root/ext/pcre/pcrelib/sljit/sljitNativeSPARC_common.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sljit_get_platform_name
  2. sparc_cache_flush
  3. push_inst
  4. detect_jump_type
  5. sljit_generate_code
  6. sljit_emit_enter
  7. sljit_set_context
  8. sljit_emit_return
  9. getput_arg_fast
  10. can_cache
  11. getput_arg
  12. emit_op_mem
  13. emit_op_mem2
  14. emit_op
  15. sljit_emit_op0
  16. sljit_emit_op1
  17. sljit_emit_op2
  18. sljit_get_register_index
  19. sljit_get_float_register_index
  20. sljit_emit_op_custom
  21. sljit_is_fpu_available
  22. sljit_emit_fop1_convw_fromd
  23. sljit_emit_fop1_convd_fromw
  24. sljit_emit_fop1_cmp
  25. sljit_emit_fop1
  26. sljit_emit_fop2
  27. sljit_emit_fast_enter
  28. sljit_emit_fast_return
  29. sljit_emit_label
  30. get_cc
  31. sljit_emit_jump
  32. sljit_emit_ijump
  33. sljit_emit_op_flags
  34. sljit_emit_const

/*
 *    Stack-less Just-In-Time compiler
 *
 *    Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *   1. Redistributions of source code must retain the above copyright notice, this list of
 *      conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
 *      of conditions and the following disclaimer in the documentation and/or other materials
 *      provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void)
{
        return "SPARC" SLJIT_CPUINFO;
}

/* Length of an instruction word
   Both for sparc-32 and sparc-64 */
typedef sljit_ui sljit_ins;

static void sparc_cache_flush(sljit_ins *from, sljit_ins *to)
{
#if defined(__SUNPRO_C) && __SUNPRO_C < 0x590
        __asm (
                /* if (from == to) return */
                "cmp %i0, %i1\n"
                "be .leave\n"
                "nop\n"

                /* loop until from >= to */
                ".mainloop:\n"
                "flush %i0\n"
                "add %i0, 8, %i0\n"
                "cmp %i0, %i1\n"
                "bcs .mainloop\n"
                "nop\n"

                /* The comparison was done above. */
                "bne .leave\n"
                /* nop is not necessary here, since the
                   sub operation has no side effect. */
                "sub %i0, 4, %i0\n"
                "flush %i0\n"
                ".leave:"
        );
#else
        if (SLJIT_UNLIKELY(from == to))
                return;

        do {
                __asm__ volatile (
                        "flush %0\n"
                        : : "r"(from)
                );
                /* Operates at least on doubleword. */
                from += 2;
        } while (from < to);

        if (from == to) {
                /* Flush the last word. */
                from --;
                __asm__ volatile (
                        "flush %0\n"
                        : : "r"(from)
                );
        }
#endif
}

/* TMP_REG2 is not used by getput_arg */
#define TMP_REG1        (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2        (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3        (SLJIT_NUMBER_OF_REGISTERS + 4)
#define TMP_LINK        (SLJIT_NUMBER_OF_REGISTERS + 5)

#define TMP_FREG1       (0)
#define TMP_FREG2       ((SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1) << 1)

static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = {
        0, 8, 9, 10, 13, 29, 28, 27, 23, 22, 21, 20, 19, 18, 17, 16, 26, 25, 24, 14, 1, 11, 12, 15
};

/* --------------------------------------------------------------------- */
/*  Instrucion forms                                                     */
/* --------------------------------------------------------------------- */

#define D(d)            (reg_map[d] << 25)
#define DA(d)           ((d) << 25)
#define S1(s1)          (reg_map[s1] << 14)
#define S2(s2)          (reg_map[s2])
#define S1A(s1)         ((s1) << 14)
#define S2A(s2)         (s2)
#define IMM_ARG         0x2000
#define DOP(op)         ((op) << 5)
#define IMM(imm)        (((imm) & 0x1fff) | IMM_ARG)

#define DR(dr)          (reg_map[dr])
#define OPC1(opcode)    ((opcode) << 30)
#define OPC2(opcode)    ((opcode) << 22)
#define OPC3(opcode)    ((opcode) << 19)
#define SET_FLAGS       OPC3(0x10)

#define ADD             (OPC1(0x2) | OPC3(0x00))
#define ADDC            (OPC1(0x2) | OPC3(0x08))
#define AND             (OPC1(0x2) | OPC3(0x01))
#define ANDN            (OPC1(0x2) | OPC3(0x05))
#define CALL            (OPC1(0x1))
#define FABSS           (OPC1(0x2) | OPC3(0x34) | DOP(0x09))
#define FADDD           (OPC1(0x2) | OPC3(0x34) | DOP(0x42))
#define FADDS           (OPC1(0x2) | OPC3(0x34) | DOP(0x41))
#define FCMPD           (OPC1(0x2) | OPC3(0x35) | DOP(0x52))
#define FCMPS           (OPC1(0x2) | OPC3(0x35) | DOP(0x51))
#define FDIVD           (OPC1(0x2) | OPC3(0x34) | DOP(0x4e))
#define FDIVS           (OPC1(0x2) | OPC3(0x34) | DOP(0x4d))
#define FDTOI           (OPC1(0x2) | OPC3(0x34) | DOP(0xd2))
#define FDTOS           (OPC1(0x2) | OPC3(0x34) | DOP(0xc6))
#define FITOD           (OPC1(0x2) | OPC3(0x34) | DOP(0xc8))
#define FITOS           (OPC1(0x2) | OPC3(0x34) | DOP(0xc4))
#define FMOVS           (OPC1(0x2) | OPC3(0x34) | DOP(0x01))
#define FMULD           (OPC1(0x2) | OPC3(0x34) | DOP(0x4a))
#define FMULS           (OPC1(0x2) | OPC3(0x34) | DOP(0x49))
#define FNEGS           (OPC1(0x2) | OPC3(0x34) | DOP(0x05))
#define FSTOD           (OPC1(0x2) | OPC3(0x34) | DOP(0xc9))
#define FSTOI           (OPC1(0x2) | OPC3(0x34) | DOP(0xd1))
#define FSUBD           (OPC1(0x2) | OPC3(0x34) | DOP(0x46))
#define FSUBS           (OPC1(0x2) | OPC3(0x34) | DOP(0x45))
#define JMPL            (OPC1(0x2) | OPC3(0x38))
#define NOP             (OPC1(0x0) | OPC2(0x04))
#define OR              (OPC1(0x2) | OPC3(0x02))
#define ORN             (OPC1(0x2) | OPC3(0x06))
#define RDY             (OPC1(0x2) | OPC3(0x28) | S1A(0))
#define RESTORE         (OPC1(0x2) | OPC3(0x3d))
#define SAVE            (OPC1(0x2) | OPC3(0x3c))
#define SETHI           (OPC1(0x0) | OPC2(0x04))
#define SLL             (OPC1(0x2) | OPC3(0x25))
#define SLLX            (OPC1(0x2) | OPC3(0x25) | (1 << 12))
#define SRA             (OPC1(0x2) | OPC3(0x27))
#define SRAX            (OPC1(0x2) | OPC3(0x27) | (1 << 12))
#define SRL             (OPC1(0x2) | OPC3(0x26))
#define SRLX            (OPC1(0x2) | OPC3(0x26) | (1 << 12))
#define SUB             (OPC1(0x2) | OPC3(0x04))
#define SUBC            (OPC1(0x2) | OPC3(0x0c))
#define TA              (OPC1(0x2) | OPC3(0x3a) | (8 << 25))
#define WRY             (OPC1(0x2) | OPC3(0x30) | DA(0))
#define XOR             (OPC1(0x2) | OPC3(0x03))
#define XNOR            (OPC1(0x2) | OPC3(0x07))

