/* [<][>][^][v][top][bottom][index][help] */
/* -*- Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4 -*- */
/* vi: set ts=4 sw=4 expandtab: (add to ~/.vimrc: set modeline modelines=5) */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is [Open Source Virtual Machine].
*
* The Initial Developer of the Original Code is
* Adobe System Incorporated.
* Portions created by the Initial Developer are Copyright (C) 2004-2007
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Adobe AS3 Team
* Vladimir Vukicevic <vladimir@pobox.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef __nanojit_NativeARM__
#define __nanojit_NativeARM__
#ifdef PERFM
#include "../vprof/vprof.h"
#define count_instr() _nvprof("arm",1)
#define count_prolog() _nvprof("arm-prolog",1); count_instr();
#define count_imt() _nvprof("arm-imt",1) count_instr()
#else
#define count_instr()
#define count_prolog()
#define count_imt()
#endif
namespace nanojit
{
#if defined VMCFG_DOUBLE_MSW_FIRST || defined _MSC_VER
# undef NJ_ARM_EABI
#else
# define NJ_ARM_EABI 1
#endif
// default to ARMv5
#if !defined(ARM_ARCH)
# define ARM_ARCH 5
#endif
// default to no-thumb2
#if !defined(ARM_THUMB2)
# define ARM_THUMB2 0
#endif
// only d0-d6 are actually used; we'll use d7 as s14-s15 for i2f/u2f/etc.
#define NJ_VFP_MAX_REGISTERS 8
#define NJ_MAX_REGISTERS (11 + NJ_VFP_MAX_REGISTERS)
#define NJ_MAX_STACK_ENTRY 256
#define NJ_MAX_PARAMETERS 16
#define NJ_ALIGN_STACK 8
#define NJ_JTBL_SUPPORTED 1
#define NJ_EXPANDED_LOADSTORE_SUPPORTED 0
#define NJ_CONSTANT_POOLS
const int NJ_MAX_CPOOL_OFFSET = 4096;
const int NJ_CPOOL_SIZE = 16;
const int LARGEST_UNDERRUN_PROT = 32; // largest value passed to underrunProtect
typedef int NIns;
// Bytes of icache to flush after Assembler::patch
const size_t LARGEST_BRANCH_PATCH = 2 * sizeof(NIns);
/* ARM registers */
typedef enum {
R0 = 0,
R1 = 1,
R2 = 2,
R3 = 3,
R4 = 4,
R5 = 5,
R6 = 6,
R7 = 7,
R8 = 8,
R9 = 9,
R10 = 10,
FP = 11,
IP = 12,
SP = 13,
LR = 14,
PC = 15,
// VFP regs (we currently only use D0-D6 and S14)
D0 = 16,
D1 = 17,
D2 = 18,
D3 = 19,
D4 = 20,
D5 = 21,
D6 = 22,
// S14 overlaps with D7 and is hard-coded into i2f and u2f operations, but
// D7 is still listed here for completeness and to facilitate assertions.
D7 = 23,
FirstFloatReg = D0,
LastFloatReg = D6,
FirstReg = R0,
LastReg = D6,
UnknownReg = 32,
// special value referring to S14
FpSingleScratch = 24
} Register;
/* ARM condition codes */
typedef enum {
EQ = 0x0, // Equal
NE = 0x1, // Not Equal
CS = 0x2, // Carry Set (or HS)
HS = 0x2,
CC = 0x3, // Carry Clear (or LO)
LO = 0x3,
MI = 0x4, // MInus
PL = 0x5, // PLus
VS = 0x6, // oVerflow Set
VC = 0x7, // oVerflow Clear
HI = 0x8, // HIgher
LS = 0x9, // Lower or Same
GE = 0xA, // Greater or Equal
LT = 0xB, // Less Than
GT = 0xC, // Greater Than
LE = 0xD, // Less or Equal
AL = 0xE, // ALways
// Note that condition code NV is unpredictable on ARMv3 and ARMv4, and has
// special meaning for ARMv5 onwards. As such, it should never be used in
// an instruction encoding unless the special (ARMv5+) meaning is required.
NV = 0xF // NeVer
} ConditionCode;
#define IsCond(cc) (((cc) >= EQ) && ((cc) <= AL))
// Bit 0 of the condition code can be flipped to obtain the opposite condition.
// However, this won't work for AL because its opposite — NV — has special
// meaning.
#define OppositeCond(cc) ((ConditionCode)((unsigned int)(cc)^0x1))
typedef int RegisterMask;
typedef struct _FragInfo {
RegisterMask needRestoring;
NIns* epilogue;
} FragInfo;
// D0-D6 are not saved; D7-D15 are, but we don't use those,
// so we don't have to worry about saving/restoring them
static const RegisterMask SavedFpRegs = 0;
static const RegisterMask SavedRegs = 1<<R4 | 1<<R5 | 1<<R6 | 1<<R7 | 1<<R8 | 1<<R9 | 1<<R10;
static const int NumSavedRegs = 7;
static const RegisterMask FpRegs = 1<<D0 | 1<<D1 | 1<<D2 | 1<<D3 | 1<<D4 | 1<<D5 | 1<<D6; // no D7; S14-S15 are used for i2f/u2f.
