root/base/debug/trace_event_impl.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. Delete
  2. ThreadNow
  3. current_chunk_seq_
  4. GetChunk
  5. ReturnChunk
  6. IsFull
  7. Size
  8. Capacity
  9. GetEventByHandle
  10. NextChunk
  11. CloneForIteration
  12. NextChunk
  13. GetChunk
  14. ReturnChunk
  15. IsFull
  16. Size
  17. Capacity
  18. GetEventByHandle
  19. CloneForIteration
  20. QueueIsEmpty
  21. QueueSize
  22. QueueIsFull
  23. queue_capacity
  24. NextQueueIndex
  25. current_iteration_index_
  26. GetChunk
  27. ReturnChunk
  28. IsFull
  29. Size
  30. Capacity
  31. GetEventByHandle
  32. NextChunk
  33. CloneForIteration
  34. InitializeMetadataEvent
  35. Reset
  36. AddTraceEvent
  37. Clone
  38. locked_
  39. OptionalAutoLock
  40. EnsureAcquired
  41. MakeHandle
  42. GetAllocLength
  43. CopyTraceEventParameter
  44. flags_
  45. CopyFrom
  46. Initialize
  47. Reset
  48. UpdateDuration
  49. AppendValueAsJSON
  50. AppendAsJSON
  51. AppendPrettyPrinted
  52. GetCallback
  53. Append
  54. SetOutputCallback
  55. Start
  56. AddFragment
  57. Finish
  58. waitable_event_for_testing_
  59. ThreadMain
  60. DefaultSamplingCallback
  61. GetSamples
  62. RegisterSampleBucket
  63. ExtractCategoryAndName
  64. Stop
  65. WaitSamplingEventForTesting
  66. callback
  67. GetEventByHandle
  68. generation
  69. CheckThisIsCurrentBuffer
  70. generation_
  71. AddTraceEvent
  72. ReportOverhead
  73. WillDestroyCurrentMessageLoop
  74. FlushWhileLocked
  75. GetInstance
  76. generation_
  77. GetCategoryGroupEnabled
  78. GetCategoryGroupName
  79. UpdateCategoryGroupEnabledFlag
  80. UpdateCategoryGroupEnabledFlags
  81. UpdateSyntheticDelaysFromCategoryFilter
  82. GetCategoryGroupEnabledInternal
  83. GetKnownCategoryGroups
  84. SetEnabled
  85. GetCurrentCategoryFilter
  86. SetDisabled
  87. SetDisabledWhileLocked
  88. GetNumTracesRecorded
  89. AddEnabledStateObserver
  90. RemoveEnabledStateObserver
  91. HasEnabledStateObserver
  92. GetBufferPercentFull
  93. BufferIsFull
  94. CreateTraceBuffer
  95. AddEventToThreadSharedChunkWhileLocked
  96. CheckIfBufferIsFullWhileLocked
  97. SetEventCallbackEnabled
  98. SetEventCallbackDisabled
  99. Flush
  100. ConvertTraceEventsToTraceFormat
  101. FinishFlush
  102. FlushCurrentThread
  103. OnFlushTimeout
  104. FlushButLeaveBufferIntact
  105. UseNextTraceBuffer
  106. AddTraceEvent
  107. AddTraceEventWithThreadIdAndTimestamp
  108. EventToConsoleMessage
  109. AddTraceEventEtw
  110. AddTraceEventEtw
  111. UpdateTraceEventDuration
  112. SetWatchEvent
  113. CancelWatchEvent
  114. AddMetadataEventsWhileLocked
  115. WaitSamplingEventForTesting
  116. DeleteForTesting
  117. GetEventByHandle
  118. GetEventByHandleInternal
  119. SetProcessID
  120. SetProcessSortIndex
  121. SetProcessName
  122. UpdateProcessLabel
  123. RemoveProcessLabel
  124. SetThreadSortIndex
  125. SetTimeOffset
  126. GetObserverCountForTest
  127. SetCurrentThreadBlocksMessageLoop
  128. IsEmptyOrContainsLeadingOrTrailingWhitespace
  129. DoesCategoryGroupContainCategory
  130. delays_
  131. Initialize
  132. WriteString
  133. WriteString
  134. ToString
  135. IsCategoryGroupEnabled
  136. HasIncludedPatterns
  137. Merge
  138. Clear
  139. GetSyntheticDelayValues

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/debug/trace_event_impl.h"

#include <algorithm>

#include "base/base_switches.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/debug/leak_annotations.h"
#include "base/debug/trace_event.h"
#include "base/debug/trace_event_synthetic_delay.h"
#include "base/float_util.h"
#include "base/format_macros.h"
#include "base/json/string_escape.h"
#include "base/lazy_instance.h"
#include "base/memory/singleton.h"
#include "base/message_loop/message_loop.h"
#include "base/process/process_metrics.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_tokenizer.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/synchronization/cancellation_flag.h"
#include "base/synchronization/waitable_event.h"
#include "base/sys_info.h"
#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread_id_name_manager.h"
#include "base/time/time.h"

#if defined(OS_WIN)
#include "base/debug/trace_event_win.h"
#endif

class DeleteTraceLogForTesting {
 public:
  static void Delete() {
    Singleton<base::debug::TraceLog,
              LeakySingletonTraits<base::debug::TraceLog> >::OnExit(0);
  }
};

// The thread buckets for the sampling profiler.
BASE_EXPORT TRACE_EVENT_API_ATOMIC_WORD g_trace_state[3];

namespace base {
namespace debug {

namespace {

// The overhead of TraceEvent above this threshold will be reported in the
// trace.
const int kOverheadReportThresholdInMicroseconds = 50;

// Controls the number of trace events we will buffer in-memory
// before throwing them away.
const size_t kTraceBufferChunkSize = TraceBufferChunk::kTraceBufferChunkSize;
const size_t kTraceEventVectorBufferChunks = 256000 / kTraceBufferChunkSize;
const size_t kTraceEventRingBufferChunks = kTraceEventVectorBufferChunks / 4;
const size_t kTraceEventBatchChunks = 1000 / kTraceBufferChunkSize;
// Can store results for 30 seconds with 1 ms sampling interval.
const size_t kMonitorTraceEventBufferChunks = 30000 / kTraceBufferChunkSize;
// ECHO_TO_CONSOLE needs a small buffer to hold the unfinished COMPLETE events.
const size_t kEchoToConsoleTraceEventBufferChunks = 256;

const int kThreadFlushTimeoutMs = 3000;

#if !defined(OS_NACL)
// These categories will cause deadlock when ECHO_TO_CONSOLE. crbug.com/325575.
const char kEchoToConsoleCategoryFilter[] = "-ipc,-task";
#endif

const char kSyntheticDelayCategoryFilterPrefix[] = "DELAY(";

#define MAX_CATEGORY_GROUPS 100

// Parallel arrays g_category_groups and g_category_group_enabled are separate
// so that a pointer to a member of g_category_group_enabled can be easily
// converted to an index into g_category_groups. This allows macros to deal
// only with char enabled pointers from g_category_group_enabled, and we can
// convert internally to determine the category name from the char enabled
// pointer.
const char* g_category_groups[MAX_CATEGORY_GROUPS] = {
  "toplevel",
  "tracing already shutdown",
  "tracing categories exhausted; must increase MAX_CATEGORY_GROUPS",
  "__metadata",
  // For reporting trace_event overhead. For thread local event buffers only.
  "trace_event_overhead"};

// The enabled flag is char instead of bool so that the API can be used from C.
unsigned char g_category_group_enabled[MAX_CATEGORY_GROUPS] = { 0 };
// Indexes here have to match the g_category_groups array indexes above.
const int g_category_already_shutdown = 1;
const int g_category_categories_exhausted = 2;
const int g_category_metadata = 3;
const int g_category_trace_event_overhead = 4;
const int g_num_builtin_categories = 5;
int g_category_index = g_num_builtin_categories; // Skip default categories.

// The name of the current thread. This is used to decide if the current
// thread name has changed. We combine all the seen thread names into the
// output name for the thread.
LazyInstance<ThreadLocalPointer<const char> >::Leaky
    g_current_thread_name = LAZY_INSTANCE_INITIALIZER;

TimeTicks ThreadNow() {
  return TimeTicks::IsThreadNowSupported() ?
      TimeTicks::ThreadNow() : TimeTicks();
}

class TraceBufferRingBuffer : public TraceBuffer {
 public:
  TraceBufferRingBuffer(size_t max_chunks)
      : max_chunks_(max_chunks),
        recyclable_chunks_queue_(new size_t[queue_capacity()]),
        queue_head_(0),
        queue_tail_(max_chunks),
        current_iteration_index_(0),
        current_chunk_seq_(1) {
    chunks_.reserve(max_chunks);
    for (size_t i = 0; i < max_chunks; ++i)
      recyclable_chunks_queue_[i] = i;
  }

  virtual scoped_ptr<TraceBufferChunk> GetChunk(size_t* index) OVERRIDE {
    // Because the number of threads is much less than the number of chunks,
    // the queue should never be empty.
    DCHECK(!QueueIsEmpty());

    *index = recyclable_chunks_queue_[queue_head_];
    queue_head_ = NextQueueIndex(queue_head_);
    current_iteration_index_ = queue_head_;

    if (*index >= chunks_.size())
      chunks_.resize(*index + 1);

    TraceBufferChunk* chunk = chunks_[*index];
    chunks_[*index] = NULL;  // Put NULL in the slot of a in-flight chunk.
    if (chunk)
      chunk->Reset(current_chunk_seq_++);
    else
      chunk = new TraceBufferChunk(current_chunk_seq_++);

    return scoped_ptr<TraceBufferChunk>(chunk);
  }

  virtual void ReturnChunk(size_t index,
                           scoped_ptr<TraceBufferChunk> chunk) OVERRIDE {
    // When this method is called, the queue should not be full because it
    // can contain all chunks including the one to be returned.
    DCHECK(!QueueIsFull());
    DCHECK(chunk);
    DCHECK_LT(index, chunks_.size());
    DCHECK(!chunks_[index]);
    chunks_[index] = chunk.release();
    recyclable_chunks_queue_[queue_tail_] = index;
    queue_tail_ = NextQueueIndex(queue_tail_);
  }

  virtual bool IsFull() const OVERRIDE {
    return false;
  }

  virtual size_t Size() const OVERRIDE {
    // This is approximate because not all of the chunks are full.
    return chunks_.size() * kTraceBufferChunkSize;
  }

  virtual size_t Capacity() const OVERRIDE {
    return max_chunks_ * kTraceBufferChunkSize;
  }

  virtual TraceEvent* GetEventByHandle(TraceEventHandle handle) OVERRIDE {
    if (handle.chunk_index >= chunks_.size())
      return NULL;
    TraceBufferChunk* chunk = chunks_[handle.chunk_index];
    if (!chunk || chunk->seq() != handle.chunk_seq)
      return NULL;
    return chunk->GetEventAt(handle.event_index);
  }

  virtual const TraceBufferChunk* NextChunk() OVERRIDE {
    if (chunks_.empty())
      return NULL;

    while (current_iteration_index_ != queue_tail_) {
      size_t chunk_index = recyclable_chunks_queue_[current_iteration_index_];
      current_iteration_index_ = NextQueueIndex(current_iteration_index_);
      if (chunk_index >= chunks_.size()) // Skip uninitialized chunks.
        continue;
      DCHECK(chunks_[chunk_index]);
      return chunks_[chunk_index];
    }
    return NULL;
  }

  virtual scoped_ptr<TraceBuffer> CloneForIteration() const OVERRIDE {
    scoped_ptr<ClonedTraceBuffer> cloned_buffer(new ClonedTraceBuffer());
    for (size_t queue_index = queue_head_; queue_index != queue_tail_;
        queue_index = NextQueueIndex(queue_index)) {
      size_t chunk_index = recyclable_chunks_queue_[queue_index];
      if (chunk_index >= chunks_.size()) // Skip uninitialized chunks.
        continue;
      TraceBufferChunk* chunk = chunks_[chunk_index];
      cloned_buffer->chunks_.push_back(chunk ? chunk->Clone().release() : NULL);
    }
    return cloned_buffer.PassAs<TraceBuffer>();
  }

 private:
  class ClonedTraceBuffer : public TraceBuffer {
   public:
    ClonedTraceBuffer() : current_iteration_index_(0) {}