#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
#define MAX_DISP        (0x1fffff)
#define MIN_DISP        (-0x200000)
#define DISP_MASK       (0x3fffff)

#define BICC            (OPC1(0x0) | OPC2(0x2))
#define FBFCC           (OPC1(0x0) | OPC2(0x6))
#define SLL_W           SLL
#define SDIV            (OPC1(0x2) | OPC3(0x0f))
#define SMUL            (OPC1(0x2) | OPC3(0x0b))
#define UDIV            (OPC1(0x2) | OPC3(0x0e))
#define UMUL            (OPC1(0x2) | OPC3(0x0a))
#else
#define SLL_W           SLLX
#endif

#define SIMM_MAX        (0x0fff)
#define SIMM_MIN        (-0x1000)

/* dest_reg is the absolute name of the register
   Useful for reordering instructions in the delay slot. */
static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins, sljit_si delay_slot)
{
        sljit_ins *ptr;
        SLJIT_ASSERT((delay_slot & DST_INS_MASK) == UNMOVABLE_INS
                || (delay_slot & DST_INS_MASK) == MOVABLE_INS
                || (delay_slot & DST_INS_MASK) == ((ins >> 25) & 0x1f));
        ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
        FAIL_IF(!ptr);
        *ptr = ins;
        compiler->size++;
        compiler->delay_slot = delay_slot;
        return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_ins* detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
        sljit_sw diff;
        sljit_uw target_addr;
        sljit_ins *inst;
        sljit_ins saved_inst;

        if (jump->flags & SLJIT_REWRITABLE_JUMP)
                return code_ptr;

        if (jump->flags & JUMP_ADDR)
                target_addr = jump->u.target;
        else {
                SLJIT_ASSERT(jump->flags & JUMP_LABEL);
                target_addr = (sljit_uw)(code + jump->u.label->size);
        }
        inst = (sljit_ins*)jump->addr;

#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
        if (jump->flags & IS_CALL) {
                /* Call is always patchable on sparc 32. */
                jump->flags |= PATCH_CALL;
                if (jump->flags & IS_MOVABLE) {
                        inst[0] = inst[-1];
                        inst[-1] = CALL;
                        jump->addr -= sizeof(sljit_ins);
                        return inst;
                }
                inst[0] = CALL;
                inst[1] = NOP;
                return inst + 1;
        }
#else
        /* Both calls and BPr instructions shall not pass this point. */
#error "Implementation required"
#endif

        if (jump->flags & IS_COND)
                inst--;

        if (jump->flags & IS_MOVABLE) {
                diff = ((sljit_sw)target_addr - (sljit_sw)(inst - 1)) >> 2;
                if (diff <= MAX_DISP && diff >= MIN_DISP) {
                        jump->flags |= PATCH_B;
                        inst--;
                        if (jump->flags & IS_COND) {
                                saved_inst = inst[0];
                                inst[0] = inst[1] ^ (1 << 28);
                                inst[1] = saved_inst;
                        } else {
                                inst[1] = inst[0];
                                inst[0] = BICC | DA(0x8);
                        }
                        jump->addr = (sljit_uw)inst;
                        return inst + 1;
                }
        }

        diff = ((sljit_sw)target_addr - (sljit_sw)(inst)) >> 2;
        if (diff <= MAX_DISP && diff >= MIN_DISP) {
                jump->flags |= PATCH_B;
                if (jump->flags & IS_COND)
                        inst[0] ^= (1 << 28);
                else
                        inst[0] = BICC | DA(0x8);
                inst[1] = NOP;
                jump->addr = (sljit_uw)inst;
                return inst + 1;
        }

        return code_ptr;
}

SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
        struct sljit_memory_fragment *buf;
        sljit_ins *code;
        sljit_ins *code_ptr;
        sljit_ins *buf_ptr;
        sljit_ins *buf_end;
        sljit_uw word_count;
        sljit_uw addr;

        struct sljit_label *label;
        struct sljit_jump *jump;
        struct sljit_const *const_;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_generate_code(compiler));
        reverse_buf(compiler);

        code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
        PTR_FAIL_WITH_EXEC_IF(code);
        buf = compiler->buf;

        code_ptr = code;
        word_count = 0;
        label = compiler->labels;
        jump = compiler->jumps;
        const_ = compiler->consts;
        do {
                buf_ptr = (sljit_ins*)buf->memory;
                buf_end = buf_ptr + (buf->used_size >> 2);
                do {
                        *code_ptr = *buf_ptr++;
                        SLJIT_ASSERT(!label || label->size >= word_count);
                        SLJIT_ASSERT(!jump || jump->addr >= word_count);
                        SLJIT_ASSERT(!const_ || const_->addr >= word_count);
                        /* These structures are ordered by their address. */
                        if (label && label->size == word_count) {
                                /* Just recording the address. */
                                label->addr = (sljit_uw)code_ptr;
                                label->size = code_ptr - code;
                                label = label->next;
                        }
                        if (jump && jump->addr == word_count) {
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
                                jump->addr = (sljit_uw)(code_ptr - 3);
#else
                                jump->addr = (sljit_uw)(code_ptr - 6);
#endif
                                code_ptr = detect_jump_type(jump, code_ptr, code);
                                jump = jump->next;
                        }
                        if (const_ && const_->addr == word_count) {
                                /* Just recording the address. */
                                const_->addr = (sljit_uw)code_ptr;
                                const_ = const_->next;
                        }
                        code_ptr ++;
                        word_count ++;
                } while (buf_ptr < buf_end);

                buf = buf->next;
        } while (buf);

        if (label && label->size == word_count) {
                label->addr = (sljit_uw)code_ptr;
                label->size = code_ptr - code;
                label = label->next;
        }

