && row >= col && row && m_vbvResetTriggerRow != intRow)
cuStat.baseQp = curEncData.m_cuStat[cuAddr - numCols + 1].baseQp;
else if (!m_param->bEnableWavefront && row && m_vbvResetTriggerRow != intRow)
cuStat.baseQp = curEncData.m_rowStat[row - 1].rowQp;
else
cuStat.baseQp = curEncData.m_rowStat[row].rowQp;
uint32_t block_y = (ctu->m_cuPelY >> m_param->maxLog2CUSize) * noOfBlocks;
uint32_t block_x = (ctu->m_cuPelX >> m_param->maxLog2CUSize) * noOfBlocks;
cuStat.vbvCost = 0;
cuStat.intraVbvCost = 0;
for (uint32_t h = 0; h < noOfBlocks && block_y < maxBlockRows; h++, block_y++)
{
uint32_t idx = block_x + (block_y * maxBlockCols);
for (uint32_t w = 0; w < noOfBlocks && (block_x + w) < maxBlockCols; w++, idx++)
{
cuStat.vbvCost += m_frame->m_lowres.lowresCostForRc[idx] & LOWRES_COST_MASK;
cuStat.intraVbvCost += m_frame->m_lowres.intraCost[idx];
}
}
}
else
curEncData.m_cuStat[cuAddr].baseQp = curEncData.m_avgQpRc;
if (m_param->bEnableWavefront && !col && !bFirstRowInSlice)
{
rowCoder.copyState(m_initSliceContext);
rowCoder.loadContexts(m_rows[row - 1].bufferedEntropy);
}
if (m_param->dynamicRd && (int32_t)(m_rce.qpaRc - m_rce.qpNoVbv) > 0)
ctu->m_vbvAffected = true;
Mode& best = tld.analysis.compressCTU(*ctu, *m_frame, m_cuGeoms[m_ctuGeomMap[cuAddr]], rowCoder);
ATOMIC_ADD(&m_totalActiveWorkerCount, m_activeWorkerCount);
ATOMIC_INC(&m_activeWorkerCountSamples);
rowCoder.encodeCTU(*ctu, m_cuGeoms[m_ctuGeomMap[cuAddr]]);
if (m_param->bEnableWavefront && col == 1)
curRow.bufferedEntropy.loadContexts(rowCoder);
if (m_param->bEnableSAO && m_param->bSaoNonDeblocked)
m_frameFilter.m_parallelFilter[row].m_sao.calcSaoStatsCu_BeforeDblk(m_frame, col, row);
if (m_param->bEnableLoopFilter | m_param->bEnableSAO)
{
if (!bIsVbv)
{
if (m_pool && !bFirstRowInSlice)
{
m_frameFilter.m_parallelFilter[row - 1].waitForExit();
int allowCol = col;
if (rowInSlice >= 2)
{
allowCol = X265_MIN(((col == numCols - 1) ? m_frameFilter.m_parallelFilter[row - 2].m_lastDeblocked.get()
: m_frameFilter.m_parallelFilter[row - 2].m_lastCol.get()), (int)col);
}
m_frameFilter.m_parallelFilter[row - 1].m_allowedCol.set(allowCol);
m_frameFilter.m_parallelFilter[row - 1].tryBondPeers(*this, 1);
}
if (m_pool && bLastRowInSlice)
{
m_frameFilter.m_parallelFilter[row].waitForExit();
int allowCol = col;
if (rowInSlice >= 2)
{
allowCol = X265_MIN(((col == numCols - 1) ? m_frameFilter.m_parallelFilter[row - 1].m_lastDeblocked.get()
: m_frameFilter.m_parallelFilter[row - 1].m_lastCol.get()), (int)col);
}
m_frameFilter.m_parallelFilter[row].m_allowedCol.set(allowCol);
m_frameFilter.m_parallelFilter[row].tryBondPeers(*this, 1);
}
}
}
else
{
m_frameFilter.m_parallelFilter[row].processPostCu(col);
}
curRow.completed++;
FrameStats frameLog;
curEncData.m_rowStat[row].sumQpAq += collectCTUStatistics(*ctu, &frameLog);
if (m_param->rc.bStatWrite)
{
