root/magick/fx.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. CharcoalImage
  2. ColorizeImagePixelsCB
  3. ColorizeImage
  4. ColorMatrixImagePixels
  5. ColorMatrixImage
  6. ImplodeImage
  7. MorphImagePixelsCB
  8. MorphImages
  9. OilPaintImage
  10. SolarizeImagePixelsCB
  11. SolarizeImage
  12. SteganoImage
  13. StereoImage
  14. SwirlImage
  15. WaveImage

/*
% Copyright (C) 2003-2009 GraphicsMagick Group
% Copyright (C) 2002 ImageMagick Studio
% Copyright 1991-1999 E. I. du Pont de Nemours and Company
%
% This program is covered by multiple licenses, which are described in
% Copyright.txt. You should have received a copy of Copyright.txt with this
% package; otherwise see http://www.graphicsmagick.org/www/Copyright.html.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%                                 FFFFF  X   X                                %
%                                 F       X X                                 %
%                                 FFF      X                                  %
%                                 F       X X                                 %
%                                 F      X   X                                %
%                                                                             %
%                                                                             %
%                 GraphicsMagick Image Special Effects Methods                %
%                                                                             %
%                                                                             %
%                               Software Design                               %
%                                 John Cristy                                 %
%                                 October 1996                                %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/

/*
  Include declarations.
*/
#include "magick/studio.h"
#include "magick/color.h"
#include "magick/effect.h"
#include "magick/enhance.h"
#include "magick/fx.h"
#include "magick/gem.h"
#include "magick/log.h"
#include "magick/pixel_cache.h"
#include "magick/pixel_iterator.h"
#include "magick/monitor.h"
#include "magick/resize.h"
#include "magick/utility.h"

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%     C h a r c o a l I m a g e                                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  Method CharcoalImage creates a new image that is a copy of an existing
%  one with the edge highlighted.  It allocates the memory necessary for the
%  new Image structure and returns a pointer to the new image.
%
%  The format of the CharcoalImage method is:
%
%      Image *CharcoalImage(const Image *image,const double radius,
%        const double sigma,ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o charcoal_image: Method CharcoalImage returns a pointer to the image
%      after it is embossed.  A null image is returned if there is a memory
%      shortage.
%
%    o image: The image.
%
%    o radius: the radius of the pixel neighborhood.
%
%    o sigma: The standard deviation of the Gaussian, in pixels.
%
%    o exception: Return any errors or warnings in this structure.
%
%
*/
MagickExport Image *CharcoalImage(const Image *image,const double radius,
  const double sigma,ExceptionInfo *exception)
{
  Image
    *blur_image,
    *charcoal_image,
    *edge_image;

  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  charcoal_image=CloneImage(image,0,0,True,exception);
  if (charcoal_image == (Image *) NULL)
    return((Image *) NULL);
  (void) SetImageType(charcoal_image,GrayscaleType);
  edge_image=EdgeImage(charcoal_image,radius,exception);
  if (edge_image == (Image *) NULL)
    return((Image *) NULL);
  DestroyImage(charcoal_image);
  blur_image=BlurImage(edge_image,radius,sigma,exception);
  if (blur_image == (Image *) NULL)
    return((Image *) NULL);
  DestroyImage(edge_image);
  (void) NormalizeImage(blur_image);
  (void) NegateImage(blur_image,False);
  (void) SetImageType(blur_image,GrayscaleType);
  return(blur_image);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%     C o l o r i z e I m a g e                                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ColorizeImage() blends the fill color with each pixel in the image.
%  A percentage blend is specified with opacity.  Control the application
%  of different color components by specifying a different percentage for
%  each component (e.g. 90/100/10 is 90% red, 100% green, and 10% blue).
%
%  The format of the ColorizeImage method is:
%
%      Image *ColorizeImage(const Image *image,const char *opacity,
%        const PixelPacket target,ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: The image.
%
%    o opacity:  A character string indicating the level of opacity as a
%      percentage.
%
%    o target: A color value.
%
%    o exception: Return any errors or warnings in this structure.
%
%
*/
typedef struct _ColorizeImagePixelsOptions
{
  DoublePixelPacket amount;
  DoublePixelPacket color;
} ColorizeImagePixelsOptions;
static MagickPassFail
ColorizeImagePixelsCB(void *mutable_data,                /* User provided mutable data */
                      const void *immutable_data,        /* User provided immutable data */
                      const Image *source_image,         /* Source image */
                      const PixelPacket *source_pixels,  /* Pixel row in source image */
                      const IndexPacket *source_indexes, /* Pixel row indexes in source image */
                      Image *new_image,                  /* New image */
                      PixelPacket *new_pixels,           /* Pixel row in new image */
                      IndexPacket *new_indexes,          /* Pixel row indexes in new image */
                      const long npixels,                /* Number of pixels in row */
                      ExceptionInfo *exception           /* Exception report */
                      )
{
  ColorizeImagePixelsOptions
    options = *((const ColorizeImagePixelsOptions *) immutable_data);

  register long
    i;

  ARG_NOT_USED(mutable_data);
  ARG_NOT_USED(source_image);
  ARG_NOT_USED(source_indexes);
  ARG_NOT_USED(new_image);
  ARG_NOT_USED(new_indexes);
  ARG_NOT_USED(exception);

  for (i=0; i < npixels; i++)
    {
      new_pixels[i].red=(Quantum)
        ((source_pixels[i].red*(100.0-options.amount.red)+
          options.color.red*options.amount.red)/100.0);
      new_pixels[i].green=(Quantum)
        ((source_pixels[i].green*(100.0-options.amount.green)+
          options.color.green*options.amount.green)/100.0);
      new_pixels[i].blue=(Quantum)
        ((source_pixels[i].blue*(100.0-options.amount.blue)+
          options.color.blue*options.amount.blue)/100.0);
      new_pixels[i].opacity=(Quantum)
        ((source_pixels[i].opacity*(100.0-options.amount.opacity)+
          options.color.opacity*options.amount.opacity)/100.0);
    }

  return MagickPass;
}
MagickExport Image *ColorizeImage(const Image *image,const char *opacity,
  const PixelPacket target,ExceptionInfo *exception)
{
#define ColorizeImageText "[%s] Colorize..."

