/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- convert_coord
- convert_gfxline
- readline
- convert_file
- finish_segment
- compactmoveto
- direction
- compactlineto
- compactsetgridsize
- compactfinish
- gfxpolywriter_init
- gfxpoly_from_fill
- gfxpoly_from_file
- gfxpoly_destroy
- polydraw_moveTo
- polydraw_lineTo
- polydraw_splineTo
- polydraw_close
- polydraw_result
- gfxdrawer_target_poly
- gfxline_from_gfxpoly
- mkgfxline
- gfxline_from_gfxpoly
- gfxline_from_gfxpoly_with_direction
- gfxpoly_circular_to_evenodd
- gfxpoly_createbox
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "../gfxdevice.h"
#include "../mem.h"
#include "poly.h"
#include "convert.h"
#include "wind.h"
/* factor that determines into how many line fragments a spline is converted */
#define SUBFRACTION (2.4)
static inline int32_t convert_coord(double x, double z)
{
/* we clamp to 26 bit because:
a) we use a (x1-x2) shortcut when comparing coordinates
b) we need to be able to multiply two coordinates and store them in a double w/o loss of precision
*/
x *= z;
if(x < -0x2000000) x = -0x2000000;
if(x > 0x1ffffff) x = 0x1ffffff;
return ceil(x);
}
static void convert_gfxline(gfxline_t*line, polywriter_t*w, double gridsize)
{
assert(!line || line[0].type == gfx_moveTo);
double lastx=0,lasty=0;
double z = 1.0 / gridsize;
while(line) {
if(line->type == gfx_moveTo) {
if(line->next && line->next->type != gfx_moveTo && (line->x!=lastx || line->y!=lasty)) {
w->moveto(w, convert_coord(line->x,z), convert_coord(line->y,z));
}
} else if(line->type == gfx_lineTo) {
w->lineto(w, convert_coord(line->x,z), convert_coord(line->y,z));
} else if(line->type == gfx_splineTo) {
int parts = (int)(sqrt(fabs(line->x-2*line->sx+lastx) +
fabs(line->y-2*line->sy+lasty))*SUBFRACTION);
if(!parts) parts = 1;
double stepsize = 1.0/parts;
int i;
for(i=0;i<parts;i++) {
double t = (double)i*stepsize;
double sx = (line->x*t*t + 2*line->sx*t*(1-t) + lastx*(1-t)*(1-t));
double sy = (line->y*t*t + 2*line->sy*t*(1-t) + lasty*(1-t)*(1-t));
w->lineto(w, convert_coord(sx,z), convert_coord(sy,z));
}
w->lineto(w, convert_coord(line->x,z), convert_coord(line->y,z));
}
lastx = line->x;
lasty = line->y;
line = line->next;
}
}
static char* readline(FILE*fi)
{
char c;
while(1) {
int l = fread(&c, 1, 1, fi);
if(!l)
return 0;
if(c!=10 || c!=13)
break;
}
char line[256];
int pos = 0;
while(1) {
line[pos++] = c;
line[pos] = 0;
int l = fread(&c, 1, 1, fi);
if(!l || c==10 || c==13) {
return strdup(line);
}
}
}
static void convert_file(const char*filename, polywriter_t*w, double gridsize)
{
FILE*fi = fopen(filename, "rb");
if(!fi) {
perror(filename);
}
double z = 1.0 / gridsize;
int count = 0;
double g = 0;
double lastx=0,lasty=0;
while(1) {
char*line = readline(fi);
if(!line)
break;
double x,y;
char s[256];
if(sscanf(line, "%lf %lf %s", &x, &y, (char*)&s) == 3) {
if(s && !strcmp(s,"moveto")) {
w->moveto(w, convert_coord(x,z), convert_coord(y,z));
count++;
} else if(s && !strcmp(s,"lineto")) {
w->lineto(w, convert_coord(x,z), convert_coord(y,z));
count++;
} else {
fprintf(stderr, "invalid command: %s\n", s);
}
} else if(sscanf(line, "%% gridsize %lf", &g) == 1) {
gridsize = g;
z = 1.0 / gridsize;
w->setgridsize(w, g);
}
free(line);
}
fclose(fi);
if(g) {
fprintf(stderr, "loaded %d points from %s (gridsize %f)\n", count, filename, g);
} else {
fprintf(stderr, "loaded %d points from %s\n", count, filename);
}
}
typedef struct _compactpoly {
gfxpoly_t*poly;
point_t last;
point_t*points;
int num_points;
int points_size;
segment_dir_t dir;
char new;
} compactpoly_t;