        SLJIT_ASSERT(!label);
        SLJIT_ASSERT(!jump);
        SLJIT_ASSERT(!const_);
        SLJIT_ASSERT(code_ptr - code <= (sljit_si)compiler->size);

        jump = compiler->jumps;
        while (jump) {
                do {
                        addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
                        buf_ptr = (sljit_ins*)jump->addr;

                        if (jump->flags & PATCH_CALL) {
                                addr = (sljit_sw)(addr - jump->addr) >> 2;
                                SLJIT_ASSERT((sljit_sw)addr <= 0x1fffffff && (sljit_sw)addr >= -0x20000000);
                                buf_ptr[0] = CALL | (addr & 0x3fffffff);
                                break;
                        }
                        if (jump->flags & PATCH_B) {
                                addr = (sljit_sw)(addr - jump->addr) >> 2;
                                SLJIT_ASSERT((sljit_sw)addr <= MAX_DISP && (sljit_sw)addr >= MIN_DISP);
                                buf_ptr[0] = (buf_ptr[0] & ~DISP_MASK) | (addr & DISP_MASK);
                                break;
                        }

                        /* Set the fields of immediate loads. */
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
                        buf_ptr[0] = (buf_ptr[0] & 0xffc00000) | ((addr >> 10) & 0x3fffff);
                        buf_ptr[1] = (buf_ptr[1] & 0xfffffc00) | (addr & 0x3ff);
#else
#error "Implementation required"
#endif
                } while (0);
                jump = jump->next;
        }


        compiler->error = SLJIT_ERR_COMPILED;
        compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
        SLJIT_CACHE_FLUSH(code, code_ptr);
        return code;
}

/* --------------------------------------------------------------------- */
/*  Entry, exit                                                          */
/* --------------------------------------------------------------------- */

/* Creates an index in data_transfer_insts array. */
#define LOAD_DATA       0x01
#define WORD_DATA       0x00
#define BYTE_DATA       0x02
#define HALF_DATA       0x04
#define INT_DATA        0x06
#define SIGNED_DATA     0x08
/* Separates integer and floating point registers */
#define GPR_REG         0x0f
#define DOUBLE_DATA     0x10
#define SINGLE_DATA     0x12

#define MEM_MASK        0x1f

#define WRITE_BACK      0x00020
#define ARG_TEST        0x00040
#define ALT_KEEP_CACHE  0x00080
#define CUMULATIVE_OP   0x00100
#define IMM_OP          0x00200
#define SRC2_IMM        0x00400

#define REG_DEST        0x00800
#define REG2_SOURCE     0x01000
#define SLOW_SRC1       0x02000
#define SLOW_SRC2       0x04000
#define SLOW_DEST       0x08000

/* SET_FLAGS (0x10 << 19) also belong here! */

#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
#include "sljitNativeSPARC_32.c"
#else
#include "sljitNativeSPARC_64.c"
#endif

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
        sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
        sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
        set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

        local_size = (local_size + SLJIT_LOCALS_OFFSET + 7) & ~0x7;
        compiler->local_size = local_size;

        if (local_size <= SIMM_MAX) {
                FAIL_IF(push_inst(compiler, SAVE | D(SLJIT_SP) | S1(SLJIT_SP) | IMM(-local_size), UNMOVABLE_INS));
        }
        else {
                FAIL_IF(load_immediate(compiler, TMP_REG1, -local_size));
                FAIL_IF(push_inst(compiler, SAVE | D(SLJIT_SP) | S1(SLJIT_SP) | S2(TMP_REG1), UNMOVABLE_INS));
        }

        /* Arguments are in their appropriate registers. */

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
        sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
        sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
        CHECK_ERROR();
        CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
        set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

        compiler->local_size = (local_size + SLJIT_LOCALS_OFFSET + 7) & ~0x7;
        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_return(compiler, op, src, srcw));

        if (op != SLJIT_MOV || !FAST_IS_REG(src)) {
                FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
                src = SLJIT_R0;
        }

        FAIL_IF(push_inst(compiler, JMPL | D(0) | S1A(31) | IMM(8), UNMOVABLE_INS));
        return push_inst(compiler, RESTORE | D(SLJIT_R0) | S1(src) | S2(0), UNMOVABLE_INS);
}

/* --------------------------------------------------------------------- */
/*  Operators                                                            */
/* --------------------------------------------------------------------- */

#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
#define ARCH_32_64(a, b)        a
#else
#define ARCH_32_64(a, b)        b
#endif

static SLJIT_CONST sljit_ins data_transfer_insts[16 + 4] = {
/* u w s */ ARCH_32_64(OPC1(3) | OPC3(0x04) /* stw */, OPC1(3) | OPC3(0x0e) /* stx */),
/* u w l */ ARCH_32_64(OPC1(3) | OPC3(0x00) /* lduw */, OPC1(3) | OPC3(0x0b) /* ldx */),
/* u b s */ OPC1(3) | OPC3(0x05) /* stb */,
/* u b l */ OPC1(3) | OPC3(0x01) /* ldub */,
/* u h s */ OPC1(3) | OPC3(0x06) /* sth */,
/* u h l */ OPC1(3) | OPC3(0x02) /* lduh */,
/* u i s */ OPC1(3) | OPC3(0x04) /* stw */,
/* u i l */ OPC1(3) | OPC3(0x00) /* lduw */,