  ColorizeImagePixelsOptions
    options;

  Image
    *colorize_image;

  long
    count;

  unsigned int
    is_grayscale;

  /*
    Allocate colorized image.
  */
  assert(image != (const Image *) NULL);
  assert(image->signature == MagickSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  is_grayscale=image->is_grayscale;
  colorize_image=CloneImage(image,image->columns,image->rows,True,exception);
  if (colorize_image == (Image *) NULL)
    return((Image *) NULL);
  (void) SetImageType(colorize_image,TrueColorType);
  if (opacity == (const char *) NULL)
    return(colorize_image);
  /*
    Determine percentage RGB values of the pen color.
  */
  options.amount.red=100.0;
  options.amount.green=100.0;
  options.amount.blue=100.0;
  options.amount.opacity=0.0;
  count=sscanf(opacity,"%lf%*[/,]%lf%*[/,]%lf%*[/,]%lf",
    &options.amount.red,&options.amount.green,&options.amount.blue,&options.amount.opacity);
  if (count == 1)
    {
      if (options.amount.red == 0.0)
        return(colorize_image);
      options.amount.green=options.amount.red;
      options.amount.blue=options.amount.red;
      options.amount.opacity=options.amount.red;
    }
  options.color.red=target.red;
  options.color.green=target.green;
  options.color.blue=target.blue;
  options.color.opacity=target.opacity;
  /*
    Colorize DirectClass image.
  */
  (void) PixelIterateDualNew(ColorizeImagePixelsCB,NULL,
                             ColorizeImageText,NULL,&options,
                             image->columns,image->rows,image,0,0,
                             colorize_image,0,0,&colorize_image->exception);
  colorize_image->is_grayscale=(is_grayscale && IsGray(target));
  return(colorize_image);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%     C o l o r M a t r i x I m a g e                                         %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ColorMatrixImage() applies a color matrix to the image channels.  The
%  user supplied matrix may be of order 1 to 5 (1x1 through 5x5) and is
%  used to update the default identity matrix:
%
%    1 0 0 0 0
%    0 1 0 0 0
%    0 0 1 0 0
%    0 0 0 1 0
%    0 0 0 0 1
%
%  where the first four columns represent the ratio of the color (red,
%  green, blue) and opacity components incorporated in the output summation.
%  The first four rows represent the summations for red, green, blue, and
%  opacity.  The last row is a dummy row and is not used.  The last column
%  represents a constant value (expressed as a ratio of MaxRGB) to be
%  added to the row summation.  The following is a summary of how the
%  matrix is applied:
%
%    r' = r*m[0,0] + g*m[1,0] + b*m[2,0] + o*m[3,0] + MaxRGB*m[4,0]
%    g' = r*m[0,1] + g*m[1,1] + b*m[2,1] + o*m[3,1] + MaxRGB*m[4,1]
%    b' = r*m[0,2] + g*m[1,2] + b*m[2,2] + o*m[3,2] + MaxRGB*m[4,2]
%    o' = r*m[0,3] + g*m[1,3] + b*m[2,3] + o*m[3,3] + MaxRGB*m[4,3]
%
%  The format of the ColorMatrixImage method is:
%
%      MagickPassFail ColorMatrixImage(Image *image,
%                                      const unsigned int order,
%                                      const double *color_matrix)
%
%  A description of each parameter follows:
%
%    o image: The image.
%
%    o order: The number of columns and rows in the filter kernel.
%
%    o matrix: An array of double representing the matrix
%
%
*/
typedef struct _ColorMatrixImageOptions_t
{
  const double
    *matrix[5];

} ColorMatrixImageOptions_t;

static MagickPassFail
ColorMatrixImagePixels(void *mutable_data,         /* User provided mutable data */
                       const void *immutable_data, /* User provided immutable data */
                       Image *image,               /* Modify image */
                       PixelPacket *pixels,        /* Pixel row */
                       IndexPacket *indexes,       /* Pixel row indexes */
                       const long npixels,         /* Number of pixels in row */
                       ExceptionInfo *exception)   /* Exception report */
{
  /*
    Color matrix image pixels.
  */
  const ColorMatrixImageOptions_t
    *options = (const ColorMatrixImageOptions_t *) immutable_data;

  long
    i;

  double
    column[5],
    sums[4];

  ARG_NOT_USED(mutable_data);
  ARG_NOT_USED(image);
  ARG_NOT_USED(indexes);
  ARG_NOT_USED(exception);

  for (i=0; i < (long) (sizeof(sums)/sizeof(sums[0])); i++)
    sums[i] = 0.0;

  column[3] = MaxRGBDouble;
  column[4] = MaxRGBDouble;

  for (i=0; i < npixels; i++)
    {
      unsigned int
        row;

      /*
        Accumulate float input pixel
      */
      column[0]=(double) pixels[i].red;
      column[1]=(double) pixels[i].green;
      column[2]=(double) pixels[i].blue;
      if (image->matte)
        column[3]=(MaxRGBDouble-(double) pixels[i].opacity);

      /*
        Compute row sums.
      */
      for (row=0; row < 4; row++)
        {
          const double
            *m;

          if ((m = options->matrix[row]) != (const double *) NULL)
            sums[row]=m[0]*column[0] + m[1]*column[1] + m[2]*column[2] +
              m[3]*column[3] + m[4]*column[4];
        }

