root/Source/core/page/TouchAdjustment.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. m_quad
  2. node
  3. quad
  4. boundingBox
  5. nodeRespondsToTapGesture
  6. nodeIsZoomTarget
  7. providesContextMenuItems
  8. appendQuadsToSubtargetList
  9. appendBasicSubtargetsForNode
  10. appendContextSubtargetsForNode
  11. appendZoomableSubtargets
  12. parentShadowHostOrOwner
  13. compileSubtargetList
  14. compileZoomableSubtargets
  15. zoomableIntersectionQuotient
  16. hybridDistanceFunction
  17. contentsToWindow
  18. adjustPointToRect
  19. snapTo
  20. findNodeWithLowestDistanceMetric
  21. findBestClickableCandidate
  22. findBestContextMenuCandidate
  23. findBestZoomableArea

/*
 * Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies)
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 */

#include "config.h"

#include "core/page/TouchAdjustment.h"

#include "core/dom/ContainerNode.h"
#include "core/dom/Node.h"
#include "core/dom/NodeRenderStyle.h"
#include "core/dom/Text.h"
#include "core/editing/Editor.h"
#include "core/frame/FrameView.h"
#include "core/frame/LocalFrame.h"
#include "core/html/HTMLFrameOwnerElement.h"
#include "core/rendering/RenderBox.h"
#include "core/rendering/RenderObject.h"
#include "core/rendering/RenderText.h"
#include "core/rendering/style/RenderStyle.h"
#include "platform/geometry/FloatPoint.h"
#include "platform/geometry/FloatQuad.h"
#include "platform/geometry/IntSize.h"
#include "platform/text/TextBreakIterator.h"

namespace WebCore {

namespace TouchAdjustment {

const float zeroTolerance = 1e-6f;

// Class for remembering absolute quads of a target node and what node they represent.
class SubtargetGeometry {
public:
    SubtargetGeometry(Node* node, const FloatQuad& quad)
        : m_node(node)
        , m_quad(quad)
    { }

    Node* node() const { return m_node; }
    FloatQuad quad() const { return m_quad; }
    IntRect boundingBox() const { return m_quad.enclosingBoundingBox(); }

private:
    Node* m_node;
    FloatQuad m_quad;
};

typedef Vector<SubtargetGeometry> SubtargetGeometryList;
typedef bool (*NodeFilter)(Node*);
typedef void (*AppendSubtargetsForNode)(Node*, SubtargetGeometryList&);
typedef float (*DistanceFunction)(const IntPoint&, const IntRect&, const SubtargetGeometry&);

// Takes non-const Node* because isContentEditable is a non-const function.
bool nodeRespondsToTapGesture(Node* node)
{
    if (node->willRespondToMouseClickEvents() || node->willRespondToMouseMoveEvents())
        return true;
    if (node->isElementNode()) {
        Element* element = toElement(node);
        if (element->isMouseFocusable())
            return true;
        // Accept nodes that has a CSS effect when touched.
        if (element->childrenAffectedByActive() || element->childrenAffectedByHover())
            return true;
    }
    if (RenderStyle* renderStyle = node->renderStyle()) {
        if (renderStyle->affectedByActive() || renderStyle->affectedByHover())
            return true;
    }
    return false;
}

bool nodeIsZoomTarget(Node* node)
{
    if (node->isTextNode() || node->isShadowRoot())
        return false;

    ASSERT(node->renderer());
    return node->renderer()->isBox();
}

bool providesContextMenuItems(Node* node)
{
    // This function tries to match the nodes that receive special context-menu items in
    // ContextMenuController::populate(), and should be kept uptodate with those.
    ASSERT(node->renderer() || node->isShadowRoot());
    if (!node->renderer())
        return false;
    if (node->isContentEditable())
        return true;
    if (node->isLink())
        return true;
    if (node->renderer()->isImage())
        return true;
    if (node->renderer()->isMedia())
        return true;
    if (node->renderer()->canBeSelectionLeaf()) {
        // If the context menu gesture will trigger a selection all selectable nodes are valid targets.
        if (node->renderer()->frame()->editor().behavior().shouldSelectOnContextualMenuClick())
            return true;
        // Only the selected part of the renderer is a valid target, but this will be corrected in
        // appendContextSubtargetsForNode.
        if (node->renderer()->selectionState() != RenderObject::SelectionNone)
            return true;
    }
    return false;
}