void finish_segment(compactpoly_t*data)
{
if(data->num_points <= 1)
return;
point_t*p = malloc(sizeof(point_t)*data->num_points);
gfxpolystroke_t*s = rfx_calloc(sizeof(gfxpolystroke_t));
s->fs = &edgestyle_default;
s->next = data->poly->strokes;
data->poly->strokes = s;
s->num_points = s->points_size = data->num_points;
s->dir = data->dir;
s->points = p;
assert(data->dir != DIR_UNKNOWN);
if(data->dir == DIR_UP) {
int t;
int s = data->num_points;
for(t=0;t<data->num_points;t++) {
p[--s] = data->points[t];
}
} else {
memcpy(p, data->points, sizeof(point_t)*data->num_points);
}
#ifdef CHECKS
int t;
for(t=0;t<data->num_points-1;t++) {
assert(p[t].y<=p[t+1].y);
}
#endif
}
static void compactmoveto(polywriter_t*w, int32_t x, int32_t y)
{
compactpoly_t*data = (compactpoly_t*)w->internal;
point_t p;
p.x = x;
p.y = y;
if(p.x != data->last.x || p.y != data->last.y) {
data->new = 1;
}
data->last = p;
}
static inline int direction(point_t p1, point_t p2)
{
int diff = p1.y - p2.y;
if(diff) return diff;
return p1.x - p2.x;
}
static void compactlineto(polywriter_t*w, int32_t x, int32_t y)
{
compactpoly_t*data = (compactpoly_t*)w->internal;
point_t p;
p.x = x;
p.y = y;
int diff = direction(p, data->last);
if(!diff)
return;
segment_dir_t dir = diff<0?DIR_UP:DIR_DOWN;
if(dir!=data->dir || data->new) {
finish_segment(data);
data->dir = dir;
data->points[0] = data->last;
data->num_points = 1;
}
data->new = 0;
if(data->points_size == data->num_points) {
data->points_size <<= 1;
assert(data->points_size > data->num_points);
data->points = rfx_realloc(data->points, sizeof(point_t)*data->points_size);
}
data->points[data->num_points++] = p;
data->last = p;
}
static void compactsetgridsize(polywriter_t*w, double gridsize)
{
compactpoly_t*d = (compactpoly_t*)w->internal;
d->poly->gridsize = gridsize;
}
/*static int compare_stroke(const void*_s1, const void*_s2)
{
gfxpolystroke_t*s1 = (gfxpolystroke_t*)_s1;
gfxpolystroke_t*s2 = (gfxpolystroke_t*)_s2;
return s1->points[0].y - s2->points[0].y;
}*/
static void*compactfinish(polywriter_t*w)
{
compactpoly_t*data = (compactpoly_t*)w->internal;
finish_segment(data);
//qsort(data->poly->strokes, data->poly->num_strokes, sizeof(gfxpolystroke_t), compare_stroke);
free(data->points);
gfxpoly_t*poly = data->poly;
free(w->internal);w->internal = 0;
return (void*)poly;
}
void gfxpolywriter_init(polywriter_t*w)
{
w->moveto = compactmoveto;
w->lineto = compactlineto;
w->setgridsize = compactsetgridsize;
w->finish = compactfinish;
compactpoly_t*data = w->internal = rfx_calloc(sizeof(compactpoly_t));
data->poly = rfx_calloc(sizeof(gfxpoly_t));
data->poly->gridsize = 1.0;
data->last.x = data->last.y = 0;
data->num_points = 0;
data->points_size = 16;
data->new = 1;
data->dir = DIR_UNKNOWN;
data->points = (point_t*)rfx_alloc(sizeof(point_t)*data->points_size);
data->poly->strokes = 0;
}
gfxpoly_t* gfxpoly_from_fill(gfxline_t*line, double gridsize)
{
polywriter_t writer;
gfxpolywriter_init(&writer);
writer.setgridsize(&writer, gridsize);
convert_gfxline(line, &writer, gridsize);
return (gfxpoly_t*)writer.finish(&writer);
}
gfxpoly_t* gfxpoly_from_file(const char*filename, double gridsize)
{
polywriter_t writer;
gfxpolywriter_init(&writer);
writer.setgridsize(&writer, gridsize);
convert_file(filename, &writer, gridsize);
return (gfxpoly_t*)writer.finish(&writer);
}
void gfxpoly_destroy(gfxpoly_t*poly)
{
int t;
gfxpolystroke_t*stroke = poly->strokes;
while(stroke) {
gfxpolystroke_t*next = stroke->next;
free(stroke->points);
free(stroke);
stroke = next;
}
free(poly);
}
typedef struct _polydraw_internal