    // The only implemented method.
    virtual const TraceBufferChunk* NextChunk() OVERRIDE {
      return current_iteration_index_ < chunks_.size() ?
          chunks_[current_iteration_index_++] : NULL;
    }

    virtual scoped_ptr<TraceBufferChunk> GetChunk(size_t* index) OVERRIDE {
      NOTIMPLEMENTED();
      return scoped_ptr<TraceBufferChunk>();
    }
    virtual void ReturnChunk(size_t index,
                             scoped_ptr<TraceBufferChunk>) OVERRIDE {
      NOTIMPLEMENTED();
    }
    virtual bool IsFull() const OVERRIDE { return false; }
    virtual size_t Size() const OVERRIDE { return 0; }
    virtual size_t Capacity() const OVERRIDE { return 0; }
    virtual TraceEvent* GetEventByHandle(TraceEventHandle handle) OVERRIDE {
      return NULL;
    }
    virtual scoped_ptr<TraceBuffer> CloneForIteration() const OVERRIDE {
      NOTIMPLEMENTED();
      return scoped_ptr<TraceBuffer>();
    }

    size_t current_iteration_index_;
    ScopedVector<TraceBufferChunk> chunks_;
  };

  bool QueueIsEmpty() const {
    return queue_head_ == queue_tail_;
  }

  size_t QueueSize() const {
    return queue_tail_ > queue_head_ ? queue_tail_ - queue_head_ :
        queue_tail_ + queue_capacity() - queue_head_;
  }

  bool QueueIsFull() const {
    return QueueSize() == queue_capacity() - 1;
  }

  size_t queue_capacity() const {
    // One extra space to help distinguish full state and empty state.
    return max_chunks_ + 1;
  }

  size_t NextQueueIndex(size_t index) const {
    index++;
    if (index >= queue_capacity())
      index = 0;
    return index;
  }

  size_t max_chunks_;
  ScopedVector<TraceBufferChunk> chunks_;

  scoped_ptr<size_t[]> recyclable_chunks_queue_;
  size_t queue_head_;
  size_t queue_tail_;

  size_t current_iteration_index_;
  uint32 current_chunk_seq_;

  DISALLOW_COPY_AND_ASSIGN(TraceBufferRingBuffer);
};

class TraceBufferVector : public TraceBuffer {
 public:
  TraceBufferVector()
      : in_flight_chunk_count_(0),
        current_iteration_index_(0) {
    chunks_.reserve(kTraceEventVectorBufferChunks);
  }

  virtual scoped_ptr<TraceBufferChunk> GetChunk(size_t* index) OVERRIDE {
    // This function may be called when adding normal events or indirectly from
    // AddMetadataEventsWhileLocked(). We can not DECHECK(!IsFull()) because we
    // have to add the metadata events and flush thread-local buffers even if
    // the buffer is full.
    *index = chunks_.size();
    chunks_.push_back(NULL);  // Put NULL in the slot of a in-flight chunk.
    ++in_flight_chunk_count_;
    // + 1 because zero chunk_seq is not allowed.
    return scoped_ptr<TraceBufferChunk>(
        new TraceBufferChunk(static_cast<uint32>(*index) + 1));
  }

  virtual void ReturnChunk(size_t index,
                           scoped_ptr<TraceBufferChunk> chunk) OVERRIDE {
    DCHECK_GT(in_flight_chunk_count_, 0u);
    DCHECK_LT(index, chunks_.size());
    DCHECK(!chunks_[index]);
    --in_flight_chunk_count_;
    chunks_[index] = chunk.release();
  }

  virtual bool IsFull() const OVERRIDE {
    return chunks_.size() >= kTraceEventVectorBufferChunks;
  }

  virtual size_t Size() const OVERRIDE {
    // This is approximate because not all of the chunks are full.
    return chunks_.size() * kTraceBufferChunkSize;
  }

  virtual size_t Capacity() const OVERRIDE {
    return kTraceEventVectorBufferChunks * kTraceBufferChunkSize;
  }

  virtual TraceEvent* GetEventByHandle(TraceEventHandle handle) OVERRIDE {
    if (handle.chunk_index >= chunks_.size())
      return NULL;
    TraceBufferChunk* chunk = chunks_[handle.chunk_index];
    if (!chunk || chunk->seq() != handle.chunk_seq)
      return NULL;
    return chunk->GetEventAt(handle.event_index);
  }

  virtual const TraceBufferChunk* NextChunk() OVERRIDE {
    while (current_iteration_index_ < chunks_.size()) {
      // Skip in-flight chunks.
      const TraceBufferChunk* chunk = chunks_[current_iteration_index_++];
      if (chunk)
        return chunk;
    }
    return NULL;
  }

  virtual scoped_ptr<TraceBuffer> CloneForIteration() const OVERRIDE {
    NOTIMPLEMENTED();
    return scoped_ptr<TraceBuffer>();
  }

 private:
  size_t in_flight_chunk_count_;
  size_t current_iteration_index_;
  ScopedVector<TraceBufferChunk> chunks_;

  DISALLOW_COPY_AND_ASSIGN(TraceBufferVector);
};

template <typename T>
void InitializeMetadataEvent(TraceEvent* trace_event,
                             int thread_id,
                             const char* metadata_name, const char* arg_name,
                             const T& value) {
  if (!trace_event)
    return;

  int num_args = 1;
  unsigned char arg_type;
  unsigned long long arg_value;
  ::trace_event_internal::SetTraceValue(value, &arg_type, &arg_value);
  trace_event->Initialize(thread_id,
                          TimeTicks(), TimeTicks(), TRACE_EVENT_PHASE_METADATA,
                          &g_category_group_enabled[g_category_metadata],
                          metadata_name, ::trace_event_internal::kNoEventId,
                          num_args, &arg_name, &arg_type, &arg_value, NULL,
                          TRACE_EVENT_FLAG_NONE);
}

class AutoThreadLocalBoolean {
 public:
  explicit AutoThreadLocalBoolean(ThreadLocalBoolean* thread_local_boolean)
      : thread_local_boolean_(thread_local_boolean) {
    DCHECK(!thread_local_boolean_->Get());
    thread_local_boolean_->Set(true);
  }
  ~AutoThreadLocalBoolean() {
    thread_local_boolean_->Set(false);
  }

 private:
  ThreadLocalBoolean* thread_local_boolean_;
  DISALLOW_COPY_AND_ASSIGN(AutoThreadLocalBoolean);
};

}  // namespace

void TraceBufferChunk::Reset(uint32 new_seq) {
  for (size_t i = 0; i < next_free_; ++i)
    chunk_[i].Reset();
  next_free_ = 0;
  seq_ = new_seq;
}

TraceEvent* TraceBufferChunk::AddTraceEvent(size_t* event_index) {
  DCHECK(!IsFull());
  *event_index = next_free_++;
  return &chunk_[*event_index];
}

scoped_ptr<TraceBufferChunk> TraceBufferChunk::Clone() const {
  scoped_ptr<TraceBufferChunk> cloned_chunk(new TraceBufferChunk(seq_));
  cloned_chunk->next_free_ = next_free_;
  for (size_t i = 0; i < next_free_; ++i)
    cloned_chunk->chunk_[i].CopyFrom(chunk_[i]);
  return cloned_chunk.Pass();
}

// A helper class that allows the lock to be acquired in the middle of the scope
// and unlocks at the end of scope if locked.
class TraceLog::OptionalAutoLock {
 public:
  explicit OptionalAutoLock(Lock& lock)
      : lock_(lock),
        locked_(false) {
  }

  ~OptionalAutoLock() {
    if (locked_)
      lock_.Release();
  }

  void EnsureAcquired() {
    if (!locked_) {
      lock_.Acquire();
      locked_ = true;
    }
  }

 private:
  Lock& lock_;
  bool locked_;
  DISALLOW_COPY_AND_ASSIGN(OptionalAutoLock);
};

// Use this function instead of TraceEventHandle constructor to keep the
// overhead of ScopedTracer (trace_event.h) constructor minimum.
void MakeHandle(uint32 chunk_seq, size_t chunk_index, size_t event_index,
                TraceEventHandle* handle) {
  DCHECK(chunk_seq);
  DCHECK(chunk_index < (1u << 16));
  DCHECK(event_index < (1u << 16));
  handle->chunk_seq = chunk_seq;
  handle->chunk_index = static_cast<uint16>(chunk_index);
  handle->event_index = static_cast<uint16>(event_index);
}

////////////////////////////////////////////////////////////////////////////////
//
// TraceEvent
//
////////////////////////////////////////////////////////////////////////////////

namespace {

size_t GetAllocLength(const char* str) { return str ? strlen(str) + 1 : 0; }

// Copies |*member| into |*buffer|, sets |*member| to point to this new
// location, and then advances |*buffer| by the amount written.
void CopyTraceEventParameter(char** buffer,
                             const char** member,
                             const char* end) {
  if (*member) {
    size_t written = strlcpy(*buffer, *member, end - *buffer) + 1;
    DCHECK_LE(static_cast<int>(written), end - *buffer);
    *member = *buffer;
    *buffer += written;
  }
}

}  // namespace

TraceEvent::TraceEvent()
    : duration_(TimeDelta::FromInternalValue(-1)),
      id_(0u),
      category_group_enabled_(NULL),
      name_(NULL),
      thread_id_(0),
      phase_(TRACE_EVENT_PHASE_BEGIN),
      flags_(0) {
  for (int i = 0; i < kTraceMaxNumArgs; ++i)
    arg_names_[i] = NULL;
  memset(arg_values_, 0, sizeof(arg_values_));
}

