root/Source/platform/transforms/AffineTransform.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. makeIdentity
  2. setMatrix
  3. isIdentity
  4. xScale
  5. yScale
  6. det
  7. isInvertible
  8. inverse
  9. multiply
  10. rotate
  11. rotateRadians
  12. scale
  13. scale
  14. translate
  15. scaleNonUniform
  16. rotateFromVector
  17. flipX
  18. flipY
  19. shear
  20. skew
  21. skewX
  22. skewY
  23. makeMapBetweenRects
  24. map
  25. mapPoint
  26. mapPoint
  27. mapSize
  28. mapSize
  29. mapRect
  30. mapRect
  31. mapQuad
  32. blend
  33. toTransformationMatrix
  34. decompose
  35. recompose

/*
 * Copyright (C) 2005, 2006 Apple Computer, Inc.  All rights reserved.
 *               2010 Dirk Schulze <krit@webkit.org>
 * Copyright (C) 2013 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "platform/transforms/AffineTransform.h"

#include "platform/FloatConversion.h"
#include "platform/geometry/FloatQuad.h"
#include "platform/geometry/FloatRect.h"
#include "platform/geometry/IntRect.h"
#include "wtf/MathExtras.h"

namespace WebCore {

AffineTransform::AffineTransform()
{
    setMatrix(1, 0, 0, 1, 0, 0);
}

AffineTransform::AffineTransform(double a, double b, double c, double d, double e, double f)
{
    setMatrix(a, b, c, d, e, f);
}

void AffineTransform::makeIdentity()
{
    setMatrix(1, 0, 0, 1, 0, 0);
}

void AffineTransform::setMatrix(double a, double b, double c, double d, double e, double f)
{
    m_transform[0] = a;
    m_transform[1] = b;
    m_transform[2] = c;
    m_transform[3] = d;
    m_transform[4] = e;
    m_transform[5] = f;
}

bool AffineTransform::isIdentity() const
{
    return (m_transform[0] == 1 && m_transform[1] == 0
         && m_transform[2] == 0 && m_transform[3] == 1
         && m_transform[4] == 0 && m_transform[5] == 0);
}

double AffineTransform::xScale() const
{
    return sqrt(m_transform[0] * m_transform[0] + m_transform[1] * m_transform[1]);
}

double AffineTransform::yScale() const
{
    return sqrt(m_transform[2] * m_transform[2] + m_transform[3] * m_transform[3]);
}

double AffineTransform::det() const
{
    return m_transform[0] * m_transform[3] - m_transform[1] * m_transform[2];
}

bool AffineTransform::isInvertible() const
{
    return det() != 0.0;
}

AffineTransform AffineTransform::inverse() const
{
    double determinant = det();
    if (determinant == 0.0)
        return AffineTransform();

    AffineTransform result;
    if (isIdentityOrTranslation()) {
        result.m_transform[4] = -m_transform[4];
        result.m_transform[5] = -m_transform[5];
        return result;
    }

    result.m_transform[0] = m_transform[3] / determinant;
    result.m_transform[1] = -m_transform[1] / determinant;
    result.m_transform[2] = -m_transform[2] / determinant;
    result.m_transform[3] = m_transform[0] / determinant;
    result.m_transform[4] = (m_transform[2] * m_transform[5]
                           - m_transform[3] * m_transform[4]) / determinant;
    result.m_transform[5] = (m_transform[1] * m_transform[4]
                           - m_transform[0] * m_transform[5]) / determinant;

    return result;
}


// Multiplies this AffineTransform by the provided AffineTransform - i.e.
// this = this * other;
AffineTransform& AffineTransform::multiply(const AffineTransform& other)
{
    AffineTransform trans;

    trans.m_transform[0] = other.m_transform[0] * m_transform[0] + other.m_transform[1] * m_transform[2];
    trans.m_transform[1] = other.m_transform[0] * m_transform[1] + other.m_transform[1] * m_transform[3];
    trans.m_transform[2] = other.m_transform[2] * m_transform[0] + other.m_transform[3] * m_transform[2];
    trans.m_transform[3] = other.m_transform[2] * m_transform[1] + other.m_transform[3] * m_transform[3];
    trans.m_transform[4] = other.m_transform[4] * m_transform[0] + other.m_transform[5] * m_transform[2] + m_transform[4];
    trans.m_transform[5] = other.m_transform[4] * m_transform[1] + other.m_transform[5] * m_transform[3] + m_transform[5];

    setMatrix(trans.m_transform);
    return *this;
}

AffineTransform& AffineTransform::rotate(double a)
{
    // angle is in degree. Switch to radian
    return rotateRadians(deg2rad(a));
}