      /*
        Assign results.
      */
      for (row=0; row < 4; row++)
        {
          if (options->matrix[row] != (const double *) NULL)
            {
              switch (row)
                {
                case 0:
                  pixels[i].red = RoundDoubleToQuantum(sums[row]);
                  break;
                case 1:
                  pixels[i].green = RoundDoubleToQuantum(sums[row]);
                  break;
                case 2:
                  pixels[i].blue = RoundDoubleToQuantum(sums[row]);
                  break;
                case 3:
                  sums[row]=(MaxRGBDouble-sums[row]);
                  pixels[i].opacity = RoundDoubleToQuantum(sums[row]);
                  break;
                }
            }
        }
    }

  return MagickPass;
}

#define ColorMatrixImageText "[%s] Color matrix..."
MagickExport MagickPassFail
ColorMatrixImage(Image *image,const unsigned int order,const double *color_matrix)
{
  double
    matrix[] =
    {
      1.0, 0.0, 0.0, 0.0, 0.0,
      0.0, 1.0, 0.0, 0.0, 0.0,
      0.0, 0.0, 1.0, 0.0, 0.0,
      0.0, 0.0, 0.0, 1.0, 0.0,
      0.0, 0.0, 0.0, 0.0, 1.0
    };

  unsigned int
    i;

  int
    width = 5;

  ColorMatrixImageOptions_t
    options;

  MagickPassFail
    status = MagickPass;

  if ((order < 1) || (order > 5))
    ThrowBinaryException(OptionError,MatrixOrderOutOfRange,
                         MagickMsg(OptionError,UnableToColorMatrixImage));

  assert(color_matrix != (const double *) NULL);

  for (i=0; i < sizeof(options.matrix)/sizeof(options.matrix[0]); i++)
    options.matrix[i] = (double *) NULL;

  {
    double
      *d;

    const double
      *u;

    unsigned int
      j;

    u = color_matrix;
    for (i=0; i < order; i++)
      {
        d = &matrix[i*5];
        for (j=0; j < order; j++)
          {
            if (d[j] != *u)
              {
                d[j]=*u;
                options.matrix[i]=&matrix[i*5];
              }
            u++;
          }
      }

    /*
      Add opacity channel if we will be updating opacity.
    */
    if ((!image->matte) && (options.matrix[3] != (double *) NULL))
      SetImageOpacity(image,OpaqueOpacity);
  }

  if (LogMagickEvent(TransformEvent,GetMagickModule(),
                     "  ColorMatrix with %dx%d matrix:",width,width))
    {
      /*
        Log matrix.
      */
      char
        cell_text[MaxTextExtent],
        row_text[MaxTextExtent];

      const double
        *k;

      long
        u,
        v;

      k=matrix;
      for (v=0; v < width; v++)
        {
          *row_text='\0';
          for (u=0; u < width; u++)
            {
              FormatString(cell_text,"%#12.4g",*k++);
              (void) strlcat(row_text,cell_text,sizeof(row_text));
              if (u%5 == 4)
                {
                  (void) LogMagickEvent(TransformEvent,GetMagickModule(),
                                        "   %.64s", row_text);
                  *row_text='\0';
                }
            }
          if (u > 5)
            (void) strlcat(row_text,"\n",sizeof(row_text));
          if (row_text[0] != '\0')
            (void) LogMagickEvent(TransformEvent,GetMagickModule(),
                                  "   %s", row_text);
        }
    }

  if ((options.matrix[0] != (double *) NULL) ||
      (options.matrix[1] != (double *) NULL) ||
      (options.matrix[2] != (double *) NULL) ||
      (options.matrix[3] != (double *) NULL))
    {
      image->storage_class=DirectClass;
      /*
        We don't currently handle CMYK(A) colorspaces, although
        manipulation in other alternate colorspaces may be useful.
      */
      if (image->colorspace == CMYKColorspace)
        (void) TransformColorspace(image,RGBColorspace);
      status=PixelIterateMonoModify(ColorMatrixImagePixels,
                                    NULL,
                                    ColorMatrixImageText,
                                    NULL,&options,
                                    0,0,image->columns,image->rows,
                                    image,
                                    &image->exception);
    }

  return status;
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%     I m p l o d e I m a g e                                                 %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  Method ImplodeImage creates a new image that is a copy of an existing
%  one with the image pixels "implode" by the specified percentage.  It
%  allocates the memory necessary for the new Image structure and returns a
%  pointer to the new image.
%
%  The format of the ImplodeImage method is:
%
%      Image *ImplodeImage(const Image *image,const double amount,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o implode_image: Method ImplodeImage returns a pointer to the image
%      after it is implode.  A null image is returned if there is a memory
%      shortage.
%
%    o image: The image.
%
%    o amount:  Define the extent of the implosion.
%
%    o exception: Return any errors or warnings in this structure.
%
%
*/
MagickExport Image *ImplodeImage(const Image *image,const double amount,
                                 ExceptionInfo *exception)
{
#define ImplodeImageText "[%s] Implode..."

  double
    radius,
    x_center,
    x_scale,
    y_center,
    y_scale;

  Image
    *implode_image;

  long
    y;


  /*
    Initialize implode image attributes.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  implode_image=CloneImage(image,image->columns,image->rows,True,exception);
  if (implode_image == (Image *) NULL)
    return((Image *) NULL);
  (void) SetImageType(implode_image,implode_image->background_color.opacity !=
                      OpaqueOpacity ? TrueColorMatteType : TrueColorType);
  /*
    Compute scaling factor.
  */
  x_scale=1.0;
  y_scale=1.0;
  x_center=0.5*image->columns;
  y_center=0.5*image->rows;
  radius=x_center;
  if (image->columns > image->rows)
    y_scale=(double) image->columns/image->rows;
  else
    if (image->columns < image->rows)
      {
        x_scale=(double) image->rows/image->columns;
        radius=y_center;
      }
  /*
    Implode each row.
  */
  {
    MagickPassFail
      status = MagickPass;

    unsigned long
      row_count=0;