static const RegisterMask GpRegs = 0xFFFF;
static const RegisterMask AllowableFlagRegs = 1<<R0 | 1<<R1 | 1<<R2 | 1<<R3 | 1<<R4 | 1<<R5 | 1<<R6 | 1<<R7 | 1<<R8 | 1<<R9 | 1<<R10;
#define isS12(offs) ((-(1<<12)) <= (offs) && (offs) < (1<<12))
#define isU12(offs) (((offs) & 0xfff) == (offs))
static inline bool isValidDisplacement(LOpcode op, int32_t d) {
if (op == LIR_ldcs)
return (d >= 0) ? isU8(d) : isU8(-d);
return isS12(d);
}
#define IsFpReg(_r) ((rmask((Register)_r) & (FpRegs)) != 0)
#define IsGpReg(_r) ((rmask((Register)_r) & (GpRegs)) != 0)
#define FpRegNum(_fpr) ((_fpr) - FirstFloatReg)
#define firstreg() R0
// only good for normal regs
#define imm2register(c) (Register)(c-1)
verbose_only( extern const char* regNames[]; )
verbose_only( extern const char* condNames[]; )
verbose_only( extern const char* shiftNames[]; )
// abstract to platform specific calls
#define nExtractPlatformFlags(x) 0
#define DECLARE_PLATFORM_STATS()
#define DECLARE_PLATFORM_REGALLOC()
#ifdef DEBUG
# define DECLARE_PLATFORM_ASSEMBLER_DEBUG() \
inline bool isOp2Imm(uint32_t literal); \
inline uint32_t decOp2Imm(uint32_t enc);
#else
// define stubs, for code that defines NJ_VERBOSE without DEBUG
# define DECLARE_PLATFORM_ASSEMBLER_DEBUG() \
inline bool isOp2Imm(uint32_t ) { return true; } \
inline uint32_t decOp2Imm(uint32_t ) { return 0; }
#endif
#define DECLARE_PLATFORM_ASSEMBLER() \
\
DECLARE_PLATFORM_ASSEMBLER_DEBUG() \
\
const static Register argRegs[4], retRegs[2]; \
\
void BranchWithLink(NIns* addr); \
inline void BLX(Register addr, bool chk = true); \
void JMP_far(NIns*); \
void B_cond_chk(ConditionCode, NIns*, bool); \
void underrunProtect(int bytes); \
void nativePageReset(); \
void nativePageSetup(); \
void asm_quad_nochk(Register, int32_t, int32_t); \
void asm_regarg(ArgSize, LInsp, Register); \
void asm_stkarg(LInsp p, int stkd); \
void asm_cmpi(Register, int32_t imm); \
void asm_ldr_chk(Register d, Register b, int32_t off, bool chk); \
void asm_cmp(LIns *cond); \
void asm_fcmp(LIns *cond); \
void asm_ld_imm(Register d, int32_t imm, bool chk = true); \
void asm_arg(ArgSize sz, LInsp arg, Register& r, int& stkd); \
void asm_arg_64(LInsp arg, Register& r, int& stkd); \
void asm_add_imm(Register rd, Register rn, int32_t imm, int stat = 0); \
void asm_sub_imm(Register rd, Register rn, int32_t imm, int stat = 0); \
void asm_and_imm(Register rd, Register rn, int32_t imm, int stat = 0); \
void asm_orr_imm(Register rd, Register rn, int32_t imm, int stat = 0); \
void asm_eor_imm(Register rd, Register rn, int32_t imm, int stat = 0); \
inline bool encOp2Imm(uint32_t literal, uint32_t * enc); \
inline uint32_t CountLeadingZeroes(uint32_t data); \
int * _nSlot; \
int * _nExitSlot; \
bool blx_lr_bug; \
int max_out_args; /* bytes */
#define IMM32(imm) *(--_nIns) = (NIns)((imm));
#define OP_IMM (1<<25)
#define OP_STAT (1<<20)
#define COND_AL ((uint32_t)AL<<28)
typedef enum {
LSL_imm = 0, // LSL #c - Logical Shift Left
LSL_reg = 1, // LSL Rc - Logical Shift Left
LSR_imm = 2, // LSR #c - Logical Shift Right
LSR_reg = 3, // LSR Rc - Logical Shift Right
ASR_imm = 4, // ASR #c - Arithmetic Shift Right
ASR_reg = 5, // ASR Rc - Arithmetic Shift Right
ROR_imm = 6, // Rotate Right (c != 0)
RRX = 6, // Rotate Right one bit with extend (c == 0)
ROR_reg = 7 // Rotate Right
} ShiftOperator;
#define IsShift(sh) (((sh) >= LSL_imm) && ((sh) <= ROR_reg))
#define LD32_size 8
#define BEGIN_NATIVE_CODE(x) \
{ DWORD* _nIns = (uint8_t*)x
#define END_NATIVE_CODE(x) \
(x) = (dictwordp*)_nIns; }
// BX
#define BX(_r) do { \
underrunProtect(4); \
NanoAssert(IsGpReg(_r)); \
*(--_nIns) = (NIns)( COND_AL | (0x12<<20) | (0xFFF<<8) | (1<<4) | (_r)); \
asm_output("bx %s", gpn(_r)); } while(0)
/*
* ALU operations
*/
enum {
ARM_and = 0,
ARM_eor = 1,
ARM_sub = 2,
ARM_rsb = 3,
ARM_add = 4,
ARM_adc = 5,
ARM_sbc = 6,
ARM_rsc = 7,
ARM_tst = 8,
ARM_teq = 9,
ARM_cmp = 10,
ARM_cmn = 11,
ARM_orr = 12,
ARM_mov = 13,
ARM_bic = 14,
ARM_mvn = 15
};
#define IsOp(op) (((ARM_##op) >= ARM_and) && ((ARM_##op) <= ARM_mvn))
// ALU operation with register and 8-bit immediate arguments
// S - bit, 0 or 1, whether the CPSR register is updated
// rd - destination register
// rl - first (left) operand register
// op2imm - operand 2 immediate. Use encOp2Imm (from NativeARM.cpp) to calculate this.