AffineTransform& AffineTransform::rotateRadians(double a)
{
    double cosAngle = cos(a);
    double sinAngle = sin(a);
    AffineTransform rot(cosAngle, sinAngle, -sinAngle, cosAngle, 0, 0);

    multiply(rot);
    return *this;
}

AffineTransform& AffineTransform::scale(double s)
{
    return scale(s, s);
}

AffineTransform& AffineTransform::scale(double sx, double sy)
{
    m_transform[0] *= sx;
    m_transform[1] *= sx;
    m_transform[2] *= sy;
    m_transform[3] *= sy;
    return *this;
}

// *this = *this * translation
AffineTransform& AffineTransform::translate(double tx, double ty)
{
    if (isIdentityOrTranslation()) {
        m_transform[4] += tx;
        m_transform[5] += ty;
        return *this;
    }

    m_transform[4] += tx * m_transform[0] + ty * m_transform[2];
    m_transform[5] += tx * m_transform[1] + ty * m_transform[3];
    return *this;
}

AffineTransform& AffineTransform::scaleNonUniform(double sx, double sy)
{
    return scale(sx, sy);
}

AffineTransform& AffineTransform::rotateFromVector(double x, double y)
{
    return rotateRadians(atan2(y, x));
}

AffineTransform& AffineTransform::flipX()
{
    return scale(-1, 1);
}

AffineTransform& AffineTransform::flipY()
{
    return scale(1, -1);
}

AffineTransform& AffineTransform::shear(double sx, double sy)
{
    double a = m_transform[0];
    double b = m_transform[1];

    m_transform[0] += sy * m_transform[2];
    m_transform[1] += sy * m_transform[3];
    m_transform[2] += sx * a;
    m_transform[3] += sx * b;

    return *this;
}

AffineTransform& AffineTransform::skew(double angleX, double angleY)
{
    return shear(tan(deg2rad(angleX)), tan(deg2rad(angleY)));
}

AffineTransform& AffineTransform::skewX(double angle)
{
    return shear(tan(deg2rad(angle)), 0);
}

AffineTransform& AffineTransform::skewY(double angle)
{
    return shear(0, tan(deg2rad(angle)));
}

AffineTransform makeMapBetweenRects(const FloatRect& source, const FloatRect& dest)
{
    AffineTransform transform;
    transform.translate(dest.x() - source.x(), dest.y() - source.y());
    transform.scale(dest.width() / source.width(), dest.height() / source.height());
    return transform;
}

void AffineTransform::map(double x, double y, double& x2, double& y2) const
{
    x2 = (m_transform[0] * x + m_transform[2] * y + m_transform[4]);
    y2 = (m_transform[1] * x + m_transform[3] * y + m_transform[5]);
}

IntPoint AffineTransform::mapPoint(const IntPoint& point) const
{
    double x2, y2;
    map(point.x(), point.y(), x2, y2);

    // Round the point.
    return IntPoint(lround(x2), lround(y2));
}

FloatPoint AffineTransform::mapPoint(const FloatPoint& point) const
{
    double x2, y2;
    map(point.x(), point.y(), x2, y2);

    return FloatPoint(narrowPrecisionToFloat(x2), narrowPrecisionToFloat(y2));
}

IntSize AffineTransform::mapSize(const IntSize& size) const
{
    double width2 = size.width() * xScale();
    double height2 = size.height() * yScale();

    return IntSize(lround(width2), lround(height2));
}

FloatSize AffineTransform::mapSize(const FloatSize& size) const
{
    double width2 = size.width() * xScale();
    double height2 = size.height() * yScale();

    return FloatSize(narrowPrecisionToFloat(width2), narrowPrecisionToFloat(height2));
}

IntRect AffineTransform::mapRect(const IntRect &rect) const
{
    return enclosingIntRect(mapRect(FloatRect(rect)));
}

FloatRect AffineTransform::mapRect(const FloatRect& rect) const
{
    if (isIdentityOrTranslation()) {
        if (!m_transform[4] && !m_transform[5])
            return rect;

        FloatRect mappedRect(rect);
        mappedRect.move(narrowPrecisionToFloat(m_transform[4]), narrowPrecisionToFloat(m_transform[5]));
        return mappedRect;
    }