#if defined(HAVE_OPENMP)
#  pragma omp parallel for schedule(dynamic,4) shared(row_count, status)
#endif
    for (y=0; y < (long) image->rows; y++)
      {
        register long
          x;

        register PixelPacket
          *q;

        double
          distance,
          x_distance,
          y_distance;

        ViewInfo
          *image_view;

        MagickPassFail
          thread_status;
        
        thread_status=status;
        if (thread_status == MagickFail)
          continue;

        image_view=AccessDefaultCacheView(image);
        q=SetImagePixelsEx(implode_image,0,y,implode_image->columns,1,
                           exception);
        if (q == (PixelPacket *) NULL)
          thread_status=MagickFail;
        if (thread_status != MagickFail)
          {
            y_distance=y_scale*(y-y_center);
            for (x=0; x < (long) image->columns; x++)
              {
                /*
                  Determine if the pixel is within an ellipse.
                */
                x_distance=x_scale*(x-x_center);
                distance=x_distance*x_distance+y_distance*y_distance;
                if (distance >= (radius*radius))
                  (void) AcquireOneCacheViewPixel(image_view,q,x,y,exception);
                else
                  {
                    double
                      factor;

                    /*
                      Implode the pixel.
                    */
                    factor=1.0;
                    if (distance > 0.0)
                      factor=pow(sin(MagickPI*sqrt(distance)/radius/2),-amount);
                    InterpolateViewColor(image_view,q,
                                         factor*x_distance/x_scale+x_center,
                                         factor*y_distance/y_scale+y_center,
                                         exception);
                  }
                q++;
              }
            if (!SyncImagePixelsEx(implode_image,exception))
              thread_status=MagickFail;
          }
#if defined(HAVE_OPENMP)
#  pragma omp critical (GM_ImplodeImage)
#endif
        {
          row_count++;
          if (QuantumTick(row_count,image->rows))
            if (!MagickMonitorFormatted(row_count,image->rows,exception,
                                        ImplodeImageText,implode_image->filename))
              thread_status=MagickFail;

          if (thread_status == MagickFail)
            status=MagickFail;
        }
      }
  }
  implode_image->is_grayscale=image->is_grayscale;
  return(implode_image);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%     M o r p h I m a g e s                                                   %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  The MorphImages() method requires a minimum of two images.  The first
%  image is transformed into the second by a number of intervening images
%  as specified by frames.
%
%  The format of the MorphImage method is:
%
%      Image *MorphImages(const Image *image,const unsigned long number_frames,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: The image.
%
%    o number_frames:  Define the number of in-between image to generate.
%      The more in-between frames, the smoother the morph.
%
%    o exception: Return any errors or warnings in this structure.
%
%
*/
typedef struct _MorphImagePixelsOptions
{
  double alpha;
  double beta;
} MorphImagePixelsOptions;
static MagickPassFail
MorphImagePixelsCB(void *mutable_data,                /* User provided mutable data */
                   const void *immutable_data,        /* User provided immutable data */
                   const Image *source_image,         /* Source image */
                   const PixelPacket *source_pixels,  /* Pixel row in source image */
                   const IndexPacket *source_indexes, /* Pixel row indexes in source image */
                   Image *new_image,                  /* New image */
                   PixelPacket *new_pixels,           /* Pixel row in new image */
                   IndexPacket *new_indexes,          /* Pixel row indexes in new image */
                   const long npixels,                /* Number of pixels in row */
                   ExceptionInfo *exception           /* Exception report */
                   )
{
  MorphImagePixelsOptions
    options = *((const MorphImagePixelsOptions *) immutable_data);

  register long
    i;

  ARG_NOT_USED(mutable_data);
  ARG_NOT_USED(source_image);
  ARG_NOT_USED(source_indexes);
  ARG_NOT_USED(new_image);
  ARG_NOT_USED(new_indexes);
  ARG_NOT_USED(exception);

  for (i=0; i < npixels; i++)
    {
      new_pixels[i].red=(Quantum) (options.alpha*new_pixels[i].red+
                                   options.beta*source_pixels[i].red+0.5);
      new_pixels[i].green=(Quantum) (options.alpha*new_pixels[i].green+
                                     options.beta*source_pixels[i].green+0.5);
      new_pixels[i].blue=(Quantum) (options.alpha*new_pixels[i].blue+
                                    options.beta*source_pixels[i].blue+0.5);
      new_pixels[i].opacity=(Quantum) (options.alpha*new_pixels[i].opacity+
                                       options.beta*source_pixels[i].opacity+0.5);
    }

  return MagickPass;
}
MagickExport Image *MorphImages(const Image *image,
  const unsigned long number_frames,ExceptionInfo *exception)
{
#define MorphImageText "[%s] Morph sequence..."

  MorphImagePixelsOptions
    options;

  Image
    *clone_image,
    *morph_image,
    *morph_images;

  MonitorHandler
    handler;

  register const Image
    *next;

  register long
    i;

  unsigned long
    scene;