#define ALUi(cond, op, S, rd, rl, op2imm) ALUi_chk(cond, op, S, rd, rl, op2imm, 1)
#define ALUi_chk(cond, op, S, rd, rl, op2imm, chk) do {\
if (chk) underrunProtect(4);\
NanoAssert(IsCond(cond));\
NanoAssert(IsOp(op));\
NanoAssert(((S)==0) || ((S)==1));\
NanoAssert(IsGpReg(rd) && IsGpReg(rl));\
NanoAssert(isOp2Imm(op2imm));\
*(--_nIns) = (NIns) ((cond)<<28 | OP_IMM | (ARM_##op)<<21 | (S)<<20 | (rl)<<16 | (rd)<<12 | (op2imm));\
if (ARM_##op == ARM_mov || ARM_##op == ARM_mvn) { \
asm_output("%s%s%s %s, #0x%X", #op, condNames[cond], (S)?"s":"", gpn(rd), decOp2Imm(op2imm));\
} else if (ARM_##op >= ARM_tst && ARM_##op <= ARM_cmn) { \
NanoAssert(S==1);\
asm_output("%s%s %s, #0x%X", #op, condNames[cond], gpn(rl), decOp2Imm(op2imm));\
} else { \
asm_output("%s%s%s %s, %s, #0x%X", #op, condNames[cond], (S)?"s":"", gpn(rd), gpn(rl), decOp2Imm(op2imm));\
}\
} while (0)
// ALU operation with two register arguments
// S - bit, 0 or 1, whether the CPSR register is updated
// rd - destination register
// rl - first (left) operand register
// rr - first (left) operand register
#define ALUr(cond, op, S, rd, rl, rr) ALUr_chk(cond, op, S, rd, rl, rr, 1)
#define ALUr_chk(cond, op, S, rd, rl, rr, chk) do {\
if (chk) underrunProtect(4);\
NanoAssert(IsCond(cond));\
NanoAssert(IsOp(op));\
NanoAssert(((S)==0) || ((S)==1));\
NanoAssert(IsGpReg(rd) && IsGpReg(rl) && IsGpReg(rr));\
*(--_nIns) = (NIns) ((cond)<<28 |(ARM_##op)<<21 | (S)<<20 | (rl)<<16 | (rd)<<12 | (rr));\
if (ARM_##op == ARM_mov || ARM_##op == ARM_mvn) { \
asm_output("%s%s%s %s, %s", #op, condNames[cond], (S)?"s":"", gpn(rd), gpn(rr));\
} else if (ARM_##op >= ARM_tst && ARM_##op <= ARM_cmn) { \
NanoAssert(S==1);\
asm_output("%s%s %s, %s", #op, condNames[cond], gpn(rl), gpn(rr));\
} else { \
asm_output("%s%s%s %s, %s, %s", #op, condNames[cond], (S)?"s":"", gpn(rd), gpn(rl), gpn(rr));\
}\
} while (0)
// ALU operation with two register arguments, with rr operated on by a shift and shift immediate
// S - bit, 0 or 1, whether the CPSR register is updated
// rd - destination register
// rl - first (left) operand register
// rr - first (left) operand register
// sh - a ShiftOperator
// imm - immediate argument to shift operator, 5 bits (0..31)
#define ALUr_shi(cond, op, S, rd, rl, rr, sh, imm) do {\
underrunProtect(4);\
NanoAssert(IsCond(cond));\
NanoAssert(IsOp(op));\
NanoAssert(((S)==0) || ((S)==1));\
NanoAssert(IsGpReg(rd) && IsGpReg(rl) && IsGpReg(rr));\
NanoAssert(IsShift(sh));\
NanoAssert((imm)>=0 && (imm)<32);\
*(--_nIns) = (NIns) ((cond)<<28 |(ARM_##op)<<21 | (S)<<20 | (rl)<<16 | (rd)<<12 | (imm)<<7 | (sh)<<4 | (rr));\
if (ARM_##op == ARM_mov || ARM_##op == ARM_mvn) { \
asm_output("%s%s%s %s, %s, %s #%d", #op, condNames[cond], (S)?"s":"", gpn(rd), gpn(rr), shiftNames[sh], (imm));\
} else if (ARM_##op >= ARM_tst && ARM_##op <= ARM_cmn) { \
NanoAssert(S==1);\
asm_output("%s%s %s, %s, %s #%d", #op, condNames[cond], gpn(rl), gpn(rr), shiftNames[sh], (imm));\
} else { \
asm_output("%s%s%s %s, %s, %s, %s #%d", #op, condNames[cond], (S)?"s":"", gpn(rd), gpn(rl), gpn(rr), shiftNames[sh], (imm));\
}\
} while (0)
// ALU operation with two register arguments, with rr operated on by a shift and shift register
// S - bit, 0 or 1, whether the CPSR register is updated
// rd - destination register
// rl - first (left) operand register
// rr - first (left) operand register
// sh - a ShiftOperator
// rs - shift operand register
#define ALUr_shr(cond, op, S, rd, rl, rr, sh, rs) do {\
underrunProtect(4);\
NanoAssert(IsCond(cond));\
NanoAssert(IsOp(op));\
NanoAssert(((S)==0) || ((S)==1));\
NanoAssert(IsGpReg(rd) && IsGpReg(rl) && IsGpReg(rr) && IsGpReg(rs));\
NanoAssert(IsShift(sh));\
*(--_nIns) = (NIns) ((cond)<<28 |(ARM_##op)<<21 | (S)<<20 | (rl)<<16 | (rd)<<12 | (rs)<<8 | (sh)<<4 | (rr));\
if (ARM_##op == ARM_mov || ARM_##op == ARM_mvn) { \
asm_output("%s%s%s %s, %s, %s %s", #op, condNames[cond], (S)?"s":"", gpn(rd), gpn(rr), shiftNames[sh], gpn(rs));\
} else if (ARM_##op >= ARM_tst && ARM_##op <= ARM_cmn) { \
NanoAssert(S==1);\
asm_output("%s%s %s, %s, %s %s", #op, condNames[cond], gpn(rl), gpn(rr), shiftNames[sh], gpn(rs));\
} else { \
asm_output("%s%s%s %s, %s, %s, %s %s", #op, condNames[cond], (S)?"s":"", gpn(rd), gpn(rl), gpn(rr), shiftNames[sh], gpn(rs));\
}\
} while (0)
// --------
// Basic arithmetic operations.
// --------
// Argument naming conventions for these macros:
// _d Destination register.
// _l First (left) operand.
// _r Second (right) operand.
// _op2imm An operand 2 immediate value. Use encOp2Imm to calculate this.
// _s Set to 1 to update the status flags (for subsequent conditional
// tests). Otherwise, set to 0.