TraceEvent::~TraceEvent() {
}

void TraceEvent::CopyFrom(const TraceEvent& other) {
  timestamp_ = other.timestamp_;
  thread_timestamp_ = other.thread_timestamp_;
  duration_ = other.duration_;
  id_ = other.id_;
  category_group_enabled_ = other.category_group_enabled_;
  name_ = other.name_;
  thread_id_ = other.thread_id_;
  phase_ = other.phase_;
  flags_ = other.flags_;
  parameter_copy_storage_ = other.parameter_copy_storage_;

  for (int i = 0; i < kTraceMaxNumArgs; ++i) {
    arg_names_[i] = other.arg_names_[i];
    arg_types_[i] = other.arg_types_[i];
    arg_values_[i] = other.arg_values_[i];
    convertable_values_[i] = other.convertable_values_[i];
  }
}

void TraceEvent::Initialize(
    int thread_id,
    TimeTicks timestamp,
    TimeTicks thread_timestamp,
    char phase,
    const unsigned char* category_group_enabled,
    const char* name,
    unsigned long long id,
    int num_args,
    const char** arg_names,
    const unsigned char* arg_types,
    const unsigned long long* arg_values,
    const scoped_refptr<ConvertableToTraceFormat>* convertable_values,
    unsigned char flags) {
  timestamp_ = timestamp;
  thread_timestamp_ = thread_timestamp;
  duration_ = TimeDelta::FromInternalValue(-1);
  id_ = id;
  category_group_enabled_ = category_group_enabled;
  name_ = name;
  thread_id_ = thread_id;
  phase_ = phase;
  flags_ = flags;

  // Clamp num_args since it may have been set by a third_party library.
  num_args = (num_args > kTraceMaxNumArgs) ? kTraceMaxNumArgs : num_args;
  int i = 0;
  for (; i < num_args; ++i) {
    arg_names_[i] = arg_names[i];
    arg_types_[i] = arg_types[i];

    if (arg_types[i] == TRACE_VALUE_TYPE_CONVERTABLE)
      convertable_values_[i] = convertable_values[i];
    else
      arg_values_[i].as_uint = arg_values[i];
  }
  for (; i < kTraceMaxNumArgs; ++i) {
    arg_names_[i] = NULL;
    arg_values_[i].as_uint = 0u;
    convertable_values_[i] = NULL;
    arg_types_[i] = TRACE_VALUE_TYPE_UINT;
  }

  bool copy = !!(flags & TRACE_EVENT_FLAG_COPY);
  size_t alloc_size = 0;
  if (copy) {
    alloc_size += GetAllocLength(name);
    for (i = 0; i < num_args; ++i) {
      alloc_size += GetAllocLength(arg_names_[i]);
      if (arg_types_[i] == TRACE_VALUE_TYPE_STRING)
        arg_types_[i] = TRACE_VALUE_TYPE_COPY_STRING;
    }
  }

  bool arg_is_copy[kTraceMaxNumArgs];
  for (i = 0; i < num_args; ++i) {
    // No copying of convertable types, we retain ownership.
    if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
      continue;

    // We only take a copy of arg_vals if they are of type COPY_STRING.
    arg_is_copy[i] = (arg_types_[i] == TRACE_VALUE_TYPE_COPY_STRING);
    if (arg_is_copy[i])
      alloc_size += GetAllocLength(arg_values_[i].as_string);
  }

  if (alloc_size) {
    parameter_copy_storage_ = new RefCountedString;
    parameter_copy_storage_->data().resize(alloc_size);
    char* ptr = string_as_array(&parameter_copy_storage_->data());
    const char* end = ptr + alloc_size;
    if (copy) {
      CopyTraceEventParameter(&ptr, &name_, end);
      for (i = 0; i < num_args; ++i) {
        CopyTraceEventParameter(&ptr, &arg_names_[i], end);
      }
    }
    for (i = 0; i < num_args; ++i) {
      if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
        continue;
      if (arg_is_copy[i])
        CopyTraceEventParameter(&ptr, &arg_values_[i].as_string, end);
    }
    DCHECK_EQ(end, ptr) << "Overrun by " << ptr - end;
  }
}

void TraceEvent::Reset() {
  // Only reset fields that won't be initialized in Initialize(), or that may
  // hold references to other objects.
  duration_ = TimeDelta::FromInternalValue(-1);
  parameter_copy_storage_ = NULL;
  for (int i = 0; i < kTraceMaxNumArgs; ++i)
    convertable_values_[i] = NULL;
}

void TraceEvent::UpdateDuration(const TimeTicks& now,
                                const TimeTicks& thread_now) {
  DCHECK(duration_.ToInternalValue() == -1);
  duration_ = now - timestamp_;
  thread_duration_ = thread_now - thread_timestamp_;
}

// static
void TraceEvent::AppendValueAsJSON(unsigned char type,
                                   TraceEvent::TraceValue value,
                                   std::string* out) {
  switch (type) {
    case TRACE_VALUE_TYPE_BOOL:
      *out += value.as_bool ? "true" : "false";
      break;
    case TRACE_VALUE_TYPE_UINT:
      StringAppendF(out, "%" PRIu64, static_cast<uint64>(value.as_uint));
      break;
    case TRACE_VALUE_TYPE_INT:
      StringAppendF(out, "%" PRId64, static_cast<int64>(value.as_int));
      break;
    case TRACE_VALUE_TYPE_DOUBLE: {
      // FIXME: base/json/json_writer.cc is using the same code,
      //        should be made into a common method.
      std::string real;
      double val = value.as_double;
      if (IsFinite(val)) {
        real = DoubleToString(val);
        // Ensure that the number has a .0 if there's no decimal or 'e'.  This
        // makes sure that when we read the JSON back, it's interpreted as a
        // real rather than an int.
        if (real.find('.') == std::string::npos &&
            real.find('e') == std::string::npos &&
            real.find('E') == std::string::npos) {
          real.append(".0");
        }
        // The JSON spec requires that non-integer values in the range (-1,1)
        // have a zero before the decimal point - ".52" is not valid, "0.52" is.
        if (real[0] == '.') {
          real.insert(0, "0");
        } else if (real.length() > 1 && real[0] == '-' && real[1] == '.') {
          // "-.1" bad "-0.1" good
          real.insert(1, "0");
        }
      } else if (IsNaN(val)){
        // The JSON spec doesn't allow NaN and Infinity (since these are
        // objects in EcmaScript).  Use strings instead.
        real = "\"NaN\"";
      } else if (val < 0) {
        real = "\"-Infinity\"";
      } else {
        real = "\"Infinity\"";
      }
      StringAppendF(out, "%s", real.c_str());
      break;
    }
    case TRACE_VALUE_TYPE_POINTER:
      // JSON only supports double and int numbers.
      // So as not to lose bits from a 64-bit pointer, output as a hex string.
      StringAppendF(out, "\"0x%" PRIx64 "\"", static_cast<uint64>(
                                     reinterpret_cast<intptr_t>(
                                     value.as_pointer)));
      break;
    case TRACE_VALUE_TYPE_STRING:
    case TRACE_VALUE_TYPE_COPY_STRING:
      EscapeJSONString(value.as_string ? value.as_string : "NULL", true, out);
      break;
    default:
      NOTREACHED() << "Don't know how to print this value";
      break;
  }
}

void TraceEvent::AppendAsJSON(std::string* out) const {
  int64 time_int64 = timestamp_.ToInternalValue();
  int process_id = TraceLog::GetInstance()->process_id();
  // Category group checked at category creation time.
  DCHECK(!strchr(name_, '"'));
  StringAppendF(out,
      "{\"cat\":\"%s\",\"pid\":%i,\"tid\":%i,\"ts\":%" PRId64 ","
      "\"ph\":\"%c\",\"name\":\"%s\",\"args\":{",
      TraceLog::GetCategoryGroupName(category_group_enabled_),
      process_id,
      thread_id_,
      time_int64,
      phase_,
      name_);

  // Output argument names and values, stop at first NULL argument name.
  for (int i = 0; i < kTraceMaxNumArgs && arg_names_[i]; ++i) {
    if (i > 0)
      *out += ",";
    *out += "\"";
    *out += arg_names_[i];
    *out += "\":";

    if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
      convertable_values_[i]->AppendAsTraceFormat(out);
    else
      AppendValueAsJSON(arg_types_[i], arg_values_[i], out);
  }
  *out += "}";

  if (phase_ == TRACE_EVENT_PHASE_COMPLETE) {
    int64 duration = duration_.ToInternalValue();
    if (duration != -1)
      StringAppendF(out, ",\"dur\":%" PRId64, duration);
    if (!thread_timestamp_.is_null()) {
      int64 thread_duration = thread_duration_.ToInternalValue();
      if (thread_duration != -1)
        StringAppendF(out, ",\"tdur\":%" PRId64, thread_duration);
    }
  }

  // Output tts if thread_timestamp is valid.
  if (!thread_timestamp_.is_null()) {
    int64 thread_time_int64 = thread_timestamp_.ToInternalValue();
    StringAppendF(out, ",\"tts\":%" PRId64, thread_time_int64);
  }

  // If id_ is set, print it out as a hex string so we don't loose any
  // bits (it might be a 64-bit pointer).
  if (flags_ & TRACE_EVENT_FLAG_HAS_ID)
    StringAppendF(out, ",\"id\":\"0x%" PRIx64 "\"", static_cast<uint64>(id_));

  // Instant events also output their scope.
  if (phase_ == TRACE_EVENT_PHASE_INSTANT) {
    char scope = '?';
    switch (flags_ & TRACE_EVENT_FLAG_SCOPE_MASK) {
      case TRACE_EVENT_SCOPE_GLOBAL:
        scope = TRACE_EVENT_SCOPE_NAME_GLOBAL;
        break;

      case TRACE_EVENT_SCOPE_PROCESS:
        scope = TRACE_EVENT_SCOPE_NAME_PROCESS;
        break;

      case TRACE_EVENT_SCOPE_THREAD:
        scope = TRACE_EVENT_SCOPE_NAME_THREAD;
        break;
    }
    StringAppendF(out, ",\"s\":\"%c\"", scope);
  }

  *out += "}";
}

void TraceEvent::AppendPrettyPrinted(std::ostringstream* out) const {
  *out << name_ << "[";
  *out << TraceLog::GetCategoryGroupName(category_group_enabled_);
  *out << "]";
  if (arg_names_[0]) {
    *out << ", {";
    for (int i = 0; i < kTraceMaxNumArgs && arg_names_[i]; ++i) {
      if (i > 0)
        *out << ", ";
      *out << arg_names_[i] << ":";
      std::string value_as_text;

      if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE)
        convertable_values_[i]->AppendAsTraceFormat(&value_as_text);
      else
        AppendValueAsJSON(arg_types_[i], arg_values_[i], &value_as_text);

      *out << value_as_text;
    }
    *out << "}";
  }
}

////////////////////////////////////////////////////////////////////////////////
//
// TraceResultBuffer
//
////////////////////////////////////////////////////////////////////////////////

TraceResultBuffer::OutputCallback
    TraceResultBuffer::SimpleOutput::GetCallback() {
  return Bind(&SimpleOutput::Append, Unretained(this));
}

void TraceResultBuffer::SimpleOutput::Append(
    const std::string& json_trace_output) {
  json_output += json_trace_output;
}