/* s w s */ ARCH_32_64(OPC1(3) | OPC3(0x04) /* stw */, OPC1(3) | OPC3(0x0e) /* stx */),
/* s w l */ ARCH_32_64(OPC1(3) | OPC3(0x00) /* lduw */, OPC1(3) | OPC3(0x0b) /* ldx */),
/* s b s */ OPC1(3) | OPC3(0x05) /* stb */,
/* s b l */ OPC1(3) | OPC3(0x09) /* ldsb */,
/* s h s */ OPC1(3) | OPC3(0x06) /* sth */,
/* s h l */ OPC1(3) | OPC3(0x0a) /* ldsh */,
/* s i s */ OPC1(3) | OPC3(0x04) /* stw */,
/* s i l */ ARCH_32_64(OPC1(3) | OPC3(0x00) /* lduw */, OPC1(3) | OPC3(0x08) /* ldsw */),

/* d   s */ OPC1(3) | OPC3(0x27),
/* d   l */ OPC1(3) | OPC3(0x23),
/* s   s */ OPC1(3) | OPC3(0x24),
/* s   l */ OPC1(3) | OPC3(0x20),
};

#undef ARCH_32_64

/* Can perform an operation using at most 1 instruction. */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
        SLJIT_ASSERT(arg & SLJIT_MEM);

        if (!(flags & WRITE_BACK) || !(arg & REG_MASK)) {
                if ((!(arg & OFFS_REG_MASK) && argw <= SIMM_MAX && argw >= SIMM_MIN)
                                || ((arg & OFFS_REG_MASK) && (argw & 0x3) == 0)) {
                        /* Works for both absoulte and relative addresses (immediate case). */
                        if (SLJIT_UNLIKELY(flags & ARG_TEST))
                                return 1;
                        FAIL_IF(push_inst(compiler, data_transfer_insts[flags & MEM_MASK]
                                | ((flags & MEM_MASK) <= GPR_REG ? D(reg) : DA(reg))
                                | S1(arg & REG_MASK) | ((arg & OFFS_REG_MASK) ? S2(OFFS_REG(arg)) : IMM(argw)),
                                ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) ? DR(reg) : MOVABLE_INS));
                        return -1;
                }
        }
        return 0;
}

/* See getput_arg below.
   Note: can_cache is called only for binary operators. Those
   operators always uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
        SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));

        /* Simple operation except for updates. */
        if (arg & OFFS_REG_MASK) {
                argw &= 0x3;
                SLJIT_ASSERT(argw);
                next_argw &= 0x3;
                if ((arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK) && argw == next_argw)
                        return 1;
                return 0;
        }

        if (((next_argw - argw) <= SIMM_MAX && (next_argw - argw) >= SIMM_MIN))
                return 1;
        return 0;
}

/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
        sljit_si base, arg2, delay_slot;
        sljit_ins dest;

        SLJIT_ASSERT(arg & SLJIT_MEM);
        if (!(next_arg & SLJIT_MEM)) {
                next_arg = 0;
                next_argw = 0;
        }

        base = arg & REG_MASK;
        if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
                argw &= 0x3;
                SLJIT_ASSERT(argw != 0);

                /* Using the cache. */
                if (((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) && (argw == compiler->cache_argw))
                        arg2 = TMP_REG3;
                else {
                        if ((arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK) && argw == (next_argw & 0x3)) {
                                compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
                                compiler->cache_argw = argw;
                                arg2 = TMP_REG3;
                        }
                        else if ((flags & LOAD_DATA) && ((flags & MEM_MASK) <= GPR_REG) && reg != base && reg != OFFS_REG(arg))
                                arg2 = reg;
                        else /* It must be a mov operation, so tmp1 must be free to use. */
                                arg2 = TMP_REG1;
                        FAIL_IF(push_inst(compiler, SLL_W | D(arg2) | S1(OFFS_REG(arg)) | IMM_ARG | argw, DR(arg2)));
                }
        }
        else {
                /* Using the cache. */
                if ((compiler->cache_arg == SLJIT_MEM) && (argw - compiler->cache_argw) <= SIMM_MAX && (argw - compiler->cache_argw) >= SIMM_MIN) {
                        if (argw != compiler->cache_argw) {
                                FAIL_IF(push_inst(compiler, ADD | D(TMP_REG3) | S1(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3)));
                                compiler->cache_argw = argw;
                        }
                        arg2 = TMP_REG3;
                } else {
                        if ((next_argw - argw) <= SIMM_MAX && (next_argw - argw) >= SIMM_MIN) {
                                compiler->cache_arg = SLJIT_MEM;
                                compiler->cache_argw = argw;
                                arg2 = TMP_REG3;
                        }
                        else if ((flags & LOAD_DATA) && ((flags & MEM_MASK) <= GPR_REG) && reg != base)
                                arg2 = reg;
                        else /* It must be a mov operation, so tmp1 must be free to use. */
                                arg2 = TMP_REG1;
                        FAIL_IF(load_immediate(compiler, arg2, argw));
                }
        }

        dest = ((flags & MEM_MASK) <= GPR_REG ? D(reg) : DA(reg));
        delay_slot = ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) ? DR(reg) : MOVABLE_INS;
        if (!base)
                return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | dest | S1(arg2) | IMM(0), delay_slot);
        if (!(flags & WRITE_BACK))
                return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | dest | S1(base) | S2(arg2), delay_slot);
        FAIL_IF(push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | dest | S1(base) | S2(arg2), delay_slot));
        return push_inst(compiler, ADD | D(base) | S1(base) | S2(arg2), DR(base));
}

static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
        if (getput_arg_fast(compiler, flags, reg, arg, argw))
                return compiler->error;
        compiler->cache_arg = 0;
        compiler->cache_argw = 0;
        return getput_arg(compiler, flags, reg, arg, argw, 0, 0);
}

static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
        if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
                return compiler->error;
        return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}

static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
        sljit_si dst, sljit_sw dstw,
        sljit_si src1, sljit_sw src1w,
        sljit_si src2, sljit_sw src2w)
{
        /* arg1 goes to TMP_REG1 or src reg
           arg2 goes to TMP_REG2, imm or src reg
           TMP_REG3 can be used for caching
           result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
        sljit_si dst_r = TMP_REG2;
        sljit_si src1_r;
        sljit_sw src2_r = 0;
        sljit_si sugg_src2_r = TMP_REG2;

        if (!(flags & ALT_KEEP_CACHE)) {
                compiler->cache_arg = 0;
                compiler->cache_argw = 0;
        }

        if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
                if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
                        return SLJIT_SUCCESS;
        }
        else if (FAST_IS_REG(dst)) {
                dst_r = dst;
                flags |= REG_DEST;
                if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
                        sugg_src2_r = dst_r;
        }
        else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1, dst, dstw))
                flags |= SLOW_DEST;

        if (flags & IMM_OP) {
                if ((src2 & SLJIT_IMM) && src2w) {
                        if (src2w <= SIMM_MAX && src2w >= SIMM_MIN) {
                                flags |= SRC2_IMM;
                                src2_r = src2w;
                        }
                }
                if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
                        if (src1w <= SIMM_MAX && src1w >= SIMM_MIN) {
                                flags |= SRC2_IMM;
                                src2_r = src1w;