  /*
    Clone first frame in sequence.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  morph_images=CloneImage(image,0,0,True,exception);
  if (morph_images == (Image *) NULL)
    return((Image *) NULL);
  if (image->next == (Image *) NULL)
    {
      /*
        Morph single image.
      */
      for (i=1; i < (long) number_frames; i++)
      {
        morph_images->next=CloneImage(image,0,0,True,exception);
        if (morph_images->next == (Image *) NULL)
          {
            DestroyImageList(morph_images);
            return((Image *) NULL);
          }
        morph_images->next->previous=morph_images;
        morph_images=morph_images->next;
        if (!MagickMonitorFormatted(i,number_frames,exception,
                                    MorphImageText,image->filename))
          break;
      }
      while (morph_images->previous != (Image *) NULL)
        morph_images=morph_images->previous;
      return(morph_images);
    }
  /*
    Morph image sequence.
  */
  scene=0;
  for (next=image; next->next != (Image *) NULL; next=next->next)
  {
    handler=SetMonitorHandler((MonitorHandler) NULL);
    for (i=0; i < (long) number_frames; i++)
    {
      options.beta=((double) i+1.0)/(number_frames+1.0);
      options.alpha=1.0-options.beta;
      clone_image=CloneImage(next,0,0,True,exception);
      if (clone_image == (Image *) NULL)
        break;
      morph_images->next=ZoomImage(clone_image,
        (unsigned long) (options.alpha*next->columns+options.beta*next->next->columns+0.5),
        (unsigned long) (options.alpha*next->rows+options.beta*next->next->rows+0.5),exception);
      DestroyImage(clone_image);
      if (morph_images->next == (Image *) NULL)
        break;
      morph_images->next->previous=morph_images;
      morph_images=morph_images->next;
      clone_image=CloneImage(next->next,0,0,True,exception);
      if (clone_image == (Image *) NULL)
        break;
      morph_image=ZoomImage(clone_image,morph_images->columns,
        morph_images->rows,exception);
      DestroyImage(clone_image);
      if (morph_image == (Image *) NULL)
        break;
      (void) SetImageType(morph_images,TrueColorType);
      (void) PixelIterateDualNew(MorphImagePixelsCB,NULL,
                                 MorphImageText,NULL,&options,
                                 morph_images->columns,morph_images->rows,morph_image,0,0,
                                 morph_images,0,0,exception);
      DestroyImage(morph_image);
    }
    if (i < (long) number_frames)
      break;
    /*
      Clone last frame in sequence.
    */
    morph_images->next=CloneImage(next->next,0,0,True,exception);
    if (morph_images->next == (Image *) NULL)
      break;
    morph_images->next->previous=morph_images;
    morph_images=morph_images->next;
    (void) SetMonitorHandler(handler);
    if (!MagickMonitorFormatted(scene,GetImageListLength(image),exception,
                                MorphImageText,image->filename))
      break;
    scene++;
  }
  while (morph_images->previous != (Image *) NULL)
    morph_images=morph_images->previous;
  if (next->next != (Image *) NULL)
    {
      DestroyImageList(morph_images);
      return((Image *) NULL);
    }
  return(morph_images);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%     O i l P a i n t I m a g e                                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  OilPaintImage() applies a special effect filter that simulates an oil
%  painting.  Each pixel is replaced by the most frequent color occurring
%  in a circular region defined by radius.
%
%  The format of the OilPaintImage method is:
%
%      Image *OilPaintImage(const Image *image,const double radius,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: The image.
%
%    o radius: The radius of the circular neighborhood.
%
%    o exception: Return any errors or warnings in this structure.
%
%
*/
#define PaintHistSize 256
MagickExport Image *OilPaintImage(const Image *image,const double radius,
                                  ExceptionInfo *exception)
{
#define OilPaintImageText "[%s] OilPaint..."

  Image
    *paint_image;

  long
    width,
    y;

  unsigned long
    row_count=0;
  
  MagickPassFail
    status=MagickPass;

  /*
    Initialize painted image attributes.
  */
  assert(image != (const Image *) NULL);
  assert(image->signature == MagickSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  width=GetOptimalKernelWidth(radius,0.5);
  if (((long) image->columns < width) || ((long) image->rows < width))
    ThrowImageException3(OptionError,UnableToPaintImage,
                         ImageSmallerThanRadius);

  paint_image=CloneImage(image,image->columns,image->rows,True,exception);
  if (paint_image == (Image *) NULL)
    return((Image *) NULL);

  (void) SetImageType(paint_image,TrueColorType);

  /*
    Paint each row of the image.
  */
#if defined(HAVE_OPENMP)
#  pragma omp parallel for schedule(dynamic,4) shared(row_count, status)
#endif
  for (y=0; y < (long) image->rows; y++)
    {
      const PixelPacket
        *p,
        *r;
    
      PixelPacket
        *q;
    
      long
        x;

      const PixelPacket
        *s;

      MagickBool
        thread_status;
      
      thread_status=status;
      if (thread_status == MagickFail)
        continue;

      p=AcquireImagePixels(image,-width/2,y-width/2,image->columns+width,width,
                           exception);
      q=SetImagePixelsEx(paint_image,0,y,paint_image->columns,1,exception);
      if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
        thread_status=MagickFail;
      if (thread_status != MagickFail)
        {
          for (x=(long) image->columns; x > 0; x--)
            {
              long
                v;

              unsigned long
                count;

              unsigned int
                histogram[PaintHistSize];

              /*
                Determine most frequent color.
              */
              count=0;
              (void) memset(histogram,0,sizeof(histogram));
              r=p++;
              s=r;
              for (v=width; v > 0; v--)
                {
                  register long
                    u;

                  register const PixelPacket
                    *ru;

                  ru=r;
                  for (u=width; u > 0; u--)
                    {
                      register unsigned int
                        *hp;