{
double lx, ly;
int32_t lastx, lasty;
int32_t x0, y0;
double z;
char last;
polywriter_t writer;
} polydraw_internal_t;
static void polydraw_moveTo(gfxdrawer_t*d, gfxcoord_t _x, gfxcoord_t _y)
{
polydraw_internal_t*i = (polydraw_internal_t*)d->internal;
int32_t x = convert_coord(_x, i->z);
int32_t y = convert_coord(_y, i->z);
if(i->lastx != x || i->lasty != y) {
i->writer.moveto(&i->writer, x, y);
}
i->lx = _x;
i->ly = _y;
i->x0 = x;
i->y0 = y;
i->lastx = x;
i->lasty = y;
i->last = 1;
}
static void polydraw_lineTo(gfxdrawer_t*d, gfxcoord_t _x, gfxcoord_t _y)
{
polydraw_internal_t*i = (polydraw_internal_t*)d->internal;
if(!i->last) {
polydraw_moveTo(d, _x, _y);
return;
}
int32_t x = convert_coord(_x, i->z);
int32_t y = convert_coord(_y, i->z);
if(i->lastx != x || i->lasty != y) {
i->writer.lineto(&i->writer, x, y);
}
i->lx = _x;
i->ly = _y;
i->lastx = x;
i->lasty = y;
i->last = 1;
}
static void polydraw_splineTo(gfxdrawer_t*d, gfxcoord_t sx, gfxcoord_t sy, gfxcoord_t x, gfxcoord_t y)
{
polydraw_internal_t*i = (polydraw_internal_t*)d->internal;
if(!i->last) {
polydraw_moveTo(d, x, y);
return;
}
double c = fabs(x-2*sx+i->lx) + fabs(y-2*sy+i->ly);
int parts = (int)(sqrt(c)*SUBFRACTION);
if(!parts) parts = 1;
int t;
int32_t nx,ny;
for(t=0;t<parts;t++) {
nx = convert_coord((double)(t*t*x + 2*t*(parts-t)*sx + (parts-t)*(parts-t)*i->lx)/(double)(parts*parts), i->z);
ny = convert_coord((double)(t*t*y + 2*t*(parts-t)*sy + (parts-t)*(parts-t)*i->ly)/(double)(parts*parts), i->z);
if(nx != i->lastx || ny != i->lasty) {
i->writer.lineto(&i->writer, nx, ny);
i->lastx = nx; i->lasty = ny;
}
}
nx = convert_coord(x,i->z);
ny = convert_coord(y,i->z);
if(nx != i->lastx || ny != i->lasty) {
i->writer.lineto(&i->writer, nx, ny);
}
i->lx = x;
i->ly = y;
i->lastx = nx;
i->lasty = ny;
i->last = 1;
}
static void polydraw_close(gfxdrawer_t*d)
{
polydraw_internal_t*i = (polydraw_internal_t*)d->internal;
assert(!(i->last && (i->x0 == INVALID_COORD || i->y0 == INVALID_COORD)));
if(!i->last)
return;
if(i->lastx != i->x0 || i->lasty != i->y0) {
i->writer.lineto(&i->writer, i->x0, i->y0);
i->lastx = i->x0;
i->lasty = i->y0;
}
i->last = 0;
i->x0 = INVALID_COORD;
i->y0 = INVALID_COORD;
}
static void* polydraw_result(gfxdrawer_t*d)
{
polydraw_internal_t*i = (polydraw_internal_t*)d->internal;
void*result = i->writer.finish(&i->writer);
rfx_free(i);
memset(d, 0, sizeof(gfxdrawer_t));
return result;
}
void gfxdrawer_target_poly(gfxdrawer_t*d, double gridsize)
{
polydraw_internal_t*i = (polydraw_internal_t*)rfx_calloc(sizeof(polydraw_internal_t));
d->internal = i;
i->lastx = INVALID_COORD; // convert_coord can never return this value
i->lasty = INVALID_COORD;
i->x0 = INVALID_COORD;
i->y0 = INVALID_COORD;
d->moveTo = polydraw_moveTo;
d->lineTo = polydraw_lineTo;
d->splineTo = polydraw_splineTo;
d->close = polydraw_close;
d->result = polydraw_result;
gfxpolywriter_init(&i->writer);
i->writer.setgridsize(&i->writer, gridsize);
i->z = 1.0 / gridsize;
}
#if 0
gfxline_t*gfxline_from_gfxpoly(gfxpoly_t*poly)
{
gfxpolystroke_t*stroke;
int count = 0;
for(stroke=poly->strokes;stroke;stroke=stroke->next) {
assert(stroke->num_points);
count += stroke->num_points;
}
if(!count) return 0;
gfxline_t*l = malloc(sizeof(gfxline_t)*count);
count = 0;
/* TODO: it might make sense to concatenate strokes */
for(stroke=poly->strokes;stroke;stroke=stroke->next) {
int t;
for(t=0;t<stroke->num_points;t++) {
l[count+t].x = stroke->points[t].x * poly->gridsize;
l[count+t].y = stroke->points[t].y * poly->gridsize;
l[count+t].type = gfx_lineTo;