static inline void appendQuadsToSubtargetList(Vector<FloatQuad>& quads, Node* node, SubtargetGeometryList& subtargets)
{
    Vector<FloatQuad>::const_iterator it = quads.begin();
    const Vector<FloatQuad>::const_iterator end = quads.end();
    for (; it != end; ++it)
        subtargets.append(SubtargetGeometry(node, *it));
}

static inline void appendBasicSubtargetsForNode(Node* node, SubtargetGeometryList& subtargets)
{
    // Node guaranteed to have renderer due to check in node filter.
    ASSERT(node->renderer());

    Vector<FloatQuad> quads;
    node->renderer()->absoluteQuads(quads);

    appendQuadsToSubtargetList(quads, node, subtargets);
}

static inline void appendContextSubtargetsForNode(Node* node, SubtargetGeometryList& subtargets)
{
    // This is a variant of appendBasicSubtargetsForNode that adds special subtargets for
    // selected or auto-selectable parts of text nodes.
    ASSERT(node->renderer());

    if (!node->isTextNode())
        return appendBasicSubtargetsForNode(node, subtargets);

    Text* textNode = toText(node);
    RenderText* textRenderer = toRenderText(textNode->renderer());

    if (textRenderer->frame()->editor().behavior().shouldSelectOnContextualMenuClick()) {
        // Make subtargets out of every word.
        String textValue = textNode->data();
        TextBreakIterator* wordIterator = wordBreakIterator(textValue, 0, textValue.length());
        int lastOffset = wordIterator->first();
        if (lastOffset == -1)
            return;
        int offset;
        while ((offset = wordIterator->next()) != -1) {
            if (isWordTextBreak(wordIterator)) {
                Vector<FloatQuad> quads;
                textRenderer->absoluteQuadsForRange(quads, lastOffset, offset);
                appendQuadsToSubtargetList(quads, textNode, subtargets);
            }
            lastOffset = offset;
        }
    } else {
        if (textRenderer->selectionState() == RenderObject::SelectionNone)
            return appendBasicSubtargetsForNode(node, subtargets);
        // If selected, make subtargets out of only the selected part of the text.
        int startPos, endPos;
        switch (textRenderer->selectionState()) {
        case RenderObject::SelectionInside:
            startPos = 0;
            endPos = textRenderer->textLength();
            break;
        case RenderObject::SelectionStart:
            textRenderer->selectionStartEnd(startPos, endPos);
            endPos = textRenderer->textLength();
            break;
        case RenderObject::SelectionEnd:
            textRenderer->selectionStartEnd(startPos, endPos);
            startPos = 0;
            break;
        case RenderObject::SelectionBoth:
            textRenderer->selectionStartEnd(startPos, endPos);
            break;
        default:
            ASSERT_NOT_REACHED();
            return;
        }
        Vector<FloatQuad> quads;
        textRenderer->absoluteQuadsForRange(quads, startPos, endPos);
        appendQuadsToSubtargetList(quads, textNode, subtargets);
    }
}

static inline void appendZoomableSubtargets(Node* node, SubtargetGeometryList& subtargets)
{
    RenderBox* renderer = toRenderBox(node->renderer());
    ASSERT(renderer);

    Vector<FloatQuad> quads;
    FloatRect borderBoxRect = renderer->borderBoxRect();
    FloatRect contentBoxRect = renderer->contentBoxRect();
    quads.append(renderer->localToAbsoluteQuad(borderBoxRect));
    if (borderBoxRect != contentBoxRect)
        quads.append(renderer->localToAbsoluteQuad(contentBoxRect));
    // FIXME: For RenderBlocks, add column boxes and content boxes cleared for floats.