// _d = _l + decOp2Imm(_op2imm)
#define ADDis(_d,_l,_op2imm,_s) ALUi(AL, add, _s, _d, _l, _op2imm)
#define ADDi(_d,_l,_op2imm) ALUi(AL, add, 0, _d, _l, _op2imm)
// _d = _l & ~decOp2Imm(_op2imm)
#define BICis(_d,_l,_op2imm,_s) ALUi(AL, bic, _s, _d, _l, _op2imm)
#define BICi(_d,_l,_op2imm) ALUi(AL, bic, 0, _d, _l, _op2imm)
// _d = _l - decOp2Imm(_op2imm)
#define SUBis(_d,_l,_op2imm,_s) ALUi(AL, sub, _s, _d, _l, _op2imm)
#define SUBi(_d,_l,_op2imm) ALUi(AL, sub, 0, _d, _l, _op2imm)
// _d = _l & decOp2Imm(_op2imm)
#define ANDis(_d,_l,_op2imm,_s) ALUi(AL, and, _s, _d, _l, _op2imm)
#define ANDi(_d,_l,_op2imm) ALUi(AL, and, 0, _d, _l, _op2imm)
// _d = _l | decOp2Imm(_op2imm)
#define ORRis(_d,_l,_op2imm,_s) ALUi(AL, orr, _s, _d, _l, _op2imm)
#define ORRi(_d,_l,_op2imm) ALUi(AL, orr, 0, _d, _l, _op2imm)
// _d = _l ^ decOp2Imm(_op2imm)
#define EORis(_d,_l,_op2imm,_s) ALUi(AL, eor, _s, _d, _l, _op2imm)
#define EORi(_d,_l,_op2imm) ALUi(AL, eor, 0, _d, _l, _op2imm)
// _d = _l | _r
#define ORRs(_d,_l,_r,_s) ALUr(AL, orr, _s, _d, _l, _r)
#define ORR(_d,_l,_r) ALUr(AL, orr, 0, _d, _l, _r)
// _d = _l & _r
#define ANDs(_d,_l,_r,_s) ALUr(AL, and, _s, _d, _l, _r)
#define AND(_d,_l,_r) ALUr(AL, and, 0, _d, _l, _r)
// _d = _l ^ _r
#define EORs(_d,_l,_r,_s) ALUr(AL, eor, _s, _d, _l, _r)
#define EOR(_d,_l,_r) ALUr(AL, eor, 0, _d, _l, _r)
// _d = _l + _r
#define ADDs(_d,_l,_r,_s) ALUr(AL, add, _s, _d, _l, _r)
#define ADD(_d,_l,_r) ALUr(AL, add, 0, _d, _l, _r)
// _d = _l - _r
#define SUBs(_d,_l,_r,_s) ALUr(AL, sub, _s, _d, _l, _r)
#define SUB(_d,_l,_r) ALUr(AL, sub, 0, _d, _l, _r)
// --------
// Other operations.
// --------
// [_d_hi,_d] = _l * _r
#define SMULL_dont_check_op1(_d, _d_hi, _l, _r) do { \
underrunProtect(4); \
NanoAssert((ARM_ARCH >= 6) || ((_d) != (_l))); \
NanoAssert(IsGpReg(_d) && IsGpReg(_d_hi) && IsGpReg(_l) && IsGpReg(_r)); \
NanoAssert(((_d) != PC) && ((_d_hi) != PC) && ((_l) != PC) && ((_r) != PC));\
*(--_nIns) = (NIns)( COND_AL | 0xc00090 | (_d_hi)<<16 | (_d)<<12 | (_r)<<8 | (_l) );\
asm_output("smull %s, %s, %s, %s",gpn(_d),gpn(_d_hi),gpn(_l),gpn(_r)); \
} while(0)
#if NJ_ARM_ARCH >= NJ_ARM_V6
#define SMULL(_d, _d_hi, _l, _r) SMULL_dont_check_op1(_d, _d_hi, _l, _r)
#else
#define SMULL(_d, _d_hi, _l, _r) do { \
NanoAssert( (_d)!=(_l)); \
NanoAssert((_d_hi)!=(_l)); \
SMULL_dont_check_op1(_d, _d_hi, _l, _r); \
} while(0)
#endif
// _d = _l * _r
#define MUL_dont_check_op1(_d, _l, _r) do { \
underrunProtect(4); \
NanoAssert((ARM_ARCH >= 6) || ((_d) != (_l))); \
NanoAssert(IsGpReg(_d) && IsGpReg(_l) && IsGpReg(_r)); \
NanoAssert(((_d) != PC) && ((_l) != PC) && ((_r) != PC)); \
*(--_nIns) = (NIns)( COND_AL | (_d)<<16 | (_r)<<8 | 0x90 | (_l) ); \
asm_output("mul %s, %s, %s",gpn(_d),gpn(_l),gpn(_r)); } while(0)
#if NJ_ARM_ARCH >= NJ_ARM_V6
#define MUL(_d, _l, _r) MUL_dont_check_op1(_d, _l, _r)
#else
#define MUL(_d, _l, _r) do { \
NanoAssert((_d)!=(_l)); \
MUL_dont_check_op1(_d, _l, _r); \
} while(0)
#endif
// RSBS _d, _r
// _d = 0 - _r
#define RSBS(_d,_r) ALUi(AL, rsb, 1, _d, _r, 0)
// MVN
// _d = ~_r (one's compliment)
#define MVN(_d,_r) ALUr(AL, mvn, 0, _d, 0, _r)
#define MVNis_chk(_d,_op2imm,_stat,_chk) ALUi_chk(AL, mvn, _stat, _d, 0, op2imm, _chk)
#define MVNis(_d,_op2imm,_stat) MVNis_chk(_d,_op2imm,_stat,1);
// Logical Shift Right (LSR) rotates the bits without maintaining sign extensions.
// MOVS _d, _r, LSR <_s>
// _d = _r >> _s
#define LSR(_d,_r,_s) ALUr_shr(AL, mov, 1, _d, 0, _r, LSR_reg, _s)
// Logical Shift Right (LSR) rotates the bits without maintaining sign extensions.
// MOVS _d, _r, LSR #(_imm & 0x1f)
// _d = _r >> (_imm & 0x1f)
#define LSRi(_d,_r,_imm) ALUr_shi(AL, mov, 1, _d, 0, _r, LSR_imm, (_imm & 0x1f))
// Arithmetic Shift Right (ASR) maintains the sign extension.