TraceResultBuffer::TraceResultBuffer() : append_comma_(false) {
}

TraceResultBuffer::~TraceResultBuffer() {
}

void TraceResultBuffer::SetOutputCallback(
    const OutputCallback& json_chunk_callback) {
  output_callback_ = json_chunk_callback;
}

void TraceResultBuffer::Start() {
  append_comma_ = false;
  output_callback_.Run("[");
}

void TraceResultBuffer::AddFragment(const std::string& trace_fragment) {
  if (append_comma_)
    output_callback_.Run(",");
  append_comma_ = true;
  output_callback_.Run(trace_fragment);
}

void TraceResultBuffer::Finish() {
  output_callback_.Run("]");
}

////////////////////////////////////////////////////////////////////////////////
//
// TraceSamplingThread
//
////////////////////////////////////////////////////////////////////////////////
class TraceBucketData;
typedef base::Callback<void(TraceBucketData*)> TraceSampleCallback;

class TraceBucketData {
 public:
  TraceBucketData(base::subtle::AtomicWord* bucket,
                  const char* name,
                  TraceSampleCallback callback);
  ~TraceBucketData();

  TRACE_EVENT_API_ATOMIC_WORD* bucket;
  const char* bucket_name;
  TraceSampleCallback callback;
};

// This object must be created on the IO thread.
class TraceSamplingThread : public PlatformThread::Delegate {
 public:
  TraceSamplingThread();
  virtual ~TraceSamplingThread();

  // Implementation of PlatformThread::Delegate:
  virtual void ThreadMain() OVERRIDE;

  static void DefaultSamplingCallback(TraceBucketData* bucekt_data);

  void Stop();
  void WaitSamplingEventForTesting();

 private:
  friend class TraceLog;

  void GetSamples();
  // Not thread-safe. Once the ThreadMain has been called, this can no longer
  // be called.
  void RegisterSampleBucket(TRACE_EVENT_API_ATOMIC_WORD* bucket,
                            const char* const name,
                            TraceSampleCallback callback);
  // Splits a combined "category\0name" into the two component parts.
  static void ExtractCategoryAndName(const char* combined,
                                     const char** category,
                                     const char** name);
  std::vector<TraceBucketData> sample_buckets_;
  bool thread_running_;
  CancellationFlag cancellation_flag_;
  WaitableEvent waitable_event_for_testing_;
};


TraceSamplingThread::TraceSamplingThread()
    : thread_running_(false),
      waitable_event_for_testing_(false, false) {
}

TraceSamplingThread::~TraceSamplingThread() {
}

void TraceSamplingThread::ThreadMain() {
  PlatformThread::SetName("Sampling Thread");
  thread_running_ = true;
  const int kSamplingFrequencyMicroseconds = 1000;
  while (!cancellation_flag_.IsSet()) {
    PlatformThread::Sleep(
        TimeDelta::FromMicroseconds(kSamplingFrequencyMicroseconds));
    GetSamples();
    waitable_event_for_testing_.Signal();
  }
}

// static
void TraceSamplingThread::DefaultSamplingCallback(
    TraceBucketData* bucket_data) {
  TRACE_EVENT_API_ATOMIC_WORD category_and_name =
      TRACE_EVENT_API_ATOMIC_LOAD(*bucket_data->bucket);
  if (!category_and_name)
    return;
  const char* const combined =
      reinterpret_cast<const char* const>(category_and_name);
  const char* category_group;
  const char* name;
  ExtractCategoryAndName(combined, &category_group, &name);
  TRACE_EVENT_API_ADD_TRACE_EVENT(TRACE_EVENT_PHASE_SAMPLE,
      TraceLog::GetCategoryGroupEnabled(category_group),
      name, 0, 0, NULL, NULL, NULL, NULL, 0);
}

void TraceSamplingThread::GetSamples() {
  for (size_t i = 0; i < sample_buckets_.size(); ++i) {
    TraceBucketData* bucket_data = &sample_buckets_[i];
    bucket_data->callback.Run(bucket_data);
  }
}

void TraceSamplingThread::RegisterSampleBucket(
    TRACE_EVENT_API_ATOMIC_WORD* bucket,
    const char* const name,
    TraceSampleCallback callback) {
  // Access to sample_buckets_ doesn't cause races with the sampling thread
  // that uses the sample_buckets_, because it is guaranteed that
  // RegisterSampleBucket is called before the sampling thread is created.
  DCHECK(!thread_running_);
  sample_buckets_.push_back(TraceBucketData(bucket, name, callback));
}

// static
void TraceSamplingThread::ExtractCategoryAndName(const char* combined,
                                                 const char** category,
                                                 const char** name) {
  *category = combined;
  *name = &combined[strlen(combined) + 1];
}

void TraceSamplingThread::Stop() {
  cancellation_flag_.Set();
}

void TraceSamplingThread::WaitSamplingEventForTesting() {
  waitable_event_for_testing_.Wait();
}

TraceBucketData::TraceBucketData(base::subtle::AtomicWord* bucket,
                                 const char* name,
                                 TraceSampleCallback callback)
    : bucket(bucket),
      bucket_name(name),
      callback(callback) {
}

TraceBucketData::~TraceBucketData() {
}

////////////////////////////////////////////////////////////////////////////////
//
// TraceLog
//
////////////////////////////////////////////////////////////////////////////////

class TraceLog::ThreadLocalEventBuffer
    : public MessageLoop::DestructionObserver {
 public:
  ThreadLocalEventBuffer(TraceLog* trace_log);
  virtual ~ThreadLocalEventBuffer();

  TraceEvent* AddTraceEvent(TraceEventHandle* handle);

  void ReportOverhead(const TimeTicks& event_timestamp,
                      const TimeTicks& event_thread_timestamp);

  TraceEvent* GetEventByHandle(TraceEventHandle handle) {
    if (!chunk_ || handle.chunk_seq != chunk_->seq() ||
        handle.chunk_index != chunk_index_)
      return NULL;

    return chunk_->GetEventAt(handle.event_index);
  }

  int generation() const { return generation_; }

 private:
  // MessageLoop::DestructionObserver
  virtual void WillDestroyCurrentMessageLoop() OVERRIDE;

  void FlushWhileLocked();

  void CheckThisIsCurrentBuffer() const {
    DCHECK(trace_log_->thread_local_event_buffer_.Get() == this);
  }

  // Since TraceLog is a leaky singleton, trace_log_ will always be valid
  // as long as the thread exists.
  TraceLog* trace_log_;
  scoped_ptr<TraceBufferChunk> chunk_;
  size_t chunk_index_;
  int event_count_;
  TimeDelta overhead_;
  int generation_;

  DISALLOW_COPY_AND_ASSIGN(ThreadLocalEventBuffer);
};

TraceLog::ThreadLocalEventBuffer::ThreadLocalEventBuffer(TraceLog* trace_log)
    : trace_log_(trace_log),
      chunk_index_(0),
      event_count_(0),
      generation_(trace_log->generation()) {
  // ThreadLocalEventBuffer is created only if the thread has a message loop, so
  // the following message_loop won't be NULL.
  MessageLoop* message_loop = MessageLoop::current();
  message_loop->AddDestructionObserver(this);

  AutoLock lock(trace_log->lock_);
  trace_log->thread_message_loops_.insert(message_loop);
}

TraceLog::ThreadLocalEventBuffer::~ThreadLocalEventBuffer() {
  CheckThisIsCurrentBuffer();
  MessageLoop::current()->RemoveDestructionObserver(this);

  // Zero event_count_ happens in either of the following cases:
  // - no event generated for the thread;
  // - the thread has no message loop;
  // - trace_event_overhead is disabled.
  if (event_count_) {
    InitializeMetadataEvent(AddTraceEvent(NULL),
                            static_cast<int>(base::PlatformThread::CurrentId()),
                            "overhead", "average_overhead",
                            overhead_.InMillisecondsF() / event_count_);
  }

  {
    AutoLock lock(trace_log_->lock_);
    FlushWhileLocked();
    trace_log_->thread_message_loops_.erase(MessageLoop::current());
  }
  trace_log_->thread_local_event_buffer_.Set(NULL);
}

TraceEvent* TraceLog::ThreadLocalEventBuffer::AddTraceEvent(
    TraceEventHandle* handle) {
  CheckThisIsCurrentBuffer();

  if (chunk_ && chunk_->IsFull()) {
    AutoLock lock(trace_log_->lock_);
    FlushWhileLocked();
    chunk_.reset();
  }
  if (!chunk_) {
    AutoLock lock(trace_log_->lock_);
    chunk_ = trace_log_->logged_events_->GetChunk(&chunk_index_);
    trace_log_->CheckIfBufferIsFullWhileLocked();
  }
  if (!chunk_)
    return NULL;

  size_t event_index;
  TraceEvent* trace_event = chunk_->AddTraceEvent(&event_index);
  if (trace_event && handle)
    MakeHandle(chunk_->seq(), chunk_index_, event_index, handle);

  return trace_event;
}

void TraceLog::ThreadLocalEventBuffer::ReportOverhead(
    const TimeTicks& event_timestamp,
    const TimeTicks& event_thread_timestamp) {
  if (!g_category_group_enabled[g_category_trace_event_overhead])
    return;

  CheckThisIsCurrentBuffer();

  event_count_++;
  TimeTicks thread_now = ThreadNow();
  TimeTicks now = trace_log_->OffsetNow();
  TimeDelta overhead = now - event_timestamp;
  if (overhead.InMicroseconds() >= kOverheadReportThresholdInMicroseconds) {
    TraceEvent* trace_event = AddTraceEvent(NULL);
    if (trace_event) {
      trace_event->Initialize(
          static_cast<int>(PlatformThread::CurrentId()),
          event_timestamp, event_thread_timestamp,
          TRACE_EVENT_PHASE_COMPLETE,
          &g_category_group_enabled[g_category_trace_event_overhead],
          "overhead", 0, 0, NULL, NULL, NULL, NULL, 0);
      trace_event->UpdateDuration(now, thread_now);
    }
  }
  overhead_ += overhead;
}

void TraceLog::ThreadLocalEventBuffer::WillDestroyCurrentMessageLoop() {
  delete this;
}

void TraceLog::ThreadLocalEventBuffer::FlushWhileLocked() {
  if (!chunk_)
    return;

  trace_log_->lock_.AssertAcquired();
  if (trace_log_->CheckGeneration(generation_)) {
    // Return the chunk to the buffer only if the generation matches.
    trace_log_->logged_events_->ReturnChunk(chunk_index_, chunk_.Pass());
  }
  // Otherwise this method may be called from the destructor, or TraceLog will
  // find the generation mismatch and delete this buffer soon.
}

// static
TraceLog* TraceLog::GetInstance() {
  return Singleton<TraceLog, LeakySingletonTraits<TraceLog> >::get();
}

TraceLog::TraceLog()
    : mode_(DISABLED),
      num_traces_recorded_(0),
      event_callback_(0),
      dispatching_to_observer_list_(false),
      process_sort_index_(0),
      process_id_hash_(0),
      process_id_(0),
      watch_category_(0),
      trace_options_(RECORD_UNTIL_FULL),
      sampling_thread_handle_(0),
      category_filter_(CategoryFilter::kDefaultCategoryFilterString),
      event_callback_category_filter_(
          CategoryFilter::kDefaultCategoryFilterString),
      thread_shared_chunk_index_(0),
      generation_(0) {
  // Trace is enabled or disabled on one thread while other threads are
  // accessing the enabled flag. We don't care whether edge-case events are
  // traced or not, so we allow races on the enabled flag to keep the trace
  // macros fast.
  // TODO(jbates): ANNOTATE_BENIGN_RACE_SIZED crashes windows TSAN bots:
  // ANNOTATE_BENIGN_RACE_SIZED(g_category_group_enabled,
  //                            sizeof(g_category_group_enabled),
  //                           "trace_event category enabled");
  for (int i = 0; i < MAX_CATEGORY_GROUPS; ++i) {
    ANNOTATE_BENIGN_RACE(&g_category_group_enabled[i],
                         "trace_event category enabled");
  }
#if defined(OS_NACL)  // NaCl shouldn't expose the process id.
  SetProcessID(0);
#else
  SetProcessID(static_cast<int>(GetCurrentProcId()));