    Vector<FloatQuad>::const_iterator it = quads.begin();
    const Vector<FloatQuad>::const_iterator end = quads.end();
    for (; it != end; ++it)
        subtargets.append(SubtargetGeometry(node, *it));
}

static inline Node* parentShadowHostOrOwner(const Node* node)
{
    if (Node* ancestor = node->parentOrShadowHostNode())
        return ancestor;
    if (node->isDocumentNode())
        return toDocument(node)->ownerElement();
    return 0;
}

// Compiles a list of subtargets of all the relevant target nodes.
void compileSubtargetList(const Vector<RefPtr<Node> >& intersectedNodes, SubtargetGeometryList& subtargets, NodeFilter nodeFilter, AppendSubtargetsForNode appendSubtargetsForNode)
{
    // Find candidates responding to tap gesture events in O(n) time.
    HashMap<Node*, Node*> responderMap;
    HashSet<Node*> ancestorsToRespondersSet;
    Vector<Node*> candidates;
    HashSet<Node*> editableAncestors;

    // A node matching the NodeFilter is called a responder. Candidate nodes must either be a
    // responder or have an ancestor that is a responder.
    // This iteration tests all ancestors at most once by caching earlier results.
    for (unsigned i = 0; i < intersectedNodes.size(); ++i) {
        Node* node = intersectedNodes[i].get();
        Vector<Node*> visitedNodes;
        Node* respondingNode = 0;
        for (Node* visitedNode = node; visitedNode; visitedNode = visitedNode->parentOrShadowHostNode()) {
            // Check if we already have a result for a common ancestor from another candidate.
            respondingNode = responderMap.get(visitedNode);
            if (respondingNode)
                break;
            visitedNodes.append(visitedNode);
            // Check if the node filter applies, which would mean we have found a responding node.
            if (nodeFilter(visitedNode)) {
                respondingNode = visitedNode;
                // Continue the iteration to collect the ancestors of the responder, which we will need later.
                for (visitedNode = parentShadowHostOrOwner(visitedNode); visitedNode; visitedNode = parentShadowHostOrOwner(visitedNode)) {
                    HashSet<Node*>::AddResult addResult = ancestorsToRespondersSet.add(visitedNode);
                    if (!addResult.isNewEntry)
                        break;
                }
                break;
            }
        }
        // Insert the detected responder for all the visited nodes.
        for (unsigned j = 0; j < visitedNodes.size(); j++)
            responderMap.add(visitedNodes[j], respondingNode);

        if (respondingNode)
            candidates.append(node);
    }

    // We compile the list of component absolute quads instead of using the bounding rect
    // to be able to perform better hit-testing on inline links on line-breaks.
    for (unsigned i = 0; i < candidates.size(); i++) {
        Node* candidate = candidates[i];
        // Skip nodes who's responders are ancestors of other responders. This gives preference to
        // the inner-most event-handlers. So that a link is always preferred even when contained
        // in an element that monitors all click-events.
        Node* respondingNode = responderMap.get(candidate);
        ASSERT(respondingNode);
        if (ancestorsToRespondersSet.contains(respondingNode))
            continue;
        // Consolidate bounds for editable content.
        if (editableAncestors.contains(candidate))
            continue;
        if (candidate->isContentEditable()) {
            Node* replacement = candidate;
            Node* parent = candidate->parentOrShadowHostNode();
            while (parent && parent->isContentEditable()) {
                replacement = parent;
                if (editableAncestors.contains(replacement)) {
                    replacement = 0;
                    break;
                }
                editableAncestors.add(replacement);
                parent = parent->parentOrShadowHostNode();
            }
            candidate = replacement;
        }
        if (candidate)
            appendSubtargetsForNode(candidate, subtargets);
    }
}

// Compiles a list of zoomable subtargets.
void compileZoomableSubtargets(const Vector<RefPtr<Node> >& intersectedNodes, SubtargetGeometryList& subtargets)
{
    for (unsigned i = 0; i < intersectedNodes.size(); ++i) {
        Node* candidate = intersectedNodes[i].get();
        if (nodeIsZoomTarget(candidate))
            appendZoomableSubtargets(candidate, subtargets);
    }
}