curRow.rowStats.mvBits += best.mvBits;
curRow.rowStats.coeffBits += best.coeffBits;
curRow.rowStats.miscBits += best.totalBits - (best.mvBits + best.coeffBits);
for (uint32_t depth = 0; depth <= m_param->maxCUDepth; depth++)
{
int shift = 2 * (m_param->maxCUDepth - depth);
int cuSize = m_param->maxCUSize >> depth;
if (cuSize == 8)
curRow.rowStats.intra8x8Cnt += (int)(frameLog.cntIntra[depth] + frameLog.cntIntraNxN);
else
curRow.rowStats.intra8x8Cnt += (int)(frameLog.cntIntra[depth] << shift);
curRow.rowStats.inter8x8Cnt += (int)(frameLog.cntInter[depth] << shift);
curRow.rowStats.skip8x8Cnt += (int)((frameLog.cntSkipCu[depth] + frameLog.cntMergeCu[depth]) << shift);
}
}
curRow.rowStats.totalCtu++;
curRow.rowStats.lumaDistortion += best.lumaDistortion;
curRow.rowStats.chromaDistortion += best.chromaDistortion;
curRow.rowStats.psyEnergy += best.psyEnergy;
curRow.rowStats.ssimEnergy += best.ssimEnergy;
curRow.rowStats.resEnergy += best.resEnergy;
curRow.rowStats.cntIntraNxN += frameLog.cntIntraNxN;
curRow.rowStats.totalCu += frameLog.totalCu;
for (uint32_t depth = 0; depth <= m_param->maxCUDepth; depth++)
{
curRow.rowStats.cntSkipCu[depth] += frameLog.cntSkipCu[depth];
curRow.rowStats.cntMergeCu[depth] += frameLog.cntMergeCu[depth];
for (int m = 0; m < INTER_MODES; m++)
curRow.rowStats.cuInterDistribution[depth][m] += frameLog.cuInterDistribution[depth][m];
for (int n = 0; n < INTRA_MODES; n++)
curRow.rowStats.cuIntraDistribution[depth][n] += frameLog.cuIntraDistribution[depth][n];
}
curEncData.m_cuStat[cuAddr].totalBits = best.totalBits;
x265_emms();
if (bIsVbv)
{
if ((m_param->bEnableWavefront && (!cuAddr || !m_param->rc.bEnableConstVbv)) || !m_param->bEnableWavefront)
{
curEncData.m_rowStat[row].rowSatd += curEncData.m_cuStat[cuAddr].vbvCost;
curEncData.m_rowStat[row].rowIntraSatd += curEncData.m_cuStat[cuAddr].intraVbvCost;
curEncData.m_rowStat[row].encodedBits += curEncData.m_cuStat[cuAddr].totalBits;
curEncData.m_rowStat[row].sumQpRc += curEncData.m_cuStat[cuAddr].baseQp;
curEncData.m_rowStat[row].numEncodedCUs = cuAddr;
}
if (!m_param->bEnableWavefront && col == numCols - 1)
{
double qpBase = curEncData.m_cuStat[cuAddr].baseQp;
int reEncode = m_top->m_rateControl->rowVbvRateControl(m_frame, row, &m_rce, qpBase);
qpBase = x265_clip3((double)m_param->rc.qpMin, (double)m_param->rc.qpMax, qpBase);
curEncData.m_rowStat[row].rowQp = qpBase;
curEncData.m_rowStat[row].rowQpScale = x265_qp2qScale(qpBase);
if (reEncode < 0)
{
x265_log(m_param, X265_LOG_DEBUG, "POC %d row %d - encode restart required for VBV, to %.2f from %.2f\n",
m_frame->m_poc, row, qpBase, curEncData.m_cuStat[cuAddr].baseQp);
m_vbvResetTriggerRow = row;
m_outStreams[0].copyBits(&m_backupStreams[0]);
rowCoder.copyState(curRow.bufferedEntropy);
rowCoder.loadContexts(curRow.bufferedEntropy);
curRow.completed = 0;