                                /* And swap arguments. */
                                src1 = src2;
                                src1w = src2w;
                                src2 = SLJIT_IMM;
                                /* src2w = src2_r unneeded. */
                        }
                }
        }

        /* Source 1. */
        if (FAST_IS_REG(src1))
                src1_r = src1;
        else if (src1 & SLJIT_IMM) {
                if (src1w) {
                        FAIL_IF(load_immediate(compiler, TMP_REG1, src1w));
                        src1_r = TMP_REG1;
                }
                else
                        src1_r = 0;
        }
        else {
                if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w))
                        FAIL_IF(compiler->error);
                else
                        flags |= SLOW_SRC1;
                src1_r = TMP_REG1;
        }

        /* Source 2. */
        if (FAST_IS_REG(src2)) {
                src2_r = src2;
                flags |= REG2_SOURCE;
                if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
                        dst_r = src2_r;
        }
        else if (src2 & SLJIT_IMM) {
                if (!(flags & SRC2_IMM)) {
                        if (src2w) {
                                FAIL_IF(load_immediate(compiler, sugg_src2_r, src2w));
                                src2_r = sugg_src2_r;
                        }
                        else {
                                src2_r = 0;
                                if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) && (dst & SLJIT_MEM))
                                        dst_r = 0;
                        }
                }
        }
        else {
                if (getput_arg_fast(compiler, flags | LOAD_DATA, sugg_src2_r, src2, src2w))
                        FAIL_IF(compiler->error);
                else
                        flags |= SLOW_SRC2;
                src2_r = sugg_src2_r;
        }

        if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
                SLJIT_ASSERT(src2_r == TMP_REG2);
                if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
                        FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2, src2, src2w, src1, src1w));
                        FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
                }
                else {
                        FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
                        FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw));
                }
        }
        else if (flags & SLOW_SRC1)
                FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
        else if (flags & SLOW_SRC2)
                FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw));

        FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));

        if (dst & SLJIT_MEM) {
                if (!(flags & SLOW_DEST)) {
                        getput_arg_fast(compiler, flags, dst_r, dst, dstw);
                        return compiler->error;
                }
                return getput_arg(compiler, flags, dst_r, dst, dstw, 0, 0);
        }

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_op0(compiler, op));

        op = GET_OPCODE(op);
        switch (op) {
        case SLJIT_BREAKPOINT:
                return push_inst(compiler, TA, UNMOVABLE_INS);
        case SLJIT_NOP:
                return push_inst(compiler, NOP, UNMOVABLE_INS);
        case SLJIT_LUMUL:
        case SLJIT_LSMUL:
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
                FAIL_IF(push_inst(compiler, (op == SLJIT_LUMUL ? UMUL : SMUL) | D(SLJIT_R0) | S1(SLJIT_R0) | S2(SLJIT_R1), DR(SLJIT_R0)));
                return push_inst(compiler, RDY | D(SLJIT_R1), DR(SLJIT_R1));
#else
#error "Implementation required"
#endif
        case SLJIT_LUDIV:
        case SLJIT_LSDIV:
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
                if (op == SLJIT_LUDIV)
                        FAIL_IF(push_inst(compiler, WRY | S1(0), MOVABLE_INS));
                else {
                        FAIL_IF(push_inst(compiler, SRA | D(TMP_REG1) | S1(SLJIT_R0) | IMM(31), DR(TMP_REG1)));
                        FAIL_IF(push_inst(compiler, WRY | S1(TMP_REG1), MOVABLE_INS));
                }
                FAIL_IF(push_inst(compiler, OR | D(TMP_REG2) | S1(0) | S2(SLJIT_R0), DR(TMP_REG2)));
                FAIL_IF(push_inst(compiler, (op == SLJIT_LUDIV ? UDIV : SDIV) | D(SLJIT_R0) | S1(SLJIT_R0) | S2(SLJIT_R1), DR(SLJIT_R0)));
                FAIL_IF(push_inst(compiler, SMUL | D(SLJIT_R1) | S1(SLJIT_R0) | S2(SLJIT_R1), DR(SLJIT_R1)));
                FAIL_IF(push_inst(compiler, SUB | D(SLJIT_R1) | S1(TMP_REG2) | S2(SLJIT_R1), DR(SLJIT_R1)));
                return SLJIT_SUCCESS;
#else
#error "Implementation required"
#endif
        }

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        sljit_si flags = GET_FLAGS(op) ? SET_FLAGS : 0;

        CHECK_ERROR();
        CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src, srcw);

        op = GET_OPCODE(op);
        switch (op) {
        case SLJIT_MOV:
        case SLJIT_MOV_P:
                return emit_op(compiler, SLJIT_MOV, flags | WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOV_UI:
                return emit_op(compiler, SLJIT_MOV_UI, flags | INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOV_SI:
                return emit_op(compiler, SLJIT_MOV_SI, flags | INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOV_UB:
                return emit_op(compiler, SLJIT_MOV_UB, flags | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub)srcw : srcw);

        case SLJIT_MOV_SB:
                return emit_op(compiler, SLJIT_MOV_SB, flags | BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb)srcw : srcw);

        case SLJIT_MOV_UH:
                return emit_op(compiler, SLJIT_MOV_UH, flags | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh)srcw : srcw);

        case SLJIT_MOV_SH:
                return emit_op(compiler, SLJIT_MOV_SH, flags | HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh)srcw : srcw);