// This returns quotient of the target area and its intersection with the touch area.
// This will prioritize largest intersection and smallest area, while balancing the two against each other.
float zoomableIntersectionQuotient(const IntPoint& touchHotspot, const IntRect& touchArea, const SubtargetGeometry& subtarget)
{
    IntRect rect = subtarget.boundingBox();

    // Convert from frame coordinates to window coordinates.
    rect = subtarget.node()->document().view()->contentsToWindow(rect);

    // Check the rectangle is meaningful zoom target. It should at least contain the hotspot.
    if (!rect.contains(touchHotspot))
        return std::numeric_limits<float>::infinity();
    IntRect intersection = rect;
    intersection.intersect(touchArea);

    // Return the quotient of the intersection.
    return rect.size().area() / (float)intersection.size().area();
}

// Uses a hybrid of distance to adjust and intersect ratio, normalizing each score between 0 and 1
// and combining them. The distance to adjust works best for disambiguating clicks on targets such
// as links, where the width may be significantly larger than the touch width. Using area of overlap
// in such cases can lead to a bias towards shorter links. Conversely, percentage of overlap can
// provide strong confidence in tapping on a small target, where the overlap is often quite high,
// and works well for tightly packed controls.
float hybridDistanceFunction(const IntPoint& touchHotspot, const IntRect& touchRect, const SubtargetGeometry& subtarget)
{
    IntRect rect = subtarget.boundingBox();

    // Convert from frame coordinates to window coordinates.
    rect = subtarget.node()->document().view()->contentsToWindow(rect);

    float radiusSquared = 0.25f * (touchRect.size().diagonalLengthSquared());
    float distanceToAdjustScore = rect.distanceSquaredToPoint(touchHotspot) / radiusSquared;

    int maxOverlapWidth = std::min(touchRect.width(), rect.width());
    int maxOverlapHeight = std::min(touchRect.height(), rect.height());
    float maxOverlapArea = std::max(maxOverlapWidth * maxOverlapHeight, 1);
    rect.intersect(touchRect);
    float intersectArea = rect.size().area();
    float intersectionScore = 1 - intersectArea / maxOverlapArea;

    float hybridScore = intersectionScore + distanceToAdjustScore;

    return hybridScore;
}

FloatPoint contentsToWindow(FrameView *view, FloatPoint pt)
{
    int x = static_cast<int>(pt.x() + 0.5f);
    int y = static_cast<int>(pt.y() + 0.5f);
    IntPoint adjusted = view->contentsToWindow(IntPoint(x, y));
    return FloatPoint(adjusted.x(), adjusted.y());
}

// Adjusts 'point' to the nearest point inside rect, and leaves it unchanged if already inside.
void adjustPointToRect(FloatPoint& point, const FloatRect& rect)
{
    if (point.x() < rect.x())
        point.setX(rect.x());
    else if (point.x() > rect.maxX())
        point.setX(rect.maxX());

    if (point.y() < rect.y())
        point.setY(rect.y());
    else if (point.y() > rect.maxY())
        point.setY(rect.maxY());
}

bool snapTo(const SubtargetGeometry& geom, const IntPoint& touchPoint, const IntRect& touchArea, IntPoint& adjustedPoint)
{
    FrameView* view = geom.node()->document().view();
    FloatQuad quad = geom.quad();

    if (quad.isRectilinear()) {
        IntRect contentBounds = geom.boundingBox();
        // Convert from frame coordinates to window coordinates.
        IntRect bounds = view->contentsToWindow(contentBounds);
        if (bounds.contains(touchPoint)) {
            adjustedPoint = touchPoint;
            return true;
        }
        if (bounds.intersects(touchArea)) {
            bounds.intersect(touchArea);
            adjustedPoint = bounds.center();
            return true;
        }
        return false;
    }

    // The following code tries to adjust the point to place inside a both the touchArea and the non-rectilinear quad.
    // FIXME: This will return the point inside the touch area that is the closest to the quad center, but does not
    // guarantee that the point will be inside the quad. Corner-cases exist where the quad will intersect but this
    // will fail to adjust the point to somewhere in the intersection.