  // NaCl also shouldn't access the command line.
  if (CommandLine::InitializedForCurrentProcess() &&
      CommandLine::ForCurrentProcess()->HasSwitch(switches::kTraceToConsole)) {
    std::string filter = CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
        switches::kTraceToConsole);
    if (filter.empty()) {
      filter = kEchoToConsoleCategoryFilter;
    } else {
      filter.append(",");
      filter.append(kEchoToConsoleCategoryFilter);
    }

    LOG(ERROR) << "Start " << switches::kTraceToConsole
               << " with CategoryFilter '" << filter << "'.";
    SetEnabled(CategoryFilter(filter), RECORDING_MODE, ECHO_TO_CONSOLE);
  }
#endif

  logged_events_.reset(CreateTraceBuffer());
}

TraceLog::~TraceLog() {
}

const unsigned char* TraceLog::GetCategoryGroupEnabled(
    const char* category_group) {
  TraceLog* tracelog = GetInstance();
  if (!tracelog) {
    DCHECK(!g_category_group_enabled[g_category_already_shutdown]);
    return &g_category_group_enabled[g_category_already_shutdown];
  }
  return tracelog->GetCategoryGroupEnabledInternal(category_group);
}

const char* TraceLog::GetCategoryGroupName(
    const unsigned char* category_group_enabled) {
  // Calculate the index of the category group by finding
  // category_group_enabled in g_category_group_enabled array.
  uintptr_t category_begin =
      reinterpret_cast<uintptr_t>(g_category_group_enabled);
  uintptr_t category_ptr = reinterpret_cast<uintptr_t>(category_group_enabled);
  DCHECK(category_ptr >= category_begin &&
         category_ptr < reinterpret_cast<uintptr_t>(
             g_category_group_enabled + MAX_CATEGORY_GROUPS)) <<
      "out of bounds category pointer";
  uintptr_t category_index =
      (category_ptr - category_begin) / sizeof(g_category_group_enabled[0]);
  return g_category_groups[category_index];
}

void TraceLog::UpdateCategoryGroupEnabledFlag(int category_index) {
  unsigned char enabled_flag = 0;
  const char* category_group = g_category_groups[category_index];
  if (mode_ == RECORDING_MODE &&
      category_filter_.IsCategoryGroupEnabled(category_group))
    enabled_flag |= ENABLED_FOR_RECORDING;
  else if (mode_ == MONITORING_MODE &&
      category_filter_.IsCategoryGroupEnabled(category_group))
    enabled_flag |= ENABLED_FOR_MONITORING;
  if (event_callback_ &&
      event_callback_category_filter_.IsCategoryGroupEnabled(category_group))
    enabled_flag |= ENABLED_FOR_EVENT_CALLBACK;
  g_category_group_enabled[category_index] = enabled_flag;
}

void TraceLog::UpdateCategoryGroupEnabledFlags() {
  for (int i = 0; i < g_category_index; i++)
    UpdateCategoryGroupEnabledFlag(i);
}

void TraceLog::UpdateSyntheticDelaysFromCategoryFilter() {
  ResetTraceEventSyntheticDelays();
  const CategoryFilter::StringList& delays =
      category_filter_.GetSyntheticDelayValues();
  CategoryFilter::StringList::const_iterator ci;
  for (ci = delays.begin(); ci != delays.end(); ++ci) {
    StringTokenizer tokens(*ci, ";");
    if (!tokens.GetNext())
      continue;
    TraceEventSyntheticDelay* delay =
        TraceEventSyntheticDelay::Lookup(tokens.token());
    while (tokens.GetNext()) {
      std::string token = tokens.token();
      char* duration_end;
      double target_duration = strtod(token.c_str(), &duration_end);
      if (duration_end != token.c_str()) {
        delay->SetTargetDuration(
            TimeDelta::FromMicroseconds(target_duration * 1e6));
      } else if (token == "static") {
        delay->SetMode(TraceEventSyntheticDelay::STATIC);
      } else if (token == "oneshot") {
        delay->SetMode(TraceEventSyntheticDelay::ONE_SHOT);
      } else if (token == "alternating") {
        delay->SetMode(TraceEventSyntheticDelay::ALTERNATING);
      }
    }
  }
}

const unsigned char* TraceLog::GetCategoryGroupEnabledInternal(
    const char* category_group) {
  DCHECK(!strchr(category_group, '"')) <<
      "Category groups may not contain double quote";
  AutoLock lock(lock_);

  unsigned char* category_group_enabled = NULL;
  // Search for pre-existing category group.
  for (int i = 0; i < g_category_index; i++) {
    if (strcmp(g_category_groups[i], category_group) == 0) {
      category_group_enabled = &g_category_group_enabled[i];
      break;
    }
  }

  if (!category_group_enabled) {
    // Create a new category group
    DCHECK(g_category_index < MAX_CATEGORY_GROUPS) <<
        "must increase MAX_CATEGORY_GROUPS";
    if (g_category_index < MAX_CATEGORY_GROUPS) {
      int new_index = g_category_index++;
      // Don't hold on to the category_group pointer, so that we can create
      // category groups with strings not known at compile time (this is
      // required by SetWatchEvent).
      const char* new_group = strdup(category_group);
      ANNOTATE_LEAKING_OBJECT_PTR(new_group);
      g_category_groups[new_index] = new_group;
      DCHECK(!g_category_group_enabled[new_index]);
      // Note that if both included and excluded patterns in the
      // CategoryFilter are empty, we exclude nothing,
      // thereby enabling this category group.
      UpdateCategoryGroupEnabledFlag(new_index);
      category_group_enabled = &g_category_group_enabled[new_index];
    } else {
      category_group_enabled =
          &g_category_group_enabled[g_category_categories_exhausted];
    }
  }
  return category_group_enabled;
}

void TraceLog::GetKnownCategoryGroups(
    std::vector<std::string>* category_groups) {
  AutoLock lock(lock_);
  category_groups->push_back(
      g_category_groups[g_category_trace_event_overhead]);
  for (int i = g_num_builtin_categories; i < g_category_index; i++)
    category_groups->push_back(g_category_groups[i]);
}

void TraceLog::SetEnabled(const CategoryFilter& category_filter,
                          Mode mode,
                          Options options) {
  std::vector<EnabledStateObserver*> observer_list;
  {
    AutoLock lock(lock_);

    // Can't enable tracing when Flush() is in progress.
    DCHECK(!flush_message_loop_proxy_.get());

    Options old_options = trace_options();

    if (IsEnabled()) {
      if (options != old_options) {
        DLOG(ERROR) << "Attempting to re-enable tracing with a different "
                    << "set of options.";
      }

      if (mode != mode_) {
        DLOG(ERROR) << "Attempting to re-enable tracing with a different mode.";
      }

      category_filter_.Merge(category_filter);
      UpdateCategoryGroupEnabledFlags();
      return;
    }

    if (dispatching_to_observer_list_) {
      DLOG(ERROR) <<
          "Cannot manipulate TraceLog::Enabled state from an observer.";
      return;
    }

    mode_ = mode;

    if (options != old_options) {
      subtle::NoBarrier_Store(&trace_options_, options);
      UseNextTraceBuffer();
    }

    num_traces_recorded_++;

    category_filter_ = CategoryFilter(category_filter);
    UpdateCategoryGroupEnabledFlags();
    UpdateSyntheticDelaysFromCategoryFilter();

    if (options & ENABLE_SAMPLING) {
      sampling_thread_.reset(new TraceSamplingThread);
      sampling_thread_->RegisterSampleBucket(
          &g_trace_state[0],
          "bucket0",
          Bind(&TraceSamplingThread::DefaultSamplingCallback));
      sampling_thread_->RegisterSampleBucket(
          &g_trace_state[1],
          "bucket1",
          Bind(&TraceSamplingThread::DefaultSamplingCallback));
      sampling_thread_->RegisterSampleBucket(
          &g_trace_state[2],
          "bucket2",
          Bind(&TraceSamplingThread::DefaultSamplingCallback));
      if (!PlatformThread::Create(
            0, sampling_thread_.get(), &sampling_thread_handle_)) {
        DCHECK(false) << "failed to create thread";
      }
    }

    dispatching_to_observer_list_ = true;
    observer_list = enabled_state_observer_list_;
  }
  // Notify observers outside the lock in case they trigger trace events.
  for (size_t i = 0; i < observer_list.size(); ++i)
    observer_list[i]->OnTraceLogEnabled();

  {
    AutoLock lock(lock_);
    dispatching_to_observer_list_ = false;
  }
}

CategoryFilter TraceLog::GetCurrentCategoryFilter() {
  AutoLock lock(lock_);
  return category_filter_;
}

void TraceLog::SetDisabled() {
  AutoLock lock(lock_);
  SetDisabledWhileLocked();
}

void TraceLog::SetDisabledWhileLocked() {
  lock_.AssertAcquired();

  if (!IsEnabled())
    return;

  if (dispatching_to_observer_list_) {
    DLOG(ERROR)
        << "Cannot manipulate TraceLog::Enabled state from an observer.";
    return;
  }

  mode_ = DISABLED;

  if (sampling_thread_.get()) {
    // Stop the sampling thread.
    sampling_thread_->Stop();
    lock_.Release();
    PlatformThread::Join(sampling_thread_handle_);
    lock_.Acquire();
    sampling_thread_handle_ = PlatformThreadHandle();
    sampling_thread_.reset();
  }

  category_filter_.Clear();
  subtle::NoBarrier_Store(&watch_category_, 0);
  watch_event_name_ = "";
  UpdateCategoryGroupEnabledFlags();
  AddMetadataEventsWhileLocked();

  dispatching_to_observer_list_ = true;
  std::vector<EnabledStateObserver*> observer_list =
      enabled_state_observer_list_;

  {
    // Dispatch to observers outside the lock in case the observer triggers a
    // trace event.
    AutoUnlock unlock(lock_);
    for (size_t i = 0; i < observer_list.size(); ++i)
      observer_list[i]->OnTraceLogDisabled();
  }
  dispatching_to_observer_list_ = false;
}

int TraceLog::GetNumTracesRecorded() {
  AutoLock lock(lock_);
  if (!IsEnabled())
    return -1;
  return num_traces_recorded_;
}

void TraceLog::AddEnabledStateObserver(EnabledStateObserver* listener) {
  enabled_state_observer_list_.push_back(listener);
}

void TraceLog::RemoveEnabledStateObserver(EnabledStateObserver* listener) {
  std::vector<EnabledStateObserver*>::iterator it =
      std::find(enabled_state_observer_list_.begin(),
                enabled_state_observer_list_.end(),
                listener);
  if (it != enabled_state_observer_list_.end())
    enabled_state_observer_list_.erase(it);
}

bool TraceLog::HasEnabledStateObserver(EnabledStateObserver* listener) const {
  std::vector<EnabledStateObserver*>::const_iterator it =
      std::find(enabled_state_observer_list_.begin(),
                enabled_state_observer_list_.end(),
                listener);
  return it != enabled_state_observer_list_.end();
}

float TraceLog::GetBufferPercentFull() const {
  AutoLock lock(lock_);
  return static_cast<float>(static_cast<double>(logged_events_->Size()) /
                            logged_events_->Capacity());
}

bool TraceLog::BufferIsFull() const {
  AutoLock lock(lock_);
  return logged_events_->IsFull();
}