        case SLJIT_MOVU:
        case SLJIT_MOVU_P:
                return emit_op(compiler, SLJIT_MOV, flags | WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOVU_UI:
                return emit_op(compiler, SLJIT_MOV_UI, flags | INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOVU_SI:
                return emit_op(compiler, SLJIT_MOV_SI, flags | INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_MOVU_UB:
                return emit_op(compiler, SLJIT_MOV_UB, flags | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub)srcw : srcw);

        case SLJIT_MOVU_SB:
                return emit_op(compiler, SLJIT_MOV_SB, flags | BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb)srcw : srcw);

        case SLJIT_MOVU_UH:
                return emit_op(compiler, SLJIT_MOV_UH, flags | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh)srcw : srcw);

        case SLJIT_MOVU_SH:
                return emit_op(compiler, SLJIT_MOV_SH, flags | HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh)srcw : srcw);

        case SLJIT_NOT:
        case SLJIT_CLZ:
                return emit_op(compiler, op, flags, dst, dstw, TMP_REG1, 0, src, srcw);

        case SLJIT_NEG:
                return emit_op(compiler, SLJIT_SUB, flags | IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
        }

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src1, sljit_sw src1w,
        sljit_si src2, sljit_sw src2w)
{
        sljit_si flags = GET_FLAGS(op) ? SET_FLAGS : 0;

        CHECK_ERROR();
        CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src1, src1w);
        ADJUST_LOCAL_OFFSET(src2, src2w);

        op = GET_OPCODE(op);
        switch (op) {
        case SLJIT_ADD:
        case SLJIT_ADDC:
        case SLJIT_MUL:
        case SLJIT_AND:
        case SLJIT_OR:
        case SLJIT_XOR:
                return emit_op(compiler, op, flags | CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);

        case SLJIT_SUB:
        case SLJIT_SUBC:
                return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);

        case SLJIT_SHL:
        case SLJIT_LSHR:
        case SLJIT_ASHR:
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
                if (src2 & SLJIT_IMM)
                        src2w &= 0x1f;
#else
                SLJIT_ASSERT_STOP();
#endif
                return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
        }

        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
{
        CHECK_REG_INDEX(check_sljit_get_register_index(reg));
        return reg_map[reg];
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg)
{
        CHECK_REG_INDEX(check_sljit_get_float_register_index(reg));
        return reg << 1;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
        void *instruction, sljit_si size)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_op_custom(compiler, instruction, size));

        return push_inst(compiler, *(sljit_ins*)instruction, UNMOVABLE_INS);
}

/* --------------------------------------------------------------------- */
/*  Floating point operators                                             */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
#ifdef SLJIT_IS_FPU_AVAILABLE
        return SLJIT_IS_FPU_AVAILABLE;
#else
        /* Available by default. */
        return 1;
#endif
}

#define FLOAT_DATA(op) (DOUBLE_DATA | ((op & SLJIT_SINGLE_OP) >> 7))
#define SELECT_FOP(op, single, double) ((op & SLJIT_SINGLE_OP) ? single : double)
#define FLOAT_TMP_MEM_OFFSET (22 * sizeof(sljit_sw))

static SLJIT_INLINE sljit_si sljit_emit_fop1_convw_fromd(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        if (src & SLJIT_MEM) {
                FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));
                src = TMP_FREG1;
        }
        else
                src <<= 1;

        FAIL_IF(push_inst(compiler, SELECT_FOP(op, FSTOI, FDTOI) | DA(TMP_FREG1) | S2A(src), MOVABLE_INS));

        if (dst == SLJIT_UNUSED)
                return SLJIT_SUCCESS;

        if (FAST_IS_REG(dst)) {
                FAIL_IF(emit_op_mem2(compiler, SINGLE_DATA, TMP_FREG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
                return emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, dst, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET);
        }

        /* Store the integer value from a VFP register. */
        return emit_op_mem2(compiler, SINGLE_DATA, TMP_FREG1, dst, dstw, 0, 0);
}

static SLJIT_INLINE sljit_si sljit_emit_fop1_convd_fromw(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        sljit_si dst_r = FAST_IS_REG(dst) ? (dst << 1) : TMP_FREG1;

        if (src & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
                if (GET_OPCODE(op) == SLJIT_CONVD_FROMI)
                        srcw = (sljit_si)srcw;
#endif
                FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
                src = TMP_REG1;
                srcw = 0;
        }

        if (FAST_IS_REG(src)) {
                FAIL_IF(emit_op_mem2(compiler, WORD_DATA, src, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
                src = SLJIT_MEM1(SLJIT_SP);
                srcw = FLOAT_TMP_MEM_OFFSET;
        }

        FAIL_IF(emit_op_mem2(compiler, SINGLE_DATA | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));
        FAIL_IF(push_inst(compiler, SELECT_FOP(op, FITOS, FITOD) | DA(dst_r) | S2A(TMP_FREG1), MOVABLE_INS));

        if (dst & SLJIT_MEM)
                return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0);
        return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_si sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_si op,
        sljit_si src1, sljit_sw src1w,
        sljit_si src2, sljit_sw src2w)
{
        if (src1 & SLJIT_MEM) {
                FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
                src1 = TMP_FREG1;
        }
        else
                src1 <<= 1;

        if (src2 & SLJIT_MEM) {
                FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, 0, 0));
                src2 = TMP_FREG2;
        }
        else
                src2 <<= 1;

        return push_inst(compiler, SELECT_FOP(op, FCMPS, FCMPD) | S1A(src1) | S2A(src2), FCC_IS_SET | MOVABLE_INS);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw)
{
        sljit_si dst_r;

        CHECK_ERROR();
        compiler->cache_arg = 0;
        compiler->cache_argw = 0;