    // Convert quad from content to window coordinates.
    FloatPoint p1 = contentsToWindow(view, quad.p1());
    FloatPoint p2 = contentsToWindow(view, quad.p2());
    FloatPoint p3 = contentsToWindow(view, quad.p3());
    FloatPoint p4 = contentsToWindow(view, quad.p4());
    quad = FloatQuad(p1, p2, p3, p4);

    if (quad.containsPoint(touchPoint)) {
        adjustedPoint = touchPoint;
        return true;
    }

    // Pull point towards the center of the element.
    FloatPoint center = quad.center();

    adjustPointToRect(center, touchArea);
    adjustedPoint = roundedIntPoint(center);

    return quad.containsPoint(adjustedPoint);
}

// A generic function for finding the target node with the lowest distance metric. A distance metric here is the result
// of a distance-like function, that computes how well the touch hits the node.
// Distance functions could for instance be distance squared or area of intersection.
bool findNodeWithLowestDistanceMetric(Node*& targetNode, IntPoint& targetPoint, IntRect& targetArea, const IntPoint& touchHotspot, const IntRect& touchArea, SubtargetGeometryList& subtargets, DistanceFunction distanceFunction)
{
    targetNode = 0;
    float bestDistanceMetric = std::numeric_limits<float>::infinity();
    SubtargetGeometryList::const_iterator it = subtargets.begin();
    const SubtargetGeometryList::const_iterator end = subtargets.end();
    IntPoint adjustedPoint;

    for (; it != end; ++it) {
        Node* node = it->node();
        float distanceMetric = distanceFunction(touchHotspot, touchArea, *it);
        if (distanceMetric < bestDistanceMetric) {
            if (snapTo(*it, touchHotspot, touchArea, adjustedPoint)) {
                targetPoint = adjustedPoint;
                targetArea = it->boundingBox();
                targetNode = node;
                bestDistanceMetric = distanceMetric;
            }
        } else if (distanceMetric - bestDistanceMetric < zeroTolerance) {
            if (snapTo(*it, touchHotspot, touchArea, adjustedPoint)) {
                if (node->isDescendantOf(targetNode)) {
                    // Try to always return the inner-most element.
                    targetPoint = adjustedPoint;
                    targetNode = node;
                    targetArea = it->boundingBox();
                }
            }
        }
    }
    if (targetNode) {
        targetArea = targetNode->document().view()->contentsToWindow(targetArea);
    }
    return (targetNode);
}

} // namespace TouchAdjustment

bool findBestClickableCandidate(Node*& targetNode, IntPoint &targetPoint, const IntPoint &touchHotspot, const IntRect &touchArea, const Vector<RefPtr<Node> >& nodes)
{
    IntRect targetArea;
    TouchAdjustment::SubtargetGeometryList subtargets;
    TouchAdjustment::compileSubtargetList(nodes, subtargets, TouchAdjustment::nodeRespondsToTapGesture, TouchAdjustment::appendBasicSubtargetsForNode);
    return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::hybridDistanceFunction);
}

bool findBestContextMenuCandidate(Node*& targetNode, IntPoint &targetPoint, const IntPoint &touchHotspot, const IntRect &touchArea, const Vector<RefPtr<Node> >& nodes)
{
    IntRect targetArea;
    TouchAdjustment::SubtargetGeometryList subtargets;
    TouchAdjustment::compileSubtargetList(nodes, subtargets, TouchAdjustment::providesContextMenuItems, TouchAdjustment::appendContextSubtargetsForNode);
    return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::hybridDistanceFunction);
}

bool findBestZoomableArea(Node*& targetNode, IntRect& targetArea, const IntPoint& touchHotspot, const IntRect& touchArea, const Vector<RefPtr<Node> >& nodes)
{
    IntPoint targetPoint;
    TouchAdjustment::SubtargetGeometryList subtargets;
    TouchAdjustment::compileZoomableSubtargets(nodes, subtargets);
    return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::zoomableIntersectionQuotient);
}

} // namespace WebCore

/* [<][>][^][v][top][bottom][index][help] */