                      Quantum
                        intensity;

                      if (image->is_grayscale)
                        intensity=ru->red;
                      else
                        intensity=PixelIntensityToQuantum(ru);
                        
                      hp=histogram+ScaleQuantumToChar(intensity);
                      (*hp)++;
                      if (*hp > count)
                        {
                          s=ru;
                          count=*hp;
                        }
                      ru++;
                    }
                  r+=image->columns+width;
                }
              *q++=(*s);
            }
          if (!SyncImagePixelsEx(paint_image,exception))
            thread_status=MagickFail;
        }
#if defined(HAVE_OPENMP)
#  pragma omp critical (GM_OilPaintImage)
#endif
      {
        row_count++;
        if (QuantumTick(row_count,image->rows))
          if (!MagickMonitorFormatted(row_count,image->rows,exception,
                                      OilPaintImageText,image->filename))
            thread_status=MagickFail;
          
        if (thread_status == MagickFail)
          status=MagickFail;
      }
    }

  paint_image->is_grayscale=image->is_grayscale;
  return(paint_image);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%     S o l a r i z e I m a g e                                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  SolarizeImage() applies a special effect to the image, similar to the effect
%  achieved in a photo darkroom by selectively exposing areas of photo
%  sensitive paper to light.  Threshold ranges from 0 to MaxRGB and is a
%  measure of the extent of the solarization. False is returned if an error
%  is encountered.
%
%  The format of the SolarizeImage method is:
%
%      unsigned int SolarizeImage(Image *image,const double threshold)
%
%  A description of each parameter follows:
%
%    o image: The image.
%
%    o threshold:  Define the extent of the solarization.
%
%
*/
static MagickPassFail
SolarizeImagePixelsCB(void *mutable_data,         /* User provided mutable data */
                      const void *immutable_data, /* User provided immutable data */
                      Image *image,               /* Modify image */
                      PixelPacket *pixels,        /* Pixel row */
                      IndexPacket *indexes,       /* Pixel row indexes */
                      const long npixels,         /* Number of pixels in row */
                      ExceptionInfo *exception)   /* Exception report */
{

  const Quantum
    threshold = *((const double *) immutable_data);

  register long
    i;  

  ARG_NOT_USED(mutable_data);
  ARG_NOT_USED(image);
  ARG_NOT_USED(indexes);
  ARG_NOT_USED(exception);

  for (i=0; i < npixels; i++)
    {
      pixels[i].red=(pixels[i].red > threshold ?
                     MaxRGB-pixels[i].red : pixels[i].red);
      pixels[i].green=(pixels[i].green > threshold ?
                       MaxRGB-pixels[i].green : pixels[i].green);
      pixels[i].blue=(pixels[i].blue > threshold ?
                      MaxRGB-pixels[i].blue : pixels[i].blue);
    }

  return MagickPass;
}
MagickExport MagickPassFail SolarizeImage(Image *image,const double threshold)
{
#define SolarizeImageText "[%s] Solarize..."

  unsigned int
    is_grayscale;

  MagickPassFail
    status=MagickPass;

  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  is_grayscale=image->is_grayscale;
  switch (image->storage_class)
  {
    case DirectClass:
    default:
    {
      /*
        Solarize DirectClass packets.
      */
      status=PixelIterateMonoModify(SolarizeImagePixelsCB,
                                    NULL,
                                    SolarizeImageText,
                                    NULL,&threshold,0,0,image->columns,image->rows,
                                    image,&image->exception);
      break;
    }
    case PseudoClass:
    {
      /*
        Solarize PseudoClass packets.
      */
      SolarizeImagePixelsCB(0,
                            &threshold,
                            image,
                            image->colormap,
                            (IndexPacket *) NULL,
                            image->colors,
                            &image->exception);
      status &= SyncImage(image);
      break;
    }
  }
  image->is_grayscale=is_grayscale;
  return (status);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   S t e g a n o I m a g e                                                   %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  Use SteganoImage() to hide a digital watermark within the image.
%  Recover the hidden watermark later to prove that the authenticity of
%  an image.  Offset defines the start position within the image to hide
%  the watermark.
%
%  The format of the SteganoImage method is:
%
%      Image *SteganoImage(const Image *image,Image *watermark,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: The image.
%
%    o watermark: The watermark image.
%
%    o exception: Return any errors or warnings in this structure.
%
%
*/
#define GetBit(a,i) (((a) >> (i)) & 0x01)
#define SetBit(a,i,set) \
  a=(Quantum) ((set) ? (a) | (1UL << (i)) : (a) & ~(1UL << (i)))
#define SteganoImageText "[%s] Stegano..."
MagickExport Image *SteganoImage(const Image *image,const Image *watermark,
  ExceptionInfo *exception)
{

  Image
    *stegano_image;

  long
    c,
    i,
    j,
    k,
    y;

  PixelPacket
    pixel;

  register long
    x;

  unsigned int
    is_grayscale;

  register PixelPacket
    *q;

  /*
    Initialize steganographic image attributes.
  */
  assert(image != (const Image *) NULL);
  assert(image->signature == MagickSignature);
  assert(watermark != (const Image *) NULL);
  assert(watermark->signature == MagickSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  is_grayscale=(image->is_grayscale && watermark->is_grayscale);
  stegano_image=CloneImage(image,0,0,True,exception);
  if (stegano_image == (Image *) NULL)
    return((Image *) NULL);
  (void) SetImageType(stegano_image,TrueColorType);
  stegano_image->depth=QuantumDepth;
  /*
    Hide watermark in low-order bits of image.
  */
  c=0;
  i=0;
  j=0;
  k=image->offset;
  for (i=QuantumDepth-1; (i >= 0) && (j < QuantumDepth); i--)
  {
    for (y=0; (y < (long) watermark->rows) && (j < QuantumDepth); y++)
    {
      for (x=0; (x < (long) watermark->columns) && (j < QuantumDepth); x++)
      {
        (void) AcquireOnePixelByReference(watermark,&pixel,x,y,exception);
        q=GetImagePixels(stegano_image,k % (long) stegano_image->columns,
          k/(long) stegano_image->columns,1,1);
        if (q == (PixelPacket *) NULL)
          break;
        switch ((int) c)
        {
          case 0:
          {
            SetBit(q->red,j,GetBit(PixelIntensityToQuantum(&pixel),i));
            break;
          }
          case 1:
          {
            SetBit(q->green,j,GetBit(PixelIntensityToQuantum(&pixel),i));
            break;
          }
          case 2:
          {
            SetBit(q->blue,j,GetBit(PixelIntensityToQuantum(&pixel),i));
            break;
          }
        }
        (void) SyncImage(stegano_image);
        c++;
        if (c == 3)
          c=0;
        k++;
        if (k == (long) (stegano_image->columns*stegano_image->columns))
          k=0;
        if (k == image->offset)
          j++;
      }
    }
    if (QuantumTick(i,QuantumDepth))
      if (!MagickMonitorFormatted(i,QuantumDepth,exception,
                                  SteganoImageText,image->filename))
        break;
  }
  if (stegano_image->storage_class == PseudoClass)
    (void) SyncImage(stegano_image);
  stegano_image->is_grayscale=is_grayscale;
  return(stegano_image);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   S t e r e o I m a g e                                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  StereoImage() combines two images and produces a single image that is the
%  composite of a left and right image of a stereo pair.  Special red-green
%  stereo glasses are required to view this effect.
%
%  The format of the StereoImage method is:
%
%      Image *StereoImage(const Image *image,const Image *offset_image,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o stereo_image: Method StereoImage returns a pointer to the stereo
%      image.  A null image is returned if there is a memory shortage.
%
%    o image: The image.
%
%    o offset_image: Another image.
%
%    o exception: Return any errors or warnings in this structure.
%
%
*/
MagickExport Image *StereoImage(const Image *image,const Image *offset_image,
  ExceptionInfo *exception)
{
#define StereoImageText "[%s] Stereo..."