TraceBuffer* TraceLog::CreateTraceBuffer() {
  Options options = trace_options();
  if (options & RECORD_CONTINUOUSLY)
    return new TraceBufferRingBuffer(kTraceEventRingBufferChunks);
  else if ((options & ENABLE_SAMPLING) && mode_ == MONITORING_MODE)
    return new TraceBufferRingBuffer(kMonitorTraceEventBufferChunks);
  else if (options & ECHO_TO_CONSOLE)
    return new TraceBufferRingBuffer(kEchoToConsoleTraceEventBufferChunks);
  return new TraceBufferVector();
}

TraceEvent* TraceLog::AddEventToThreadSharedChunkWhileLocked(
    TraceEventHandle* handle, bool check_buffer_is_full) {
  lock_.AssertAcquired();

  if (thread_shared_chunk_ && thread_shared_chunk_->IsFull()) {
    logged_events_->ReturnChunk(thread_shared_chunk_index_,
                                thread_shared_chunk_.Pass());
  }

  if (!thread_shared_chunk_) {
    thread_shared_chunk_ = logged_events_->GetChunk(
        &thread_shared_chunk_index_);
    if (check_buffer_is_full)
      CheckIfBufferIsFullWhileLocked();
  }
  if (!thread_shared_chunk_)
    return NULL;

  size_t event_index;
  TraceEvent* trace_event = thread_shared_chunk_->AddTraceEvent(&event_index);
  if (trace_event && handle) {
    MakeHandle(thread_shared_chunk_->seq(), thread_shared_chunk_index_,
               event_index, handle);
  }
  return trace_event;
}

void TraceLog::CheckIfBufferIsFullWhileLocked() {
  lock_.AssertAcquired();
  if (logged_events_->IsFull())
    SetDisabledWhileLocked();
}

void TraceLog::SetEventCallbackEnabled(const CategoryFilter& category_filter,
                                       EventCallback cb) {
  AutoLock lock(lock_);
  subtle::NoBarrier_Store(&event_callback_,
                          reinterpret_cast<subtle::AtomicWord>(cb));
  event_callback_category_filter_ = category_filter;
  UpdateCategoryGroupEnabledFlags();
};

void TraceLog::SetEventCallbackDisabled() {
  AutoLock lock(lock_);
  subtle::NoBarrier_Store(&event_callback_, 0);
  UpdateCategoryGroupEnabledFlags();
}

// Flush() works as the following:
// 1. Flush() is called in threadA whose message loop is saved in
//    flush_message_loop_proxy_;
// 2. If thread_message_loops_ is not empty, threadA posts task to each message
//    loop to flush the thread local buffers; otherwise finish the flush;
// 3. FlushCurrentThread() deletes the thread local event buffer:
//    - The last batch of events of the thread are flushed into the main buffer;
//    - The message loop will be removed from thread_message_loops_;
//    If this is the last message loop, finish the flush;
// 4. If any thread hasn't finish its flush in time, finish the flush.
void TraceLog::Flush(const TraceLog::OutputCallback& cb) {
  if (IsEnabled()) {
    // Can't flush when tracing is enabled because otherwise PostTask would
    // - generate more trace events;
    // - deschedule the calling thread on some platforms causing inaccurate
    //   timing of the trace events.
    scoped_refptr<RefCountedString> empty_result = new RefCountedString;
    if (!cb.is_null())
      cb.Run(empty_result, false);
    LOG(WARNING) << "Ignored TraceLog::Flush called when tracing is enabled";
    return;
  }

  int generation = this->generation();
  {
    AutoLock lock(lock_);
    DCHECK(!flush_message_loop_proxy_.get());
    flush_message_loop_proxy_ = MessageLoopProxy::current();
    DCHECK(!thread_message_loops_.size() || flush_message_loop_proxy_.get());
    flush_output_callback_ = cb;

    if (thread_shared_chunk_) {
      logged_events_->ReturnChunk(thread_shared_chunk_index_,
                                  thread_shared_chunk_.Pass());
    }

    if (thread_message_loops_.size()) {
      for (hash_set<MessageLoop*>::const_iterator it =
           thread_message_loops_.begin();
           it != thread_message_loops_.end(); ++it) {
        (*it)->PostTask(
            FROM_HERE,
            Bind(&TraceLog::FlushCurrentThread, Unretained(this), generation));
      }
      flush_message_loop_proxy_->PostDelayedTask(
          FROM_HERE,
          Bind(&TraceLog::OnFlushTimeout, Unretained(this), generation),
          TimeDelta::FromMilliseconds(kThreadFlushTimeoutMs));
      return;
    }
  }

  FinishFlush(generation);
}

void TraceLog::ConvertTraceEventsToTraceFormat(
    scoped_ptr<TraceBuffer> logged_events,
    const TraceLog::OutputCallback& flush_output_callback) {

  if (flush_output_callback.is_null())
    return;

  // The callback need to be called at least once even if there is no events
  // to let the caller know the completion of flush.
  bool has_more_events = true;
  do {
    scoped_refptr<RefCountedString> json_events_str_ptr =
        new RefCountedString();

    for (size_t i = 0; i < kTraceEventBatchChunks; ++i) {
      const TraceBufferChunk* chunk = logged_events->NextChunk();
      if (!chunk) {
        has_more_events = false;
        break;
      }
      for (size_t j = 0; j < chunk->size(); ++j) {
        if (i > 0 || j > 0)
          json_events_str_ptr->data().append(",");
        chunk->GetEventAt(j)->AppendAsJSON(&(json_events_str_ptr->data()));
      }
    }

    flush_output_callback.Run(json_events_str_ptr, has_more_events);
  } while (has_more_events);
}

void TraceLog::FinishFlush(int generation) {
  scoped_ptr<TraceBuffer> previous_logged_events;
  OutputCallback flush_output_callback;

  if (!CheckGeneration(generation))
    return;

  {
    AutoLock lock(lock_);

    previous_logged_events.swap(logged_events_);
    UseNextTraceBuffer();
    thread_message_loops_.clear();

    flush_message_loop_proxy_ = NULL;
    flush_output_callback = flush_output_callback_;
    flush_output_callback_.Reset();
  }

  ConvertTraceEventsToTraceFormat(previous_logged_events.Pass(),
                                  flush_output_callback);
}

// Run in each thread holding a local event buffer.
void TraceLog::FlushCurrentThread(int generation) {
  {
    AutoLock lock(lock_);
    if (!CheckGeneration(generation) || !flush_message_loop_proxy_) {
      // This is late. The corresponding flush has finished.
      return;
    }
  }

  // This will flush the thread local buffer.
  delete thread_local_event_buffer_.Get();

  AutoLock lock(lock_);
  if (!CheckGeneration(generation) || !flush_message_loop_proxy_ ||
      thread_message_loops_.size())
    return;

  flush_message_loop_proxy_->PostTask(
      FROM_HERE,
      Bind(&TraceLog::FinishFlush, Unretained(this), generation));
}

void TraceLog::OnFlushTimeout(int generation) {
  {
    AutoLock lock(lock_);
    if (!CheckGeneration(generation) || !flush_message_loop_proxy_) {
      // Flush has finished before timeout.
      return;
    }

    LOG(WARNING) <<
        "The following threads haven't finished flush in time. "
        "If this happens stably for some thread, please call "
        "TraceLog::GetInstance()->SetCurrentThreadBlocksMessageLoop() from "
        "the thread to avoid its trace events from being lost.";
    for (hash_set<MessageLoop*>::const_iterator it =
         thread_message_loops_.begin();
         it != thread_message_loops_.end(); ++it) {
      LOG(WARNING) << "Thread: " << (*it)->thread_name();
    }
  }
  FinishFlush(generation);
}

void TraceLog::FlushButLeaveBufferIntact(
    const TraceLog::OutputCallback& flush_output_callback) {
  scoped_ptr<TraceBuffer> previous_logged_events;
  {
    AutoLock lock(lock_);
    AddMetadataEventsWhileLocked();
    if (thread_shared_chunk_) {
      // Return the chunk to the main buffer to flush the sampling data.
      logged_events_->ReturnChunk(thread_shared_chunk_index_,
                                  thread_shared_chunk_.Pass());
    }
    previous_logged_events = logged_events_->CloneForIteration().Pass();
  }  // release lock

  ConvertTraceEventsToTraceFormat(previous_logged_events.Pass(),
                                  flush_output_callback);
}

void TraceLog::UseNextTraceBuffer() {
  logged_events_.reset(CreateTraceBuffer());
  subtle::NoBarrier_AtomicIncrement(&generation_, 1);
  thread_shared_chunk_.reset();
  thread_shared_chunk_index_ = 0;
}

TraceEventHandle TraceLog::AddTraceEvent(
    char phase,
    const unsigned char* category_group_enabled,
    const char* name,
    unsigned long long id,
    int num_args,
    const char** arg_names,
    const unsigned char* arg_types,
    const unsigned long long* arg_values,
    const scoped_refptr<ConvertableToTraceFormat>* convertable_values,
    unsigned char flags) {
  int thread_id = static_cast<int>(base::PlatformThread::CurrentId());
  base::TimeTicks now = base::TimeTicks::NowFromSystemTraceTime();
  return AddTraceEventWithThreadIdAndTimestamp(phase, category_group_enabled,
                                               name, id, thread_id, now,
                                               num_args, arg_names,
                                               arg_types, arg_values,
                                               convertable_values, flags);
}

TraceEventHandle TraceLog::AddTraceEventWithThreadIdAndTimestamp(
    char phase,
    const unsigned char* category_group_enabled,
    const char* name,
    unsigned long long id,
    int thread_id,
    const TimeTicks& timestamp,
    int num_args,
    const char** arg_names,
    const unsigned char* arg_types,
    const unsigned long long* arg_values,
    const scoped_refptr<ConvertableToTraceFormat>* convertable_values,
    unsigned char flags) {
  TraceEventHandle handle = { 0, 0, 0 };
  if (!*category_group_enabled)
    return handle;

  // Avoid re-entrance of AddTraceEvent. This may happen in GPU process when
  // ECHO_TO_CONSOLE is enabled: AddTraceEvent -> LOG(ERROR) ->
  // GpuProcessLogMessageHandler -> PostPendingTask -> TRACE_EVENT ...
  if (thread_is_in_trace_event_.Get())
    return handle;

  AutoThreadLocalBoolean thread_is_in_trace_event(&thread_is_in_trace_event_);

  DCHECK(name);

  if (flags & TRACE_EVENT_FLAG_MANGLE_ID)
    id ^= process_id_hash_;

  TimeTicks now = OffsetTimestamp(timestamp);
  TimeTicks thread_now = ThreadNow();