// MOVS _d, _r, ASR <_s>
// _d = _r >> _s
#define ASR(_d,_r,_s) ALUr_shr(AL, mov, 1, _d, 0, _r, ASR_reg, _s)
// Arithmetic Shift Right (ASR) maintains the sign extension.
// MOVS _r, _r, ASR #(_imm & 0x1f)
// _d = _r >> (_imm & 0x1f)
#define ASRi(_d,_r,_imm) ALUr_shi(AL, mov, 1, _d, 0, _r, ASR_imm, (_imm & 0x1f))
// Logical Shift Left (LSL).
// MOVS _d, _r, LSL <_s>
// _d = _r << _s
#define LSL(_d, _r, _s) ALUr_shr(AL, mov, 1, _d, 0, _r, LSL_reg, _s)
// Logical Shift Left (LSL).
// MOVS _d, _r, LSL #(_imm & 0x1f)
// _d = _r << (_imm & 0x1f)
#define LSLi(_d, _r, _imm) ALUr_shi(AL, mov, 1, _d, 0, _r, LSL_imm, (_imm & 0x1f))
// TST
#define TST(_l,_r) ALUr(AL, tst, 1, 0, _l, _r)
#define TSTi(_d,_imm) ALUi(AL, tst, 1, 0, _d, _imm)
// CMP
#define CMP(_l,_r) ALUr(AL, cmp, 1, 0, _l, _r)
#define CMN(_l,_r) ALUr(AL, cmn, 1, 0, _l, _r)
// MOV
#define MOVis_chk(_d,_op2imm,_stat,_chk) ALUi_chk(AL, mov, _stat, _d, 0, op2imm, _chk)
#define MOVis(_d,_op2imm,_stat) MOVis_chk(_d,_op2imm,_stat,1)
#define MOVi(_d,_op2imm) MOVis(_d,_op2imm,0);
#define MOV_cond(_cond,_d,_s) ALUr(_cond, mov, 0, _d, 0, _s)
#define MOV(dr,sr) MOV_cond(AL, dr, sr)
#define MOVEQ(dr,sr) MOV_cond(EQ, dr, sr)
#define MOVNE(dr,sr) MOV_cond(NE, dr, sr)
#define MOVLT(dr,sr) MOV_cond(LT, dr, sr)
#define MOVLE(dr,sr) MOV_cond(LE, dr, sr)
#define MOVGT(dr,sr) MOV_cond(GT, dr, sr)
#define MOVGE(dr,sr) MOV_cond(GE, dr, sr)
#define MOVLO(dr,sr) MOV_cond(LO, dr, sr) // Equivalent to MOVCC
#define MOVCC(dr,sr) MOV_cond(CC, dr, sr) // Equivalent to MOVLO
#define MOVLS(dr,sr) MOV_cond(LS, dr, sr)
#define MOVHI(dr,sr) MOV_cond(HI, dr, sr)
#define MOVHS(dr,sr) MOV_cond(HS, dr, sr) // Equivalent to MOVCS
#define MOVCS(dr,sr) MOV_cond(CS, dr, sr) // Equivalent to MOVHS
#define MOVVC(dr,sr) MOV_cond(VC, dr, sr) // overflow clear
// _d = [_b+off]
#define LDR(_d,_b,_off) asm_ldr_chk(_d,_b,_off,1)
#define LDR_nochk(_d,_b,_off) asm_ldr_chk(_d,_b,_off,0)
// _d = [_b + _x<<_s]
#define LDR_scaled(_d, _b, _x, _s) do { \
NanoAssert(((_s)&31) == _s);\
NanoAssert(IsGpReg(_d) && IsGpReg(_b) && IsGpReg(_x));\
underrunProtect(4);\
*(--_nIns) = (NIns)(COND_AL | (0x79<<20) | ((_b)<<16) | ((_d)<<12) | ((_s)<<7) | (_x));\
asm_output("ldr %s, [%s, +%s, LSL #%d]", gpn(_d), gpn(_b), gpn(_x), (_s));\
} while (0)
// _d = #_imm
#define LDi(_d,_imm) asm_ld_imm(_d,_imm)
// MOVW and MOVT are ARMv6T2 or newer only
// MOVW -- writes _imm into _d, zero-extends.
#define MOVWi_cond_chk(_cond,_d,_imm,_chk) do { \
NanoAssert(isU16(_imm)); \
NanoAssert(IsGpReg(_d)); \
NanoAssert(IsCond(_cond)); \
if (_chk) underrunProtect(4); \
*(--_nIns) = (NIns)( (_cond)<<28 | 3<<24 | 0<<20 | (((_imm)>>12)&0xf)<<16 | (_d)<<12 | ((_imm)&0xfff) ); \
asm_output("movw%s %s, #0x%x", condNames[_cond], gpn(_d), (_imm)); \
} while (0)
#define MOVWi(_d,_imm) MOVWi_cond_chk(AL, _d, _imm, 1)
#define MOVWi_chk(_d,_imm,_chk) MOVWi_cond_chk(AL, _d, _imm, _chk)
#define MOVWi_cond(_cond,_d,_imm) MOVWi_cond_chk(_cond, _d, _imm, 1)
// MOVT -- writes _imm into top halfword of _d, does not affect bottom halfword
#define MOVTi_cond_chk(_cond,_d,_imm,_chk) do { \
NanoAssert(isU16(_imm)); \
NanoAssert(IsGpReg(_d)); \
NanoAssert(IsCond(_cond)); \
if (_chk) underrunProtect(4); \
*(--_nIns) = (NIns)( (_cond)<<28 | 3<<24 | 4<<20 | (((_imm)>>12)&0xf)<<16 | (_d)<<12 | ((_imm)&0xfff) ); \
asm_output("movt%s %s, #0x%x", condNames[_cond], gpn(_d), (_imm)); \
} while (0)
#define MOVTi(_d,_imm) MOVTi_cond_chk(AL, _d, _imm, 1)
#define MOVTi_chk(_d,_imm,_chk) MOVTi_cond_chk(AL, _d, _imm, _chk)
#define MOVTi_cond(_cond,_d,_imm) MOVTi_cond_chk(_cond, _d, _imm, 1)
// i386 compat, for Assembler.cpp
#define MR(d,s) MOV(d,s)
#define ST(base,offset,reg) STR(reg,base,offset)
// Load a byte (8 bits). The offset range is ±4095.