memset(&curRow.rowStats, 0, sizeof(curRow.rowStats));
curEncData.m_rowStat[row].numEncodedCUs = 0;
curEncData.m_rowStat[row].encodedBits = 0;
curEncData.m_rowStat[row].rowSatd = 0;
curEncData.m_rowStat[row].rowIntraSatd = 0;
curEncData.m_rowStat[row].sumQpRc = 0;
curEncData.m_rowStat[row].sumQpAq = 0;
}
}
else if (m_param->bEnableWavefront && row == col && row)
{
if (m_param->rc.bEnableConstVbv)
{
int32_t startCuAddr = numCols * row;
int32_t EndCuAddr = startCuAddr + col;
for (int32_t r = row; r >= 0; r--)
{
for (int32_t c = startCuAddr; c <= EndCuAddr && c <= (int32_t)numCols * (r + 1) - 1; c++)
{
curEncData.m_rowStat[r].rowSatd += curEncData.m_cuStat[c].vbvCost;
curEncData.m_rowStat[r].rowIntraSatd += curEncData.m_cuStat[c].intraVbvCost;
curEncData.m_rowStat[r].encodedBits += curEncData.m_cuStat[c].totalBits;
curEncData.m_rowStat[r].sumQpRc += curEncData.m_cuStat[c].baseQp;
curEncData.m_rowStat[r].numEncodedCUs = c;
}
startCuAddr = EndCuAddr - numCols;
EndCuAddr = startCuAddr + 1;
}
}
double qpBase = curEncData.m_cuStat[cuAddr].baseQp;
int reEncode = m_top->m_rateControl->rowVbvRateControl(m_frame, row, &m_rce, qpBase);
qpBase = x265_clip3((double)m_param->rc.qpMin, (double)m_param->rc.qpMax, qpBase);
curEncData.m_rowStat[row].rowQp = qpBase;
curEncData.m_rowStat[row].rowQpScale = x265_qp2qScale(qpBase);
if (reEncode < 0)
{
x265_log(m_param, X265_LOG_DEBUG, "POC %d row %d - encode restart required for VBV, to %.2f from %.2f\n",
m_frame->m_poc, row, qpBase, curEncData.m_cuStat[cuAddr].baseQp);
m_vbvResetTriggerRow = row;
m_bAllRowsStop = true;
for (uint32_t r = m_numRows - 1; r >= row; r--)
{
CTURow& stopRow = m_rows[r];
if (r != row)
{
stopRow.lock.acquire();
while (stopRow.active)
{
if (dequeueRow(r * 2))
stopRow.active = false;
else
{
stopRow.lock.release();
GIVE_UP_TIME();
stopRow.lock.acquire();
}
}
stopRow.lock.release();
bool bRowBusy = true;
do
{
stopRow.lock.acquire();
bRowBusy = stopRow.busy;
stopRow.lock.release();
if (bRowBusy)
{
GIVE_UP_TIME();
}
}
while (bRowBusy);
}
m_outStreams[r].resetBits();
stopRow.completed = 0;
memset(&stopRow.rowStats, 0, sizeof(stopRow.rowStats));
curEncData.m_rowStat[r].numEncodedCUs = 0;
curEncData.m_rowStat[r].encodedBits = 0;
curEncData.m_rowStat[r].rowSatd = 0;
curEncData.m_rowStat[r].rowIntraSatd = 0;
curEncData.m_rowStat[r].sumQpRc = 0;
curEncData.m_rowStat[r].sumQpAq = 0;
}
m_bAllRowsStop = false;
}
}
}
if (m_param->bEnableWavefront && curRow.completed >= 2 && !bLastRowInSlice &&
(!m_bAllRowsStop || intRow + 1 < m_vbvResetTriggerRow))
{
ScopedLock below(m_rows[row + 1].lock);
if (m_rows[row + 1].active == false &&
m_rows[row + 1].completed + 2 <= curRow.completed)
{
m_rows[row + 1].active = true;
enqueueRowEncoder(row + 1);
tryWakeOne();
}
}
ScopedLock self(curRow.lock);
if ((m_bAllRowsStop && intRow > m_vbvResetTriggerRow) ||