  ThreadLocalEventBuffer* thread_local_event_buffer = NULL;
  // A ThreadLocalEventBuffer needs the message loop
  // - to know when the thread exits;
  // - to handle the final flush.
  // For a thread without a message loop or the message loop may be blocked, the
  // trace events will be added into the main buffer directly.
  if (!thread_blocks_message_loop_.Get() && MessageLoop::current()) {
    thread_local_event_buffer = thread_local_event_buffer_.Get();
    if (thread_local_event_buffer &&
        !CheckGeneration(thread_local_event_buffer->generation())) {
      delete thread_local_event_buffer;
      thread_local_event_buffer = NULL;
    }
    if (!thread_local_event_buffer) {
      thread_local_event_buffer = new ThreadLocalEventBuffer(this);
      thread_local_event_buffer_.Set(thread_local_event_buffer);
    }
  }

  // Check and update the current thread name only if the event is for the
  // current thread to avoid locks in most cases.
  if (thread_id == static_cast<int>(PlatformThread::CurrentId())) {
    const char* new_name = ThreadIdNameManager::GetInstance()->
        GetName(thread_id);
    // Check if the thread name has been set or changed since the previous
    // call (if any), but don't bother if the new name is empty. Note this will
    // not detect a thread name change within the same char* buffer address: we
    // favor common case performance over corner case correctness.
    if (new_name != g_current_thread_name.Get().Get() &&
        new_name && *new_name) {
      g_current_thread_name.Get().Set(new_name);

      AutoLock thread_info_lock(thread_info_lock_);

      hash_map<int, std::string>::iterator existing_name =
          thread_names_.find(thread_id);
      if (existing_name == thread_names_.end()) {
        // This is a new thread id, and a new name.
        thread_names_[thread_id] = new_name;
      } else {
        // This is a thread id that we've seen before, but potentially with a
        // new name.
        std::vector<StringPiece> existing_names;
        Tokenize(existing_name->second, ",", &existing_names);
        bool found = std::find(existing_names.begin(),
                               existing_names.end(),
                               new_name) != existing_names.end();
        if (!found) {
          if (existing_names.size())
            existing_name->second.push_back(',');
          existing_name->second.append(new_name);
        }
      }
    }
  }

  std::string console_message;
  if (*category_group_enabled &
      (ENABLED_FOR_RECORDING | ENABLED_FOR_MONITORING)) {
    OptionalAutoLock lock(lock_);

    TraceEvent* trace_event = NULL;
    if (thread_local_event_buffer) {
      trace_event = thread_local_event_buffer->AddTraceEvent(&handle);
    } else {
      lock.EnsureAcquired();
      trace_event = AddEventToThreadSharedChunkWhileLocked(&handle, true);
    }

    if (trace_event) {
      trace_event->Initialize(thread_id, now, thread_now, phase,
                              category_group_enabled, name, id,
                              num_args, arg_names, arg_types, arg_values,
                              convertable_values, flags);

#if defined(OS_ANDROID)
      trace_event->SendToATrace();
#endif
    }

    if (trace_options() & ECHO_TO_CONSOLE) {
      console_message = EventToConsoleMessage(
          phase == TRACE_EVENT_PHASE_COMPLETE ? TRACE_EVENT_PHASE_BEGIN : phase,
          timestamp, trace_event);
    }
  }

  if (console_message.size())
    LOG(ERROR) << console_message;

  if (reinterpret_cast<const unsigned char*>(subtle::NoBarrier_Load(
      &watch_category_)) == category_group_enabled) {
    bool event_name_matches;
    WatchEventCallback watch_event_callback_copy;
    {
      AutoLock lock(lock_);
      event_name_matches = watch_event_name_ == name;
      watch_event_callback_copy = watch_event_callback_;
    }
    if (event_name_matches) {
      if (!watch_event_callback_copy.is_null())
        watch_event_callback_copy.Run();
    }
  }

  if (*category_group_enabled & ENABLED_FOR_EVENT_CALLBACK) {
    EventCallback event_callback = reinterpret_cast<EventCallback>(
        subtle::NoBarrier_Load(&event_callback_));
    if (event_callback) {
      event_callback(now,
                     phase == TRACE_EVENT_PHASE_COMPLETE ?
                         TRACE_EVENT_PHASE_BEGIN : phase,
                     category_group_enabled, name, id,
                     num_args, arg_names, arg_types, arg_values,
                     flags);
    }
  }

  if (thread_local_event_buffer)
    thread_local_event_buffer->ReportOverhead(now, thread_now);

  return handle;
}

// May be called when a COMPELETE event ends and the unfinished event has been
// recycled (phase == TRACE_EVENT_PHASE_END and trace_event == NULL).
std::string TraceLog::EventToConsoleMessage(unsigned char phase,
                                            const TimeTicks& timestamp,
                                            TraceEvent* trace_event) {
  AutoLock thread_info_lock(thread_info_lock_);

  // The caller should translate TRACE_EVENT_PHASE_COMPLETE to
  // TRACE_EVENT_PHASE_BEGIN or TRACE_EVENT_END.
  DCHECK(phase != TRACE_EVENT_PHASE_COMPLETE);

  TimeDelta duration;
  int thread_id = trace_event ?
      trace_event->thread_id() : PlatformThread::CurrentId();
  if (phase == TRACE_EVENT_PHASE_END) {
    duration = timestamp - thread_event_start_times_[thread_id].top();
    thread_event_start_times_[thread_id].pop();
  }

  std::string thread_name = thread_names_[thread_id];
  if (thread_colors_.find(thread_name) == thread_colors_.end())
    thread_colors_[thread_name] = (thread_colors_.size() % 6) + 1;

  std::ostringstream log;
  log << base::StringPrintf("%s: \x1b[0;3%dm",
                            thread_name.c_str(),
                            thread_colors_[thread_name]);

  size_t depth = 0;
  if (thread_event_start_times_.find(thread_id) !=
      thread_event_start_times_.end())
    depth = thread_event_start_times_[thread_id].size();

  for (size_t i = 0; i < depth; ++i)
    log << "| ";

  if (trace_event)
    trace_event->AppendPrettyPrinted(&log);
  if (phase == TRACE_EVENT_PHASE_END)
    log << base::StringPrintf(" (%.3f ms)", duration.InMillisecondsF());

  log << "\x1b[0;m";

  if (phase == TRACE_EVENT_PHASE_BEGIN)
    thread_event_start_times_[thread_id].push(timestamp);

  return log.str();
}

void TraceLog::AddTraceEventEtw(char phase,
                                const char* name,
                                const void* id,
                                const char* extra) {
#if defined(OS_WIN)
  TraceEventETWProvider::Trace(name, phase, id, extra);
#endif
  INTERNAL_TRACE_EVENT_ADD(phase, "ETW Trace Event", name,
                           TRACE_EVENT_FLAG_COPY, "id", id, "extra", extra);
}

void TraceLog::AddTraceEventEtw(char phase,
                                const char* name,
                                const void* id,
                                const std::string& extra) {
#if defined(OS_WIN)
  TraceEventETWProvider::Trace(name, phase, id, extra);
#endif
  INTERNAL_TRACE_EVENT_ADD(phase, "ETW Trace Event", name,
                           TRACE_EVENT_FLAG_COPY, "id", id, "extra", extra);
}

void TraceLog::UpdateTraceEventDuration(
    const unsigned char* category_group_enabled,
    const char* name,
    TraceEventHandle handle) {
  // Avoid re-entrance of AddTraceEvent. This may happen in GPU process when
  // ECHO_TO_CONSOLE is enabled: AddTraceEvent -> LOG(ERROR) ->
  // GpuProcessLogMessageHandler -> PostPendingTask -> TRACE_EVENT ...
  if (thread_is_in_trace_event_.Get())
    return;

  AutoThreadLocalBoolean thread_is_in_trace_event(&thread_is_in_trace_event_);

  TimeTicks thread_now = ThreadNow();
  TimeTicks now = OffsetNow();

  std::string console_message;
  if (*category_group_enabled & ENABLED_FOR_RECORDING) {
    OptionalAutoLock lock(lock_);

    TraceEvent* trace_event = GetEventByHandleInternal(handle, &lock);
    if (trace_event) {
      DCHECK(trace_event->phase() == TRACE_EVENT_PHASE_COMPLETE);
      trace_event->UpdateDuration(now, thread_now);
#if defined(OS_ANDROID)
      trace_event->SendToATrace();
#endif
    }

    if (trace_options() & ECHO_TO_CONSOLE) {
      console_message = EventToConsoleMessage(TRACE_EVENT_PHASE_END,
                                              now, trace_event);
    }
  }

  if (console_message.size())
    LOG(ERROR) << console_message;

  if (*category_group_enabled & ENABLED_FOR_EVENT_CALLBACK) {
    EventCallback event_callback = reinterpret_cast<EventCallback>(
        subtle::NoBarrier_Load(&event_callback_));
    if (event_callback) {
      event_callback(now, TRACE_EVENT_PHASE_END, category_group_enabled, name,
                     trace_event_internal::kNoEventId, 0, NULL, NULL, NULL,
                     TRACE_EVENT_FLAG_NONE);
    }
  }
}

void TraceLog::SetWatchEvent(const std::string& category_name,
                             const std::string& event_name,
                             const WatchEventCallback& callback) {
  const unsigned char* category = GetCategoryGroupEnabled(
      category_name.c_str());
  AutoLock lock(lock_);
  subtle::NoBarrier_Store(&watch_category_,
                          reinterpret_cast<subtle::AtomicWord>(category));
  watch_event_name_ = event_name;
  watch_event_callback_ = callback;
}

void TraceLog::CancelWatchEvent() {
  AutoLock lock(lock_);
  subtle::NoBarrier_Store(&watch_category_, 0);
  watch_event_name_ = "";
  watch_event_callback_.Reset();
}

void TraceLog::AddMetadataEventsWhileLocked() {
  lock_.AssertAcquired();

  int current_thread_id = static_cast<int>(base::PlatformThread::CurrentId());
  if (process_sort_index_ != 0) {
    InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
                            current_thread_id,
                            "process_sort_index", "sort_index",
                            process_sort_index_);
  }

  if (process_name_.size()) {
    InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
                            current_thread_id,
                            "process_name", "name",
                            process_name_);
  }

  if (process_labels_.size() > 0) {
    std::vector<std::string> labels;
    for(base::hash_map<int, std::string>::iterator it = process_labels_.begin();
        it != process_labels_.end();
        it++) {
      labels.push_back(it->second);
    }
    InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
                            current_thread_id,
                            "process_labels", "labels",
                            JoinString(labels, ','));
  }

  // Thread sort indices.
  for(hash_map<int, int>::iterator it = thread_sort_indices_.begin();
      it != thread_sort_indices_.end();
      it++) {
    if (it->second == 0)
      continue;
    InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
                            it->first,
                            "thread_sort_index", "sort_index",
                            it->second);
  }