#define LDRB(_d,_n,_off) do { \
NanoAssert(IsGpReg(_d) && IsGpReg(_n)); \
underrunProtect(4); \
if (_off < 0) { \
NanoAssert(isU12(-_off)); \
*(--_nIns) = (NIns)( COND_AL | (0x55<<20) | ((_n)<<16) | ((_d)<<12) | ((-_off)&0xfff) ); \
} else { \
NanoAssert(isU12(_off)); \
*(--_nIns) = (NIns)( COND_AL | (0x5D<<20) | ((_n)<<16) | ((_d)<<12) | ((_off)&0xfff) ); \
} \
asm_output("ldrb %s, [%s,#%d]", gpn(_d),gpn(_n),(_off)); \
} while(0)
// Load and sign-extend a half word (16 bits). The offset range is ±255, and
// must be aligned to two bytes on some architectures, but we never make
// unaligned accesses so a simple assertion is sufficient here.
#define LDRH(_d,_n,_off) do { \
/* TODO: This is actually LDRSH. Is this correct? */ \
NanoAssert(IsGpReg(_d) && IsGpReg(_n)); \
NanoAssert(((_off) & ~1) == (_off)); \
underrunProtect(4); \
if (_off < 0) { \
NanoAssert(isU8(-_off)); \
*(--_nIns) = (NIns)( COND_AL | (0x15<<20) | ((_n)<<16) | ((_d)<<12) | ((0xB)<<4) | (((-_off)&0xf0)<<4) | ((-_off)&0xf) ); \
} else { \
NanoAssert(isU8(_off)); \
*(--_nIns) = (NIns)( COND_AL | (0x1D<<20) | ((_n)<<16) | ((_d)<<12) | ((0xB)<<4) | (((_off)&0xf0)<<4) | ((_off)&0xf) ); \
} \
asm_output("ldrsh %s, [%s,#%d]", gpn(_d),gpn(_n),(_off)); \
} while(0)
#define STR(_d,_n,_off) do { \
NanoAssert(IsGpReg(_d) && IsGpReg(_n)); \
NanoAssert(isS12(_off)); \
underrunProtect(4); \
if ((_off)<0) *(--_nIns) = (NIns)( COND_AL | (0x50<<20) | ((_n)<<16) | ((_d)<<12) | ((-(_off))&0xFFF) ); \
else *(--_nIns) = (NIns)( COND_AL | (0x58<<20) | ((_n)<<16) | ((_d)<<12) | ((_off)&0xFFF) ); \
asm_output("str %s, [%s, #%d]", gpn(_d), gpn(_n), (_off)); \
} while(0)
// Encode a breakpoint. The ID is not important and is ignored by the
// processor, but it can be useful as a marker when debugging emitted code.
#define BKPT_insn ((NIns)( COND_AL | (0x12<<20) | (0x7<<4) ))
#define BKPTi_insn(id) ((NIns)(BKPT_insn | ((id << 4) & 0xfff00) | (id & 0xf)));
#define BKPT_nochk() BKPTi_nochk(0)
#define BKPTi_nochk(id) do { \
NanoAssert((id & 0xffff) == id); \
*(--_nIns) = BKPTi_insn(id); \
} while (0)
// STMFD SP!, {reg}
#define PUSHr(_r) do { \
underrunProtect(4); \
NanoAssert(IsGpReg(_r)); \
*(--_nIns) = (NIns)( COND_AL | (0x92<<20) | (SP<<16) | rmask(_r) ); \
asm_output("push %s",gpn(_r)); } while (0)
// STMFD SP!,{reglist}
#define PUSH_mask(_mask) do { \
underrunProtect(4); \
NanoAssert(isU16(_mask)); \
*(--_nIns) = (NIns)( COND_AL | (0x92<<20) | (SP<<16) | (_mask) ); \
asm_output("push %x", (_mask));} while (0)
// LDMFD SP!,{reg}
#define POPr(_r) do { \
underrunProtect(4); \
NanoAssert(IsGpReg(_r)); \
*(--_nIns) = (NIns)( COND_AL | (0x8B<<20) | (SP<<16) | rmask(_r) ); \
asm_output("pop %s",gpn(_r));} while (0)
// LDMFD SP!,{reglist}
#define POP_mask(_mask) do { \
underrunProtect(4); \
NanoAssert(isU16(_mask)); \
*(--_nIns) = (NIns)( COND_AL | (0x8B<<20) | (SP<<16) | (_mask) ); \
asm_output("pop %x", (_mask));} while (0)
// PC always points to current instruction + 8, so when calculating pc-relative
// offsets, use PC+8.