        SLJIT_COMPILE_ASSERT((SLJIT_SINGLE_OP == 0x100) && !(DOUBLE_DATA & 0x2), float_transfer_bit_error);
        SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);

        if (GET_OPCODE(op) == SLJIT_CONVD_FROMS)
                op ^= SLJIT_SINGLE_OP;

        dst_r = FAST_IS_REG(dst) ? (dst << 1) : TMP_FREG1;

        if (src & SLJIT_MEM) {
                FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, dst_r, src, srcw, dst, dstw));
                src = dst_r;
        }
        else
                src <<= 1;

        switch (GET_OPCODE(op)) {
        case SLJIT_DMOV:
                if (src != dst_r) {
                        if (dst_r != TMP_FREG1) {
                                FAIL_IF(push_inst(compiler, FMOVS | DA(dst_r) | S2A(src), MOVABLE_INS));
                                if (!(op & SLJIT_SINGLE_OP))
                                        FAIL_IF(push_inst(compiler, FMOVS | DA(dst_r | 1) | S2A(src | 1), MOVABLE_INS));
                        }
                        else
                                dst_r = src;
                }
                break;
        case SLJIT_DNEG:
                FAIL_IF(push_inst(compiler, FNEGS | DA(dst_r) | S2A(src), MOVABLE_INS));
                if (dst_r != src && !(op & SLJIT_SINGLE_OP))
                        FAIL_IF(push_inst(compiler, FMOVS | DA(dst_r | 1) | S2A(src | 1), MOVABLE_INS));
                break;
        case SLJIT_DABS:
                FAIL_IF(push_inst(compiler, FABSS | DA(dst_r) | S2A(src), MOVABLE_INS));
                if (dst_r != src && !(op & SLJIT_SINGLE_OP))
                        FAIL_IF(push_inst(compiler, FMOVS | DA(dst_r | 1) | S2A(src | 1), MOVABLE_INS));
                break;
        case SLJIT_CONVD_FROMS:
                FAIL_IF(push_inst(compiler, SELECT_FOP(op, FSTOD, FDTOS) | DA(dst_r) | S2A(src), MOVABLE_INS));
                op ^= SLJIT_SINGLE_OP;
                break;
        }

        if (dst & SLJIT_MEM)
                FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), dst_r, dst, dstw, 0, 0));
        return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src1, sljit_sw src1w,
        sljit_si src2, sljit_sw src2w)
{
        sljit_si dst_r, flags = 0;

        CHECK_ERROR();
        CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
        ADJUST_LOCAL_OFFSET(dst, dstw);
        ADJUST_LOCAL_OFFSET(src1, src1w);
        ADJUST_LOCAL_OFFSET(src2, src2w);

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;

        dst_r = FAST_IS_REG(dst) ? (dst << 1) : TMP_FREG2;

        if (src1 & SLJIT_MEM) {
                if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w)) {
                        FAIL_IF(compiler->error);
                        src1 = TMP_FREG1;
                } else
                        flags |= SLOW_SRC1;
        }
        else
                src1 <<= 1;

        if (src2 & SLJIT_MEM) {
                if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w)) {
                        FAIL_IF(compiler->error);
                        src2 = TMP_FREG2;
                } else
                        flags |= SLOW_SRC2;
        }
        else
                src2 <<= 1;

        if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
                if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
                        FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, src1, src1w));
                        FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
                }
                else {
                        FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
                        FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
                }
        }
        else if (flags & SLOW_SRC1)
                FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
        else if (flags & SLOW_SRC2)
                FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));

        if (flags & SLOW_SRC1)
                src1 = TMP_FREG1;
        if (flags & SLOW_SRC2)
                src2 = TMP_FREG2;

        switch (GET_OPCODE(op)) {
        case SLJIT_DADD:
                FAIL_IF(push_inst(compiler, SELECT_FOP(op, FADDS, FADDD) | DA(dst_r) | S1A(src1) | S2A(src2), MOVABLE_INS));
                break;

        case SLJIT_DSUB:
                FAIL_IF(push_inst(compiler, SELECT_FOP(op, FSUBS, FSUBD) | DA(dst_r) | S1A(src1) | S2A(src2), MOVABLE_INS));
                break;

        case SLJIT_DMUL:
                FAIL_IF(push_inst(compiler, SELECT_FOP(op, FMULS, FMULD) | DA(dst_r) | S1A(src1) | S2A(src2), MOVABLE_INS));
                break;

        case SLJIT_DDIV:
                FAIL_IF(push_inst(compiler, SELECT_FOP(op, FDIVS, FDIVD) | DA(dst_r) | S1A(src1) | S2A(src2), MOVABLE_INS));
                break;
        }

        if (dst_r == TMP_FREG2)
                FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG2, dst, dstw, 0, 0));

        return SLJIT_SUCCESS;
}

#undef FLOAT_DATA
#undef SELECT_FOP

/* --------------------------------------------------------------------- */
/*  Other instructions                                                   */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
        ADJUST_LOCAL_OFFSET(dst, dstw);

        /* For UNUSED dst. Uncommon, but possible. */
        if (dst == SLJIT_UNUSED)
                return SLJIT_SUCCESS;

        if (FAST_IS_REG(dst))
                return push_inst(compiler, OR | D(dst) | S1(0) | S2(TMP_LINK), DR(dst));

        /* Memory. */
        return emit_op_mem(compiler, WORD_DATA, TMP_LINK, dst, dstw);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
        CHECK_ERROR();
        CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
        ADJUST_LOCAL_OFFSET(src, srcw);

        if (FAST_IS_REG(src))
                FAIL_IF(push_inst(compiler, OR | D(TMP_LINK) | S1(0) | S2(src), DR(TMP_LINK)));
        else if (src & SLJIT_MEM)
                FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, TMP_LINK, src, srcw));
        else if (src & SLJIT_IMM)
                FAIL_IF(load_immediate(compiler, TMP_LINK, srcw));

        FAIL_IF(push_inst(compiler, JMPL | D(0) | S1(TMP_LINK) | IMM(8), UNMOVABLE_INS));
        return push_inst(compiler, NOP, UNMOVABLE_INS);
}