(!bFirstRowInSlice && ((curRow.completed < numCols - 1) || (m_rows[row - 1].completed < numCols)) && m_rows[row - 1].completed < curRow.completed + 2))
{
curRow.active = false;
curRow.busy = false;
ATOMIC_INC(&m_countRowBlocks);
return;
}
}
if (m_param->bEnableWavefront && m_param->rc.bEnableConstVbv)
{
if (row == m_numRows - 1)
{
for (int32_t r = 0; r < (int32_t)m_numRows; r++)
{
for (int32_t c = curEncData.m_rowStat[r].numEncodedCUs + 1; c < (int32_t)numCols * (r + 1); c++)
{
curEncData.m_rowStat[r].rowSatd += curEncData.m_cuStat[c].vbvCost;
curEncData.m_rowStat[r].rowIntraSatd += curEncData.m_cuStat[c].intraVbvCost;
curEncData.m_rowStat[r].encodedBits += curEncData.m_cuStat[c].totalBits;
curEncData.m_rowStat[r].sumQpRc += curEncData.m_cuStat[c].baseQp;
curEncData.m_rowStat[r].numEncodedCUs = c;
}
}
}
}
uint32_t rowCount = 0;
if (m_param->rc.rateControlMode == X265_RC_ABR || bIsVbv)
{
if (!m_rce.encodeOrder)
rowCount = m_numRows - 1;
else if ((uint32_t)m_rce.encodeOrder <= 2 * (m_param->fpsNum / m_param->fpsDenom))
rowCount = X265_MIN((m_numRows + 1) / 2, m_numRows - 1);
else
rowCount = X265_MIN(m_refLagRows, m_numRows - 1);
if (row == rowCount)
{
m_rce.rowTotalBits = 0;
if (bIsVbv)
for (uint32_t i = 0; i < rowCount; i++)
m_rce.rowTotalBits += curEncData.m_rowStat[i].encodedBits;
else
for (uint32_t cuAddr = 0; cuAddr < rowCount * numCols; cuAddr++)
m_rce.rowTotalBits += curEncData.m_cuStat[cuAddr].totalBits;
m_top->m_rateControl->rateControlUpdateStats(&m_rce);
}
}
if (!m_param->bEnableSAO && (m_param->bEnableWavefront || bLastRowInSlice))
rowCoder.finishSlice();
if ((m_param->bEnableLoopFilter | m_param->bEnableSAO) & (rowInSlice >= 2))
{
if (m_frameFilter.m_parallelFilter[row - 2].m_lastDeblocked.get() == (int)numCols)
{
m_frameFilter.m_parallelFilter[row - 1].waitForExit();
m_frameFilter.m_parallelFilter[row - 1].m_allowedCol.set(numCols);
m_frameFilter.m_parallelFilter[row - 1].processTasks(-1);
}
}
if (m_param->bEnableWavefront)
{
if (rowInSlice >= m_filterRowDelay)
{
enableRowFilter(row - m_filterRowDelay);
if (rowInSlice == m_filterRowDelay)
enqueueRowFilter(row - m_filterRowDelay);
tryWakeOne();
}
if (bLastRowInSlice)
{
for (uint32_t i = endRowInSlicePlus1 - m_filterRowDelay; i < endRowInSlicePlus1; i++)
{
enableRowFilter(i);
}
tryWakeOne();
}
if (bFirstRowInSlice & bLastRowInSlice)
{
enqueueRowFilter(row);
tryWakeOne();
}
}
curRow.busy = false;
if (ATOMIC_INC(&m_completionCount) == 2 * (int)m_numRows)
m_completionEvent.trigger();
}
int FrameEncoder::collectCTUStatistics(const CUData& ctu, FrameStats* log)
{
int totQP = 0;
uint32_t depth = 0;
for (uint32_t absPartIdx = 0; absPartIdx < ctu.m_numPartitions; absPartIdx += ctu.m_numPartitions >> (depth * 2))
{
depth = ctu.m_cuDepth[absPartIdx];
totQP += ctu.m_qp[absPartIdx] * (ctu.m_numPartitions >> (depth * 2));
}
if (m_param->csvLogLevel >= 1 || m_param->rc.bStatWrite)