#define PC_OFFSET_FROM(target,frompc) ((intptr_t)(target) - ((intptr_t)(frompc) + 8))
#define B_cond(_c,_t) \
B_cond_chk(_c,_t,1)
#define B_nochk(_t) \
B_cond_chk(AL,_t,0)
#define B(t) B_cond(AL,t)
#define BHI(t) B_cond(HI,t)
#define BLS(t) B_cond(LS,t)
#define BHS(t) B_cond(HS,t)
#define BLO(t) B_cond(LO,t)
#define BEQ(t) B_cond(EQ,t)
#define BNE(t) B_cond(NE,t)
#define BLT(t) B_cond(LT,t)
#define BGE(t) B_cond(GE,t)
#define BLE(t) B_cond(LE,t)
#define BGT(t) B_cond(GT,t)
#define BVS(t) B_cond(VS,t)
#define BVC(t) B_cond(VC,t)
#define BCC(t) B_cond(CC,t)
#define BCS(t) B_cond(CS,t)
#define JMP(t) B(t)
#define JMP_nochk(t) B_nochk(t)
// MOV(cond) _r, #1
// MOV(!cond) _r, #0
#define SET(_r,_cond) do { \
ConditionCode _opp = OppositeCond(_cond); \
underrunProtect(8); \
*(--_nIns) = (NIns)( ( _opp<<28) | (0x3A<<20) | ((_r)<<12) | (0) ); \
*(--_nIns) = (NIns)( (_cond<<28) | (0x3A<<20) | ((_r)<<12) | (1) ); \
asm_output("mov%s %s, #1", condNames[_cond], gpn(_r)); \
asm_output("mov%s %s, #0", condNames[_opp], gpn(_r)); \
} while (0)
#define SETEQ(r) SET(r,EQ)
#define SETNE(r) SET(r,NE)
#define SETLT(r) SET(r,LT)
#define SETLE(r) SET(r,LE)
#define SETGT(r) SET(r,GT)
#define SETGE(r) SET(r,GE)
#define SETLO(r) SET(r,LO)
#define SETLS(r) SET(r,LS)
#define SETHI(r) SET(r,HI)
#define SETHS(r) SET(r,HS)
#define SETVS(r) SET(r,VS)
#define SETCS(r) SET(r,CS)
// Load and sign extend a 16-bit value into a reg
#define MOVSX(_d,_off,_b) do { \
if ((_off)>=0) { \
if ((_off)<256) { \
underrunProtect(4); \
*(--_nIns) = (NIns)( COND_AL | (0x1D<<20) | ((_b)<<16) | ((_d)<<12) | ((((_off)>>4)&0xF)<<8) | (0xF<<4) | ((_off)&0xF) ); \
} else if ((_off)<=510) { \
underrunProtect(8); \
int rem = (_off) - 255; \
NanoAssert(rem<256); \
*(--_nIns) = (NIns)( COND_AL | (0x1D<<20) | ((_d)<<16) | ((_d)<<12) | ((((rem)>>4)&0xF)<<8) | (0xF<<4) | ((rem)&0xF) ); \
*(--_nIns) = (NIns)( COND_AL | OP_IMM | (1<<23) | ((_b)<<16) | ((_d)<<12) | (0xFF) ); \
} else { \
underrunProtect(16); \
int rem = (_off) & 3; \
*(--_nIns) = (NIns)( COND_AL | (0x19<<20) | ((_b)<<16) | ((_d)<<12) | (0xF<<4) | (_d) ); \
asm_output("ldrsh %s,[%s, #%d]",gpn(_d), gpn(_b), (_off)); \
*(--_nIns) = (NIns)( COND_AL | OP_IMM | (1<<23) | ((_d)<<16) | ((_d)<<12) | rem ); \
*(--_nIns) = (NIns)( COND_AL | (0x1A<<20) | ((_d)<<12) | (2<<7)| (_d) ); \
*(--_nIns) = (NIns)( COND_AL | (0x3B<<20) | ((_d)<<12) | (((_off)>>2)&0xFF) ); \
asm_output("mov %s,%d",gpn(_d),(_off)); \
} \
} else { \
if ((_off)>-256) { \
underrunProtect(4); \
*(--_nIns) = (NIns)( COND_AL | (0x15<<20) | ((_b)<<16) | ((_d)<<12) | ((((-(_off))>>4)&0xF)<<8) | (0xF<<4) | ((-(_off))&0xF) ); \
asm_output("ldrsh %s,[%s, #%d]",gpn(_d), gpn(_b), (_off)); \
} else if ((_off)>=-510){ \
underrunProtect(8); \
int rem = -(_off) - 255; \
NanoAssert(rem<256); \
*(--_nIns) = (NIns)( COND_AL | (0x15<<20) | ((_d)<<16) | ((_d)<<12) | ((((rem)>>4)&0xF)<<8) | (0xF<<4) | ((rem)&0xF) ); \
*(--_nIns) = (NIns)( COND_AL | OP_IMM | (1<<22) | ((_b)<<16) | ((_d)<<12) | (0xFF) ); \
} else NanoAssert(0); \
} \
} while(0)
/*
* VFP
*/
#define FMDRR(_Dm,_Rd,_Rn) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsFpReg(_Dm) && IsGpReg(_Rd) && IsGpReg(_Rn)); \
*(--_nIns) = (NIns)( COND_AL | (0xC4<<20) | ((_Rn)<<16) | ((_Rd)<<12) | (0xB1<<4) | (FpRegNum(_Dm)) ); \
asm_output("fmdrr %s,%s,%s", gpn(_Dm), gpn(_Rd), gpn(_Rn)); \
} while (0)
#define FMRRD(_Rd,_Rn,_Dm) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsGpReg(_Rd) && IsGpReg(_Rn) && IsFpReg(_Dm)); \
*(--_nIns) = (NIns)( COND_AL | (0xC5<<20) | ((_Rn)<<16) | ((_Rd)<<12) | (0xB1<<4) | (FpRegNum(_Dm)) ); \
asm_output("fmrrd %s,%s,%s", gpn(_Rd), gpn(_Rn), gpn(_Dm)); \
} while (0)
#define FMRDH(_Rd,_Dn) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsGpReg(_Rd) && IsFpReg(_Dn)); \
*(--_nIns) = (NIns)( COND_AL | (0xE3<<20) | (FpRegNum(_Dn)<<16) | ((_Rd)<<12) | (0xB<<8) | (1<<4) ); \
asm_output("fmrdh %s,%s", gpn(_Rd), gpn(_Dn)); \
} while (0)
#define FMRDL(_Rd,_Dn) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsGpReg(_Rd) && IsFpReg(_Dn)); \
*(--_nIns) = (NIns)( COND_AL | (0xE1<<20) | (FpRegNum(_Dn)<<16) | ((_Rd)<<12) | (0xB<<8) | (1<<4) ); \
asm_output("fmrdh %s,%s", gpn(_Rd), gpn(_Dn)); \
} while (0)