/* --------------------------------------------------------------------- */
/*  Conditional instructions                                             */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
        struct sljit_label *label;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_emit_label(compiler));

        if (compiler->last_label && compiler->last_label->size == compiler->size)
                return compiler->last_label;

        label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
        PTR_FAIL_IF(!label);
        set_label(label, compiler);
        compiler->delay_slot = UNMOVABLE_INS;
        return label;
}

static sljit_ins get_cc(sljit_si type)
{
        switch (type) {
        case SLJIT_EQUAL:
        case SLJIT_MUL_NOT_OVERFLOW:
        case SLJIT_D_NOT_EQUAL: /* Unordered. */
                return DA(0x1);

        case SLJIT_NOT_EQUAL:
        case SLJIT_MUL_OVERFLOW:
        case SLJIT_D_EQUAL:
                return DA(0x9);

        case SLJIT_LESS:
        case SLJIT_D_GREATER: /* Unordered. */
                return DA(0x5);

        case SLJIT_GREATER_EQUAL:
        case SLJIT_D_LESS_EQUAL:
                return DA(0xd);

        case SLJIT_GREATER:
        case SLJIT_D_GREATER_EQUAL: /* Unordered. */
                return DA(0xc);

        case SLJIT_LESS_EQUAL:
        case SLJIT_D_LESS:
                return DA(0x4);

        case SLJIT_SIG_LESS:
                return DA(0x3);

        case SLJIT_SIG_GREATER_EQUAL:
                return DA(0xb);

        case SLJIT_SIG_GREATER:
                return DA(0xa);

        case SLJIT_SIG_LESS_EQUAL:
                return DA(0x2);

        case SLJIT_OVERFLOW:
        case SLJIT_D_UNORDERED:
                return DA(0x7);

        case SLJIT_NOT_OVERFLOW:
        case SLJIT_D_ORDERED:
                return DA(0xf);

        default:
                SLJIT_ASSERT_STOP();
                return DA(0x8);
        }
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
        struct sljit_jump *jump;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_emit_jump(compiler, type));

        jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
        PTR_FAIL_IF(!jump);
        set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
        type &= 0xff;

        if (type < SLJIT_D_EQUAL) {
                jump->flags |= IS_COND;
                if (((compiler->delay_slot & DST_INS_MASK) != UNMOVABLE_INS) && !(compiler->delay_slot & ICC_IS_SET))
                        jump->flags |= IS_MOVABLE;
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
                PTR_FAIL_IF(push_inst(compiler, BICC | get_cc(type ^ 1) | 5, UNMOVABLE_INS));
#else
#error "Implementation required"
#endif
        }
        else if (type < SLJIT_JUMP) {
                jump->flags |= IS_COND;
                if (((compiler->delay_slot & DST_INS_MASK) != UNMOVABLE_INS) && !(compiler->delay_slot & FCC_IS_SET))
                        jump->flags |= IS_MOVABLE;
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
                PTR_FAIL_IF(push_inst(compiler, FBFCC | get_cc(type ^ 1) | 5, UNMOVABLE_INS));
#else
#error "Implementation required"
#endif
        } else {
                if ((compiler->delay_slot & DST_INS_MASK) != UNMOVABLE_INS)
                        jump->flags |= IS_MOVABLE;
                if (type >= SLJIT_FAST_CALL)
                        jump->flags |= IS_CALL;
        }

        PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0));
        PTR_FAIL_IF(push_inst(compiler, JMPL | D(type >= SLJIT_FAST_CALL ? TMP_LINK : 0) | S1(TMP_REG2) | IMM(0), UNMOVABLE_INS));
        jump->addr = compiler->size;
        PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));

        return jump;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
        struct sljit_jump *jump = NULL;
        sljit_si src_r;

        CHECK_ERROR();
        CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
        ADJUST_LOCAL_OFFSET(src, srcw);

        if (FAST_IS_REG(src))
                src_r = src;
        else if (src & SLJIT_IMM) {
                jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
                FAIL_IF(!jump);
                set_jump(jump, compiler, JUMP_ADDR);
                jump->u.target = srcw;
                if ((compiler->delay_slot & DST_INS_MASK) != UNMOVABLE_INS)
                        jump->flags |= IS_MOVABLE;
                if (type >= SLJIT_FAST_CALL)
                        jump->flags |= IS_CALL;

                FAIL_IF(emit_const(compiler, TMP_REG2, 0));
                src_r = TMP_REG2;
        }
        else {
                FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, TMP_REG2, src, srcw));
                src_r = TMP_REG2;
        }

        FAIL_IF(push_inst(compiler, JMPL | D(type >= SLJIT_FAST_CALL ? TMP_LINK : 0) | S1(src_r) | IMM(0), UNMOVABLE_INS));
        if (jump)
                jump->addr = compiler->size;
        return push_inst(compiler, NOP, UNMOVABLE_INS);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
        sljit_si dst, sljit_sw dstw,
        sljit_si src, sljit_sw srcw,
        sljit_si type)
{
        sljit_si reg, flags = (GET_FLAGS(op) ? SET_FLAGS : 0);

        CHECK_ERROR();
        CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
        ADJUST_LOCAL_OFFSET(dst, dstw);

        if (dst == SLJIT_UNUSED)
                return SLJIT_SUCCESS;

#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
        op = GET_OPCODE(op);
        reg = (op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2;

        compiler->cache_arg = 0;
        compiler->cache_argw = 0;
        if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
                ADJUST_LOCAL_OFFSET(src, srcw);
                FAIL_IF(emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, TMP_REG1, src, srcw, dst, dstw));
                src = TMP_REG1;
                srcw = 0;
        }

        type &= 0xff;
        if (type < SLJIT_D_EQUAL)
                FAIL_IF(push_inst(compiler, BICC | get_cc(type) | 3, UNMOVABLE_INS));
        else
                FAIL_IF(push_inst(compiler, FBFCC | get_cc(type) | 3, UNMOVABLE_INS));

        FAIL_IF(push_inst(compiler, OR | D(reg) | S1(0) | IMM(1), UNMOVABLE_INS));
        FAIL_IF(push_inst(compiler, OR | D(reg) | S1(0) | IMM(0), UNMOVABLE_INS));

        if (op >= SLJIT_ADD)
                return emit_op(compiler, op, flags | CUMULATIVE_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);

        return (reg == TMP_REG2) ? emit_op_mem(compiler, WORD_DATA, TMP_REG2, dst, dstw) : SLJIT_SUCCESS;
#else
#error "Implementation required"
#endif
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
        sljit_si reg;
        struct sljit_const *const_;

        CHECK_ERROR_PTR();
        CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
        ADJUST_LOCAL_OFFSET(dst, dstw);

        const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
        PTR_FAIL_IF(!const_);
        set_const(const_, compiler);

        reg = SLOW_IS_REG(dst) ? dst : TMP_REG2;

        PTR_FAIL_IF(emit_const(compiler, reg, init_value));

        if (dst & SLJIT_MEM)
                PTR_FAIL_IF(emit_op_mem(compiler, WORD_DATA, TMP_REG2, dst, dstw));
        return const_;
}

/* [<][>][^][v][top][bottom][index][help] */