    FloatQuad result;
    result.setP1(mapPoint(rect.location()));
    result.setP2(mapPoint(FloatPoint(rect.maxX(), rect.y())));
    result.setP3(mapPoint(FloatPoint(rect.maxX(), rect.maxY())));
    result.setP4(mapPoint(FloatPoint(rect.x(), rect.maxY())));
    return result.boundingBox();
}

FloatQuad AffineTransform::mapQuad(const FloatQuad& q) const
{
    if (isIdentityOrTranslation()) {
        FloatQuad mappedQuad(q);
        mappedQuad.move(narrowPrecisionToFloat(m_transform[4]), narrowPrecisionToFloat(m_transform[5]));
        return mappedQuad;
    }

    FloatQuad result;
    result.setP1(mapPoint(q.p1()));
    result.setP2(mapPoint(q.p2()));
    result.setP3(mapPoint(q.p3()));
    result.setP4(mapPoint(q.p4()));
    return result;
}

void AffineTransform::blend(const AffineTransform& from, double progress)
{
    DecomposedType srA, srB;

    from.decompose(srA);
    this->decompose(srB);

    // If x-axis of one is flipped, and y-axis of the other, convert to an unflipped rotation.
    if ((srA.scaleX < 0 && srB.scaleY < 0) || (srA.scaleY < 0 &&  srB.scaleX < 0)) {
        srA.scaleX = -srA.scaleX;
        srA.scaleY = -srA.scaleY;
        srA.angle += srA.angle < 0 ? piDouble : -piDouble;
    }

    // Don't rotate the long way around.
    srA.angle = fmod(srA.angle, twoPiDouble);
    srB.angle = fmod(srB.angle, twoPiDouble);

    if (fabs(srA.angle - srB.angle) > piDouble) {
        if (srA.angle > srB.angle)
            srA.angle -= twoPiDouble;
        else
            srB.angle -= twoPiDouble;
    }

    srA.scaleX += progress * (srB.scaleX - srA.scaleX);
    srA.scaleY += progress * (srB.scaleY - srA.scaleY);
    srA.angle += progress * (srB.angle - srA.angle);
    srA.remainderA += progress * (srB.remainderA - srA.remainderA);
    srA.remainderB += progress * (srB.remainderB - srA.remainderB);
    srA.remainderC += progress * (srB.remainderC - srA.remainderC);
    srA.remainderD += progress * (srB.remainderD - srA.remainderD);
    srA.translateX += progress * (srB.translateX - srA.translateX);
    srA.translateY += progress * (srB.translateY - srA.translateY);

    this->recompose(srA);
}

TransformationMatrix AffineTransform::toTransformationMatrix() const
{
    return TransformationMatrix(m_transform[0], m_transform[1], m_transform[2],
                                m_transform[3], m_transform[4], m_transform[5]);
}

bool AffineTransform::decompose(DecomposedType& decomp) const
{
    AffineTransform m(*this);

    // Compute scaling factors
    double sx = xScale();
    double sy = yScale();

    // Compute cross product of transformed unit vectors. If negative,
    // one axis was flipped.
    if (m.a() * m.d() - m.c() * m.b() < 0) {
        // Flip axis with minimum unit vector dot product
        if (m.a() < m.d())
            sx = -sx;
        else
            sy = -sy;
    }

    // Remove scale from matrix
    m.scale(1 / sx, 1 / sy);

    // Compute rotation
    double angle = atan2(m.b(), m.a());

    // Remove rotation from matrix
    m.rotateRadians(-angle);

    // Return results
    decomp.scaleX = sx;
    decomp.scaleY = sy;
    decomp.angle = angle;
    decomp.remainderA = m.a();
    decomp.remainderB = m.b();
    decomp.remainderC = m.c();
    decomp.remainderD = m.d();
    decomp.translateX = m.e();
    decomp.translateY = m.f();

    return true;
}

void AffineTransform::recompose(const DecomposedType& decomp)
{
    this->setA(decomp.remainderA);
    this->setB(decomp.remainderB);
    this->setC(decomp.remainderC);
    this->setD(decomp.remainderD);
    this->setE(decomp.translateX);
    this->setF(decomp.translateY);
    this->rotateRadians(decomp.angle);
    this->scale(decomp.scaleX, decomp.scaleY);
}

}

/* [<][>][^][v][top][bottom][index][help] */