  // Thread names.
  AutoLock thread_info_lock(thread_info_lock_);
  for(hash_map<int, std::string>::iterator it = thread_names_.begin();
      it != thread_names_.end();
      it++) {
    if (it->second.empty())
      continue;
    InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false),
                            it->first,
                            "thread_name", "name",
                            it->second);
  }
}

void TraceLog::WaitSamplingEventForTesting() {
  if (!sampling_thread_)
    return;
  sampling_thread_->WaitSamplingEventForTesting();
}

void TraceLog::DeleteForTesting() {
  DeleteTraceLogForTesting::Delete();
}

TraceEvent* TraceLog::GetEventByHandle(TraceEventHandle handle) {
  return GetEventByHandleInternal(handle, NULL);
}

TraceEvent* TraceLog::GetEventByHandleInternal(TraceEventHandle handle,
                                               OptionalAutoLock* lock) {
  if (!handle.chunk_seq)
    return NULL;

  if (thread_local_event_buffer_.Get()) {
    TraceEvent* trace_event =
        thread_local_event_buffer_.Get()->GetEventByHandle(handle);
    if (trace_event)
      return trace_event;
  }

  // The event has been out-of-control of the thread local buffer.
  // Try to get the event from the main buffer with a lock.
  if (lock)
    lock->EnsureAcquired();

  if (thread_shared_chunk_ &&
      handle.chunk_index == thread_shared_chunk_index_) {
    return handle.chunk_seq == thread_shared_chunk_->seq() ?
        thread_shared_chunk_->GetEventAt(handle.event_index) : NULL;
  }

  return logged_events_->GetEventByHandle(handle);
}

void TraceLog::SetProcessID(int process_id) {
  process_id_ = process_id;
  // Create a FNV hash from the process ID for XORing.
  // See http://isthe.com/chongo/tech/comp/fnv/ for algorithm details.
  unsigned long long offset_basis = 14695981039346656037ull;
  unsigned long long fnv_prime = 1099511628211ull;
  unsigned long long pid = static_cast<unsigned long long>(process_id_);
  process_id_hash_ = (offset_basis ^ pid) * fnv_prime;
}

void TraceLog::SetProcessSortIndex(int sort_index) {
  AutoLock lock(lock_);
  process_sort_index_ = sort_index;
}

void TraceLog::SetProcessName(const std::string& process_name) {
  AutoLock lock(lock_);
  process_name_ = process_name;
}

void TraceLog::UpdateProcessLabel(
    int label_id, const std::string& current_label) {
  if(!current_label.length())
    return RemoveProcessLabel(label_id);

  AutoLock lock(lock_);
  process_labels_[label_id] = current_label;
}

void TraceLog::RemoveProcessLabel(int label_id) {
  AutoLock lock(lock_);
  base::hash_map<int, std::string>::iterator it = process_labels_.find(
      label_id);
  if (it == process_labels_.end())
    return;

  process_labels_.erase(it);
}

void TraceLog::SetThreadSortIndex(PlatformThreadId thread_id, int sort_index) {
  AutoLock lock(lock_);
  thread_sort_indices_[static_cast<int>(thread_id)] = sort_index;
}

void TraceLog::SetTimeOffset(TimeDelta offset) {
  time_offset_ = offset;
}

size_t TraceLog::GetObserverCountForTest() const {
  return enabled_state_observer_list_.size();
}

void TraceLog::SetCurrentThreadBlocksMessageLoop() {
  thread_blocks_message_loop_.Set(true);
  if (thread_local_event_buffer_.Get()) {
    // This will flush the thread local buffer.
    delete thread_local_event_buffer_.Get();
  }
}

bool CategoryFilter::IsEmptyOrContainsLeadingOrTrailingWhitespace(
    const std::string& str) {
  return  str.empty() ||
          str.at(0) == ' ' ||
          str.at(str.length() - 1) == ' ';
}

bool CategoryFilter::DoesCategoryGroupContainCategory(
    const char* category_group,
    const char* category) const {
  DCHECK(category);
  CStringTokenizer category_group_tokens(category_group,
                          category_group + strlen(category_group), ",");
  while (category_group_tokens.GetNext()) {
    std::string category_group_token = category_group_tokens.token();
    // Don't allow empty tokens, nor tokens with leading or trailing space.
    DCHECK(!CategoryFilter::IsEmptyOrContainsLeadingOrTrailingWhitespace(
        category_group_token))
        << "Disallowed category string";
    if (MatchPattern(category_group_token.c_str(), category))
      return true;
  }
  return false;
}

CategoryFilter::CategoryFilter(const std::string& filter_string) {
  if (!filter_string.empty())
    Initialize(filter_string);
  else
    Initialize(CategoryFilter::kDefaultCategoryFilterString);
}

CategoryFilter::CategoryFilter(const CategoryFilter& cf)
    : included_(cf.included_),
      disabled_(cf.disabled_),
      excluded_(cf.excluded_),
      delays_(cf.delays_) {
}

CategoryFilter::~CategoryFilter() {
}

CategoryFilter& CategoryFilter::operator=(const CategoryFilter& rhs) {
  if (this == &rhs)
    return *this;

  included_ = rhs.included_;
  disabled_ = rhs.disabled_;
  excluded_ = rhs.excluded_;
  delays_ = rhs.delays_;
  return *this;
}

void CategoryFilter::Initialize(const std::string& filter_string) {
  // Tokenize list of categories, delimited by ','.
  StringTokenizer tokens(filter_string, ",");
  // Add each token to the appropriate list (included_,excluded_).
  while (tokens.GetNext()) {
    std::string category = tokens.token();
    // Ignore empty categories.
    if (category.empty())
      continue;
    // Synthetic delays are of the form 'DELAY(delay;option;option;...)'.
    if (category.find(kSyntheticDelayCategoryFilterPrefix) == 0 &&
        category.at(category.size() - 1) == ')') {
      category = category.substr(
          strlen(kSyntheticDelayCategoryFilterPrefix),
          category.size() - strlen(kSyntheticDelayCategoryFilterPrefix) - 1);
      size_t name_length = category.find(';');
      if (name_length != std::string::npos && name_length > 0 &&
          name_length != category.size() - 1) {
        delays_.push_back(category);
      }
    } else if (category.at(0) == '-') {
      // Excluded categories start with '-'.
      // Remove '-' from category string.
      category = category.substr(1);
      excluded_.push_back(category);
    } else if (category.compare(0, strlen(TRACE_DISABLED_BY_DEFAULT("")),
                                TRACE_DISABLED_BY_DEFAULT("")) == 0) {
      disabled_.push_back(category);
    } else {
      included_.push_back(category);
    }
  }
}

void CategoryFilter::WriteString(const StringList& values,
                                 std::string* out,
                                 bool included) const {
  bool prepend_comma = !out->empty();
  int token_cnt = 0;
  for (StringList::const_iterator ci = values.begin();
       ci != values.end(); ++ci) {
    if (token_cnt > 0 || prepend_comma)
      StringAppendF(out, ",");
    StringAppendF(out, "%s%s", (included ? "" : "-"), ci->c_str());
    ++token_cnt;
  }
}

void CategoryFilter::WriteString(const StringList& delays,
                                 std::string* out) const {
  bool prepend_comma = !out->empty();
  int token_cnt = 0;
  for (StringList::const_iterator ci = delays.begin();
       ci != delays.end(); ++ci) {
    if (token_cnt > 0 || prepend_comma)
      StringAppendF(out, ",");
    StringAppendF(out, "%s%s)", kSyntheticDelayCategoryFilterPrefix,
                  ci->c_str());
    ++token_cnt;
  }
}

std::string CategoryFilter::ToString() const {
  std::string filter_string;
  WriteString(included_, &filter_string, true);
  WriteString(disabled_, &filter_string, true);
  WriteString(excluded_, &filter_string, false);
  WriteString(delays_, &filter_string);
  return filter_string;
}

bool CategoryFilter::IsCategoryGroupEnabled(
    const char* category_group_name) const {
  // TraceLog should call this method only as  part of enabling/disabling
  // categories.
  StringList::const_iterator ci;

  // Check the disabled- filters and the disabled-* wildcard first so that a
  // "*" filter does not include the disabled.
  for (ci = disabled_.begin(); ci != disabled_.end(); ++ci) {
    if (DoesCategoryGroupContainCategory(category_group_name, ci->c_str()))
      return true;
  }
  if (DoesCategoryGroupContainCategory(category_group_name,
                                       TRACE_DISABLED_BY_DEFAULT("*")))
    return false;

  for (ci = included_.begin(); ci != included_.end(); ++ci) {
    if (DoesCategoryGroupContainCategory(category_group_name, ci->c_str()))
      return true;
  }

  for (ci = excluded_.begin(); ci != excluded_.end(); ++ci) {
    if (DoesCategoryGroupContainCategory(category_group_name, ci->c_str()))
      return false;
  }
  // If the category group is not excluded, and there are no included patterns
  // we consider this pattern enabled.
  return included_.empty();
}

bool CategoryFilter::HasIncludedPatterns() const {
  return !included_.empty();
}

void CategoryFilter::Merge(const CategoryFilter& nested_filter) {
  // Keep included patterns only if both filters have an included entry.
  // Otherwise, one of the filter was specifying "*" and we want to honour the
  // broadest filter.
  if (HasIncludedPatterns() && nested_filter.HasIncludedPatterns()) {
    included_.insert(included_.end(),
                     nested_filter.included_.begin(),
                     nested_filter.included_.end());
  } else {
    included_.clear();
  }

  disabled_.insert(disabled_.end(),
                   nested_filter.disabled_.begin(),
                   nested_filter.disabled_.end());
  excluded_.insert(excluded_.end(),
                   nested_filter.excluded_.begin(),
                   nested_filter.excluded_.end());
  delays_.insert(delays_.end(),
                 nested_filter.delays_.begin(),
                 nested_filter.delays_.end());
}

void CategoryFilter::Clear() {
  included_.clear();
  disabled_.clear();
  excluded_.clear();
}

const CategoryFilter::StringList&
    CategoryFilter::GetSyntheticDelayValues() const {
  return delays_;
}

}  // namespace debug
}  // namespace base

namespace trace_event_internal {

ScopedTraceBinaryEfficient::ScopedTraceBinaryEfficient(
    const char* category_group, const char* name) {
  // The single atom works because for now the category_group can only be "gpu".
  DCHECK(strcmp(category_group, "gpu") == 0);
  static TRACE_EVENT_API_ATOMIC_WORD atomic = 0;
  INTERNAL_TRACE_EVENT_GET_CATEGORY_INFO_CUSTOM_VARIABLES(
      category_group, atomic, category_group_enabled_);
  name_ = name;
  if (*category_group_enabled_) {
    event_handle_ =
        TRACE_EVENT_API_ADD_TRACE_EVENT_WITH_THREAD_ID_AND_TIMESTAMP(
            TRACE_EVENT_PHASE_COMPLETE, category_group_enabled_, name,
            trace_event_internal::kNoEventId,
            static_cast<int>(base::PlatformThread::CurrentId()),
            base::TimeTicks::NowFromSystemTraceTime(),
            0, NULL, NULL, NULL, NULL, TRACE_EVENT_FLAG_NONE);
  }
}

ScopedTraceBinaryEfficient::~ScopedTraceBinaryEfficient() {
  if (*category_group_enabled_) {
    TRACE_EVENT_API_UPDATE_TRACE_EVENT_DURATION(category_group_enabled_,
                                                name_, event_handle_);
  }
}

}  // namespace trace_event_internal

/* [<][>][^][v][top][bottom][index][help] */