{
if (ctu.m_slice->m_sliceType == I_SLICE)
{
depth = 0;
for (uint32_t absPartIdx = 0; absPartIdx < ctu.m_numPartitions; absPartIdx += ctu.m_numPartitions >> (depth * 2))
{
depth = ctu.m_cuDepth[absPartIdx];
log->totalCu++;
log->cntIntra[depth]++;
if (ctu.m_predMode[absPartIdx] == MODE_NONE)
{
log->totalCu--;
log->cntIntra[depth]--;
}
else if (ctu.m_partSize[absPartIdx] != SIZE_2Nx2N)
{
X265_CHECK(ctu.m_log2CUSize[absPartIdx] == 3 && ctu.m_slice->m_sps->quadtreeTULog2MinSize < 3, "Intra NxN found at improbable depth\n");
log->cntIntraNxN++;
log->cntIntra[depth]--;
}
else if (ctu.m_lumaIntraDir[absPartIdx] > 1)
log->cuIntraDistribution[depth][ANGULAR_MODE_ID]++;
else
log->cuIntraDistribution[depth][ctu.m_lumaIntraDir[absPartIdx]]++;
}
}
else
{
depth = 0;
for (uint32_t absPartIdx = 0; absPartIdx < ctu.m_numPartitions; absPartIdx += ctu.m_numPartitions >> (depth * 2))
{
depth = ctu.m_cuDepth[absPartIdx];
log->totalCu++;
if (ctu.m_predMode[absPartIdx] == MODE_NONE)
log->totalCu--;
else if (ctu.isSkipped(absPartIdx))
{
if (ctu.m_mergeFlag[0])
log->cntMergeCu[depth]++;
else
log->cntSkipCu[depth]++;
}
else if (ctu.isInter(absPartIdx))
{
log->cntInter[depth]++;
if (ctu.m_partSize[absPartIdx] < AMP_ID)
log->cuInterDistribution[depth][ctu.m_partSize[absPartIdx]]++;
else
log->cuInterDistribution[depth][AMP_ID]++;
}
else if (ctu.isIntra(absPartIdx))
{
log->cntIntra[depth]++;
if (ctu.m_partSize[absPartIdx] != SIZE_2Nx2N)
{
X265_CHECK(ctu.m_log2CUSize[absPartIdx] == 3 && ctu.m_slice->m_sps->quadtreeTULog2MinSize < 3, "Intra NxN found at improbable depth\n");
log->cntIntraNxN++;
log->cntIntra[depth]--;
}
else if (ctu.m_lumaIntraDir[absPartIdx] > 1)
log->cuIntraDistribution[depth][ANGULAR_MODE_ID]++;
else
log->cuIntraDistribution[depth][ctu.m_lumaIntraDir[absPartIdx]]++;
}
}
}
}
return totQP;
}
void FrameEncoder::noiseReductionUpdate()
{
static const uint32_t maxBlocksPerTrSize[4] = {1 << 18, 1 << 16, 1 << 14, 1 << 12};
for (int cat = 0; cat < MAX_NUM_TR_CATEGORIES; cat++)
{
int trSize = cat & 3;
int coefCount = 1 << ((trSize + 2) * 2);
if (m_nr->nrCount[cat] > maxBlocksPerTrSize[trSize])
{
for (int i = 0; i < coefCount; i++)
m_nr->nrResidualSum[cat][i] >>= 1;
m_nr->nrCount[cat] >>= 1;
}
int nrStrength = cat < 8 ? m_param->noiseReductionIntra : m_param->noiseReductionInter;
uint64_t scaledCount = (uint64_t)nrStrength * m_nr->nrCount[cat];
for (int i = 0; i < coefCount; i++)
{
uint64_t value = scaledCount + m_nr->nrResidualSum[cat][i] / 2;
uint64_t denom = m_nr->nrResidualSum[cat][i] + 1;
m_nr->nrOffsetDenoise[cat][i] = (uint16_t)(value / denom);
}
m_nr->nrOffsetDenoise[cat][0] = 0;
}
}
Frame *FrameEncoder::getEncodedPicture(NALList& output)
{
if (m_frame)
{
m_done.wait();
Frame *ret = m_frame;
m_frame = NULL;
output.takeContents(m_nalList);
m_prevOutputTime = x265_mdate();
return ret;
}
return NULL;
}
}