  Image
    *stereo_image;

  long
    y;

  register const PixelPacket
    *p,
    *q;

  register long
    x;

  register PixelPacket
    *r;

  assert(image != (const Image *) NULL);
  assert(image->signature == MagickSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  assert(offset_image != (const Image *) NULL);
  if ((image->columns != offset_image->columns) ||
      (image->rows != offset_image->rows))
    ThrowImageException3(ImageError,UnableToCreateStereoImage,
      LeftAndRightImageSizesDiffer);
  /*
    Initialize stereo image attributes.
  */
  stereo_image=CloneImage(image,image->columns,image->rows,True,exception);
  if (stereo_image == (Image *) NULL)
    return((Image *) NULL);
  (void) SetImageType(stereo_image,TrueColorType);
  /*
    Copy left image to red channel and right image to blue channel.
  */
  for (y=0; y < (long) stereo_image->rows; y++)
  {
    p=AcquireImagePixels(image,0,y,image->columns,1,exception);
    q=AcquireImagePixels(offset_image,0,y,offset_image->columns,1,exception);
    r=SetImagePixels(stereo_image,0,y,stereo_image->columns,1);
    if ((p == (PixelPacket *) NULL) || (q == (PixelPacket *) NULL) ||
        (r == (PixelPacket *) NULL))
      break;
    for (x=0; x < (long) stereo_image->columns; x++)
    {
      r->red=p->red;
      r->green=q->green;
      r->blue=q->blue;
      r->opacity=(p->opacity+q->opacity)/2;
      p++;
      q++;
      r++;
    }
    if (!SyncImagePixels(stereo_image))
      break;
    if (QuantumTick(y,stereo_image->rows))
      if (!MagickMonitorFormatted(y,stereo_image->rows,exception,
                                  StereoImageText,image->filename))
        break;
  }
  return(stereo_image);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%     S w i r l I m a g e                                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  SwirlImage() swirls the pixels about the center of the image, where
%  degrees indicates the sweep of the arc through which each pixel is moved.
%  You get a more dramatic effect as the degrees move from 1 to 360.
%
%  The format of the SwirlImage method is:
%
%      Image *SwirlImage(const Image *image,double degrees,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: The image.
%
%    o degrees: Define the tightness of the swirling effect.
%
%    o exception: Return any errors or warnings in this structure.
%
%
*/
MagickExport Image *SwirlImage(const Image *image,double degrees,
                               ExceptionInfo *exception)
{
#define SwirlImageText "[%s] Swirl..."

  double
    radius,
    x_center,
    x_scale,
    y_center,
    y_scale;

  long
    y;

  Image
    *swirl_image;

  /*
    Initialize swirl image attributes.
  */
  assert(image != (const Image *) NULL);
  assert(image->signature == MagickSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  swirl_image=CloneImage(image,image->columns,image->rows,True,exception);
  if (swirl_image == (Image *) NULL)
    return((Image *) NULL);
  (void) SetImageType(swirl_image,swirl_image->background_color.opacity !=
                      OpaqueOpacity ? TrueColorMatteType : TrueColorType);
  /*
    Compute scaling factor.
  */
  x_center=image->columns/2.0;
  y_center=image->rows/2.0;
  radius=Max(x_center,y_center);
  x_scale=1.0;
  y_scale=1.0;
  if (image->columns > image->rows)
    y_scale=(double) image->columns/image->rows;
  else
    if (image->columns < image->rows)
      x_scale=(double) image->rows/image->columns;
  degrees=DegreesToRadians(degrees);
  /*
    Swirl each row.
  */
  {
    MagickPassFail
      status = MagickPass;

    unsigned long
      row_count=0;

#if defined(HAVE_OPENMP)
#  pragma omp parallel for schedule(dynamic,8) shared(row_count, status)
#endif
    for (y=0; y < (long) image->rows; y++)
      {
        register PixelPacket
          *q;
    
        register long
          x;

        double
          x_distance,
          y_distance,
          distance;

        ViewInfo
          *image_view;