#define FSTD(_Dd,_Rn,_offs) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert((((_offs) & 3) == 0) && isS8((_offs) >> 2)); \
NanoAssert(IsFpReg(_Dd) && !IsFpReg(_Rn)); \
int negflag = 1<<23; \
intptr_t offs = (_offs); \
if (_offs < 0) { \
negflag = 0<<23; \
offs = -(offs); \
} \
*(--_nIns) = (NIns)( COND_AL | (0xD0<<20) | ((_Rn)<<16) | (FpRegNum(_Dd)<<12) | (0xB<<8) | negflag | ((offs>>2)&0xff) ); \
asm_output("fstd %s,%s(%d)", gpn(_Dd), gpn(_Rn), _offs); \
} while (0)
#define FLDD_chk(_Dd,_Rn,_offs,_chk) do { \
if(_chk) underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert((((_offs) & 3) == 0) && isS8((_offs) >> 2)); \
NanoAssert(IsFpReg(_Dd) && !IsFpReg(_Rn)); \
int negflag = 1<<23; \
intptr_t offs = (_offs); \
if (_offs < 0) { \
negflag = 0<<23; \
offs = -(offs); \
} \
*(--_nIns) = (NIns)( COND_AL | (0xD1<<20) | ((_Rn)<<16) | (FpRegNum(_Dd)<<12) | (0xB<<8) | negflag | ((offs>>2)&0xff) ); \
asm_output("fldd %s,%s(%d)", gpn(_Dd), gpn(_Rn), _offs); \
} while (0)
#define FLDD(_Dd,_Rn,_offs) FLDD_chk(_Dd,_Rn,_offs,1)
#define FSITOD(_Dd,_Sm) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsFpReg(_Dd) && ((_Sm) == FpSingleScratch)); \
*(--_nIns) = (NIns)( COND_AL | (0xEB8<<16) | (FpRegNum(_Dd)<<12) | (0x2F<<6) | (0<<5) | (0x7) ); \
asm_output("fsitod %s,%s", gpn(_Dd), gpn(_Sm)); \
} while (0)
#define FUITOD(_Dd,_Sm) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsFpReg(_Dd) && ((_Sm) == FpSingleScratch)); \
*(--_nIns) = (NIns)( COND_AL | (0xEB8<<16) | (FpRegNum(_Dd)<<12) | (0x2D<<6) | (0<<5) | (0x7) ); \
asm_output("fuitod %s,%s", gpn(_Dd), gpn(_Sm)); \
} while (0)
#define FMSR(_Sn,_Rd) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(((_Sn) == FpSingleScratch) && IsGpReg(_Rd)); \
*(--_nIns) = (NIns)( COND_AL | (0xE0<<20) | (0x7<<16) | ((_Rd)<<12) | (0xA<<8) | (0<<7) | (0x1<<4) ); \
asm_output("fmsr %s,%s", gpn(_Sn), gpn(_Rd)); \
} while (0)
#define FNEGD(_Dd,_Dm) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsFpReg(_Dd) && IsFpReg(_Dm)); \
*(--_nIns) = (NIns)( COND_AL | (0xEB1<<16) | (FpRegNum(_Dd)<<12) | (0xB4<<4) | (FpRegNum(_Dm)) ); \
asm_output("fnegd %s,%s", gpn(_Dd), gpn(_Dm)); \
} while (0)
#define FADDD(_Dd,_Dn,_Dm) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsFpReg(_Dd) && IsFpReg(_Dn) && IsFpReg(_Dm)); \
*(--_nIns) = (NIns)( COND_AL | (0xE3<<20) | (FpRegNum(_Dn)<<16) | (FpRegNum(_Dd)<<12) | (0xB0<<4) | (FpRegNum(_Dm)) ); \
asm_output("faddd %s,%s,%s", gpn(_Dd), gpn(_Dn), gpn(_Dm)); \
} while (0)
#define FSUBD(_Dd,_Dn,_Dm) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsFpReg(_Dd) && IsFpReg(_Dn) && IsFpReg(_Dm)); \
*(--_nIns) = (NIns)( COND_AL | (0xE3<<20) | (FpRegNum(_Dn)<<16) | (FpRegNum(_Dd)<<12) | (0xB4<<4) | (FpRegNum(_Dm)) ); \
asm_output("fsubd %s,%s,%s", gpn(_Dd), gpn(_Dn), gpn(_Dm)); \
} while (0)
#define FMULD(_Dd,_Dn,_Dm) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsFpReg(_Dd) && IsFpReg(_Dn) && IsFpReg(_Dm)); \
*(--_nIns) = (NIns)( COND_AL | (0xE2<<20) | (FpRegNum(_Dn)<<16) | (FpRegNum(_Dd)<<12) | (0xB0<<4) | (FpRegNum(_Dm)) ); \
asm_output("fmuld %s,%s,%s", gpn(_Dd), gpn(_Dn), gpn(_Dm)); \
} while (0)
#define FDIVD(_Dd,_Dn,_Dm) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsFpReg(_Dd) && IsFpReg(_Dn) && IsFpReg(_Dm)); \
*(--_nIns) = (NIns)( COND_AL | (0xE8<<20) | (FpRegNum(_Dn)<<16) | (FpRegNum(_Dd)<<12) | (0xB0<<4) | (FpRegNum(_Dm)) ); \
asm_output("fmuld %s,%s,%s", gpn(_Dd), gpn(_Dn), gpn(_Dm)); \
} while (0)
#define FMSTAT() do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
*(--_nIns) = (NIns)( COND_AL | 0x0EF1FA10); \
asm_output("fmstat"); \
} while (0)
#define FCMPD(_Dd,_Dm,_E) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsFpReg(_Dd) && IsFpReg(_Dm)); \
NanoAssert(((_E)==0) || ((_E)==1)); \
*(--_nIns) = (NIns)( COND_AL | (0xEB4<<16) | (FpRegNum(_Dd)<<12) | (0xB<<8) | ((_E)<<7) | (0x4<<4) | (FpRegNum(_Dm)) ); \
asm_output("fcmp%sd %s,%s", (((_E)==1)?"e":""), gpn(_Dd), gpn(_Dm)); \
} while (0)
#define FCPYD(_Dd,_Dm) do { \
underrunProtect(4); \
NanoAssert(ARM_VFP); \
NanoAssert(IsFpReg(_Dd) && IsFpReg(_Dm)); \
*(--_nIns) = (NIns)( COND_AL | (0xEB0<<16) | (FpRegNum(_Dd)<<12) | (0xB4<<4) | (FpRegNum(_Dm)) ); \
asm_output("fcpyd %s,%s", gpn(_Dd), gpn(_Dm)); \
} while (0)
}
#endif // __nanojit_NativeARM__