l[count+t].next = &l[count+t+1];
}
l[count].type = gfx_moveTo;
count+=stroke->num_points;
}
l[count-1].next = 0;
return l;
}
#endif
static gfxline_t*mkgfxline(gfxpoly_t*poly, char preserve_direction)
{
gfxpolystroke_t*stroke;
int count = 0;
if(!poly->strokes)
return 0;
dict_t*d = dict_new2(&point_type);
dict_t*todo = dict_new2(&ptr_type);
gfxpolystroke_t*stroke_min= poly->strokes;
int32_t x_min=stroke_min->points[0].x;
int32_t y_min=stroke_min->points[0].y;
for(stroke=poly->strokes;stroke;stroke=stroke->next) {
dict_put(todo, stroke, stroke);
assert(stroke->num_points>1);
count += stroke->num_points;
if(stroke->dir == DIR_UP) {
dict_put(d, &stroke->points[stroke->num_points-1], stroke);
if(!preserve_direction)
dict_put(d, &stroke->points[0], stroke);
} else {
dict_put(d, &stroke->points[0], stroke);
if(!preserve_direction)
dict_put(d, &stroke->points[stroke->num_points-1], stroke);
}
if(stroke->points[0].y < y_min ||
(stroke->points[0].y == y_min && stroke->points[0].x < x_min)) {
y_min = stroke->points[0].y;
stroke_min = stroke;
}
}
gfxpolystroke_t*next_todo = poly->strokes;
gfxline_t*l = malloc(sizeof(gfxline_t)*count);
count = 0;
stroke = stroke_min;
point_t last = {INVALID_COORD, INVALID_COORD};
char should_connect = 0;
while(stroke) {
if(stroke && !preserve_direction) {
char del1 = dict_del2(d, &stroke->points[0], stroke);
char del2 = dict_del2(d, &stroke->points[stroke->num_points-1], stroke);
assert(del1 && del2);
}
assert(dict_contains(todo, stroke));
int t;
int pos = 0;
int incr = 1;
if(preserve_direction) {
if(stroke->dir == DIR_UP) {
pos = stroke->num_points-1;
incr = -1;
}
} else {
// try to find matching point on either end.
// Prefer downward.
if(last.x == stroke->points[stroke->num_points-1].x &&
last.y == stroke->points[stroke->num_points-1].y) {
pos = stroke->num_points-1;
incr = -1;
}
}
if(last.x != stroke->points[pos].x || last.y != stroke->points[pos].y) {
l[count].x = stroke->points[pos].x * poly->gridsize;
l[count].y = stroke->points[pos].y * poly->gridsize;
l[count].type = gfx_moveTo;
l[count].next = &l[count+1];
count++;
assert(!should_connect);
}
pos += incr;
for(t=1;t<stroke->num_points;t++) {
l[count].x = stroke->points[pos].x * poly->gridsize;
l[count].y = stroke->points[pos].y * poly->gridsize;
l[count].type = gfx_lineTo;
l[count].next = &l[count+1];
count++;
pos += incr;
}
last = stroke->points[pos-incr];
char del = dict_del(todo, stroke);
assert(del);
assert(!dict_contains(todo, stroke));
/* try to find a poly which starts at the point we drew last */
stroke = dict_lookup(d, &last);
should_connect = 1;
while(!dict_contains(todo, stroke)) {
should_connect = 0;
stroke = next_todo;
if(!next_todo) {
stroke = 0;
break;
}
next_todo = next_todo->next;
}
}
l[count-1].next = 0;
dict_destroy(todo);
dict_destroy(d);
return l;
}
gfxline_t*gfxline_from_gfxpoly(gfxpoly_t*poly)
{
return mkgfxline(poly, 0);
}
gfxline_t*gfxline_from_gfxpoly_with_direction(gfxpoly_t*poly)
{
return mkgfxline(poly, 1);
}
static windcontext_t onepolygon = {1};
gfxline_t* gfxpoly_circular_to_evenodd(gfxline_t*line, double gridsize)
{
gfxpoly_t*poly = gfxpoly_from_fill(line, gridsize);
gfxpoly_t*poly2 = gfxpoly_process(poly, 0, &windrule_circular, &onepolygon);
gfxline_t*line2 = gfxline_from_gfxpoly(poly2);
gfxpoly_destroy(poly);
gfxpoly_destroy(poly2);
return line2;
}
gfxpoly_t* gfxpoly_createbox(double x1, double y1,double x2, double y2, double gridsize)
{
gfxline_t* line = gfxline_makerectangle(x1, y1, x2, y2);
gfxpoly_t* poly = gfxpoly_from_fill(line, gridsize);
gfxline_free(line);
return poly;
}