        MagickPassFail
          thread_status;
        
        thread_status=status;
        if (thread_status == MagickFail)
          continue;

        image_view=AccessDefaultCacheView(image);
        q=SetImagePixelsEx(swirl_image,0,y,swirl_image->columns,1,exception);
        if (q == (PixelPacket *) NULL)
          thread_status=MagickFail;
        if (thread_status != MagickFail)
          {
            y_distance=y_scale*(y-y_center);
            for (x=0; x < (long) image->columns; x++)
              {
                /*
                  Determine if the pixel is within an ellipse.
                */
                x_distance=x_scale*(x-x_center);
                distance=x_distance*x_distance+y_distance*y_distance;
                if (distance >= (radius*radius))
                  (void) AcquireOneCacheViewPixel(image_view,q,x,y,exception);
                else
                  {
                    double
                      cosine,
                      factor,
                      sine;
            
                    /*
                      Swirl the pixel.
                    */
                    factor=1.0-sqrt(distance)/radius;
                    sine=sin(degrees*factor*factor);
                    cosine=cos(degrees*factor*factor);
                    InterpolateViewColor(image_view,q,
                                         (cosine*x_distance-sine*y_distance)/x_scale+x_center,
                                         (sine*x_distance+cosine*y_distance)/y_scale+y_center,
                                         exception);
                  }
                q++;
              }
            if (!SyncImagePixelsEx(swirl_image,exception))
              thread_status=MagickFail;
          }
#if defined(HAVE_OPENMP)
#  pragma omp critical (GM_SwirlImage)
#endif
        {
          row_count++;
          if (QuantumTick(row_count,image->rows))
            if (!MagickMonitorFormatted(row_count,image->rows,exception,
                                        SwirlImageText,image->filename))
              thread_status=MagickFail;

          if (thread_status == MagickFail)
            status=MagickFail;
        }
      }
  }
  swirl_image->is_grayscale=image->is_grayscale;
  return(swirl_image);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%     W a v e I m a g e                                                       %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  The WaveImage() filter creates a "ripple" effect in the image by shifting
%  the pixels vertically along a sine wave whose amplitude and wavelength
%  is specified by the given parameters.
%
%  The format of the WaveImage method is:
%
%      Image *WaveImage(const Image *image,const double amplitude,
%        const double wave_length,ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: The image.
%
%    o amplitude, frequency:  Define the amplitude and wave_length of the
%      sine wave.
%
%    o exception: Return any errors or warnings in this structure.
%
%
*/
MagickExport Image *WaveImage(const Image *image,const double amplitude,
                              const double wave_length,ExceptionInfo *exception)
{
#define WaveImageText "[%s] Wave..."

  VirtualPixelMethod
    virtual_pixel_method;
    
  double
    *sine_map;

  Image
    *wave_image;

  long
    y;

  /*
    Initialize wave image attributes.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  wave_image=CloneImage(image,image->columns,(long)
                        (image->rows+2.0*fabs(amplitude)),MagickFalse,exception);
  if (wave_image == (Image *) NULL)
    return((Image *) NULL);

  wave_image->storage_class=DirectClass;

  /*
    If background color is non-opaque, then initialize matte channel.
  */
  if ((wave_image->background_color.opacity != OpaqueOpacity) &&
      (!wave_image->matte))
    SetImageOpacity(wave_image,OpaqueOpacity);

  /*
    Allocate and initialize sine map.
  */
  {
    register long
      x;

    sine_map=MagickAllocateMemory(double *,wave_image->columns*sizeof(double));
    if (sine_map == (double *) NULL)
      {
        DestroyImage(wave_image);
        ThrowImageException(ResourceLimitError,MemoryAllocationFailed,
                            MagickMsg(OptionError,UnableToWaveImage));
      }

#if defined(HAVE_OPENMP)
#  pragma omp parallel for schedule(static,256)
#endif
    for (x=0; x < (long) wave_image->columns; x++)
      sine_map[x]=fabs(amplitude)+amplitude*sin((2*MagickPI*x)/wave_length);
  }
  /*
    Set virtual pixel method.
  */

  virtual_pixel_method=GetImageVirtualPixelMethod(image);
  if (virtual_pixel_method == UndefinedVirtualPixelMethod)
    (void) SetImageVirtualPixelMethod(image,ConstantVirtualPixelMethod);
  /*
    Wave image.
  */
  {
    MagickPassFail
      status = MagickPass;

    unsigned long
      row_count=0;

#if defined(HAVE_OPENMP)
#  pragma omp parallel for schedule(dynamic,4) shared(row_count, status)
#endif
    for (y=0; y < (long) wave_image->rows; y++)
      {
        register PixelPacket
          *q;

        register long
          x;

        ViewInfo
          *image_view;

        MagickPassFail
          thread_status;
        
        thread_status=status;
        if (thread_status == MagickFail)
          continue;
        
        image_view=AccessDefaultCacheView(image);
        q=SetImagePixelsEx(wave_image,0,y,wave_image->columns,1,exception);
        if (q == (PixelPacket *) NULL)
          thread_status=MagickFail;
        if (thread_status != MagickFail)
          {
            for (x=0; x < (long) wave_image->columns; x++)
              {
                InterpolateViewColor(image_view,&q[x],(double) x,
                                     (double) y-sine_map[x],
                                     exception);
              }
            if (!SyncImagePixelsEx(wave_image,exception))
              thread_status=MagickFail;
          }
#if defined(HAVE_OPENMP)
#  pragma omp critical (GM_WaveImage)
#endif
        {
          row_count++;
          if (QuantumTick(row_count,wave_image->rows))
            if (!MagickMonitorFormatted(row_count,wave_image->rows,exception,
                                        WaveImageText,image->filename))
              thread_status=MagickFail;
          
          if (thread_status == MagickFail)
            status=MagickFail;
        }
      }
  }
  /*
    Restore virtual pixel method.
  */
  (void) SetImageVirtualPixelMethod(image,virtual_pixel_method);
  MagickFreeMemory(sine_map);
  wave_image->is_grayscale=(image->is_grayscale && IsGray(wave_image->background_color));
  return(wave_image);
}

/* [<][>][^][v][top][bottom][index][help] */